1
|
Teradale AB, Unki SN, Ganesh PS, Das KK, Das SN. Development of a Diethylcarbamazine Citrate‐Based Electrochemical Sensor for Quick and Affordable Detection of Sulfadiazine and Uric Acid in Environmental Monitoring. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
AbstractThe widespread use of antibiotics like sulfadiazine (SDZ) in various industries has raised environmental and health concerns due to their potential for bioaccumulation and the subsequent effects on human health and the environment. Diethylcarbamazine citrate (DCZ), a well‐established antifilarial drug, has yet to be explored as a sensing agent despite its extensive use. This study proposes a cost‐effective and efficient method for detecting SDZ and Uric acid (UA) using a DCZ‐modified carbon paste electrode (poly‐DCZ/MCPE). The poly‐DCZ film is synthesized via cyclic voltammetry (CV) on the carbon paste electrode surface, demonstrating excellent electrocatalytic activity for SDZ and UA detection at pH 7.4. The diffusion‐controlled electrode process is observed with a lower limit of detection (LOD) and limit of quantification (LOQ) for SDZ as 3.8×10−9 M and 12.94×10−9 M respectively. For UA, LOD and LOQ were found to be 6.291×10−9 M and 20.97×10−9 M respectively at the poly‐DCZ/MCPE. Notably, the sensor exhibits simultaneous detection capabilities for SDZ and UA by CV and differential pulse voltammetry (DPV) methods, addressing the need to monitor antibiotic residues in aquatic ecosystems and animal‐derived products.
Collapse
Affiliation(s)
- Amit B. Teradale
- PG Department of Chemistry BLDEA's S.B. Arts and K.C.P. Science College Vijayapur Karnataka 586103 India
| | - Shrishila N. Unki
- PG Department of Chemistry BLDEA's S.B. Arts and K.C.P. Science College Vijayapur Karnataka 586103 India
| | - Pattan S. Ganesh
- Interaction Laboratory Future Convergence Engineering Advanced Technology Research Center Korea University of Technology and Education Cheonan-si Chungcheongnam-do 31253, Republic of Korea
| | - Kusal K. Das
- Laboratory of Vascular Physiology & Medicine Department of Physiology Shri B.M.Patil Medical College Hospital & Research Centre Director - Center for Advanced Medical Research BLDE (Deemed to be University) Vijayapura 586103 Karnataka India
| | - Swastika N. Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology Vijayapur 586103 Karnataka India
| |
Collapse
|
2
|
Ion BC, van Staden JKF, Georgescu-State R, Comnea-Stancu IR. An ultrasensitive electrochemical platform based on copper oxide nanoparticles and poly (crystal violet) for the detection of brilliant blue FCF from soft drinks. Food Chem 2024; 437:137751. [PMID: 37907001 DOI: 10.1016/j.foodchem.2023.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
In this study, a highly sensitive and quick electrochemical platform based on poly (crystal violet) film and copper oxide nanoparticles for the detection of brilliant blue FCF from various soft beverages was developed. The synthesized copper oxide nanoparticles were investigated with Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray. Further, crystal violet was electropolymerized on the surface of the carbon paste electrode modified with copper oxide nanoparticles. The electrochemical properties of poly (crystal) violet/copper oxide nanoparticles modified carbon paste electrode were assessed through the utilization of cyclic voltammetry and electrochemical impedance spectroscopy. Furthermore, the signal towards the oxidation of brilliant blue was examined using the differential pulse voltammetry method. Under ideal experimental conditions, the peak current exhibited a linear relationship with the brilliant blue concentration within the range of 0.01-1.00 nmol/L, with a sensitivity of 294.55 µA nmol/L cm-2 and a significant detection limit of 3 pmol/L. In the presence of other dyes and other food additives, the developed platform showed greater selectivity in detecting brilliant blue. The reliability of the designed platform was demonstrated by the 99.19 - 100.67 recovery percentage for the identification of BB in various soft drink samples.
Collapse
Affiliation(s)
- Bianca-Cristina Ion
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus Koos Frederick van Staden
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania.
| | - Ramona Georgescu-State
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Ionela-Raluca Comnea-Stancu
- Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
3
|
Zahran M. Conducting dyes as electro-active monomers and polymers for detecting analytes in biological and environmental samples. Heliyon 2023; 9:e19943. [PMID: 37809550 PMCID: PMC10559349 DOI: 10.1016/j.heliyon.2023.e19943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Currently, electrochemical sensors are regarded as an efficient tool for the biological and environmental sensing. Electrochemical sensors, such as voltammetric, amperometric, and impedimetric sensors, have gained great attention due to their simplicity, sensitivity, and selectivity. The performance of these electrochemical sensors could be enhanced by surface engineered nano/micro structured materials with conducting dyes/redox species. In this review, a great focus has been put on the redox-active dyes because of their electronic, optical, electrochromic, and conductivity properties. The mechanisms of oxidation and subsequent polymerization of different redox-active dyes at the surface of electrodes have been studied. Additionally, their role in catalyzing the oxidation or reduction of the target analytes at the surfaces of electrodes has also been highlighted. The redox-active dyes were used as electrochemical probes for detecting various analytes in biological and environmental samples. Overall, redox-active dyes are considered promising conducting polymers for the assessment of many analytes such as drugs, pesticides, surfactants, and heavy metal ions.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shibin El-Kom, 32512, Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater, Menoufia, 32514, Egypt
| |
Collapse
|
4
|
Sukanya SD, Swamy BEK, Shashikumara JK, Sharma SC, Hariprasad SA. A novel, extreme low-cost poly (Erythrosine) modified pencil graphite electrode for determination of Adrenaline. Sci Rep 2023; 13:4523. [PMID: 36941302 PMCID: PMC10027675 DOI: 10.1038/s41598-023-31068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
A simple, novel, and less cost yellow (Erythrosine) modified pencil graphite electrode (Po-ERY/MGPE) was successfully fabricated via electropolymerization method using cyclic voltammetric techniques. The fabricated Po-ERY/MGPE opted as a sensor for the detection of Adrenaline (ADR) in 0.2 M PBS (7.4 pH). This reported senor displayed excellent electrocatalytic activity, increased sensitivity, high stability, superior electron transfer kinetics in the oxidation of ADR once relative to BGPE. The significance of pH, scan rate, and impact of concentration was assessed at the sensor. As per the pH and scan rate study, redox routes carry the same number of electrons and protons, and electro-oxidation of ADR was adsorption controlled respectively. The LOD of ADR was found to be 0.499 µM. The DPV data indicate that there is a significant peak divergence among ADR and uric acid (UA) which could make it easier to determine them alone and simultaneously on the sensor. The described method has been employed for the determination of ADR in injection sample. Good recovery values indicate the efficacy and applicability of the sensor in detecting ADR.
Collapse
Affiliation(s)
- S D Sukanya
- Department of P.G. Studies and Research in Analytical Chemistry, Alva's College, Moodubidire, Dakshina Kannada, Karnataka, 574227, India
| | - B E Kumara Swamy
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivmoga, Karnataka, 577451, India.
| | - J K Shashikumara
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Shivmoga, Karnataka, 577451, India
| | - S C Sharma
- National Assessment and Accreditation Council (Work Carried Out as Honorary Professor), Jain University, Bangalore, Karnataka, 560 069, India.
| | | |
Collapse
|
5
|
Antherjanam S, Saraswathyamma B. Electrochemical preparation and the characterizations of poly(3,5-diamino 1,2,4-triazole) film for the selective determination of pyridoxine in pharmaceutical formulations. CHEMICKE ZVESTI 2023; 77:1-12. [PMID: 37362795 PMCID: PMC10027263 DOI: 10.1007/s11696-023-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
This work describes the synthesis and characterization of a polymeric film of 3,5-diamino 1,2,4-triazole on a pencil graphite electrode for the selective sensing of pyridoxine (PY). The PGE was modified using the electropolymerization process by the potentiodynamic method. The polymerized electrode (PDAT/PGE) was characterized by IR, SEM, AFM, cyclic voltammetry, and electrochemical impedance spectroscopy. PY undergoes irreversible oxidation at 0.79 V on PDAT/PGE in phosphate buffer of pH 5. Using the differential pulse voltammetric technique (DPV), PY showed a linear range from 5 to 950 μM with a lower detection limit of 2.96 μM. The PDAT/PGE was applied for the analytical determination of PY in pharmaceutical tablets with good recovery. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02777-5.
Collapse
Affiliation(s)
- Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525 India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525 India
| |
Collapse
|
6
|
Biya S, Negash N, Hailu T, Tesfaye G, Yaya EE. Highly sensitive square wave voltammetric method for determination of brucine in artificial urine samples based on choline chloride modified glassy carbon electrode. Heliyon 2023; 9:e14544. [PMID: 37101509 PMCID: PMC10123166 DOI: 10.1016/j.heliyon.2023.e14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
This paper demonstrates a highly sensitive Voltammetric sensor for determination of brucine (BRU) in artificial urine sample based on choline chloride modified glassy carbon electrode (ChCl/GCE). The simple and cost effective modification was performed by electrodeposition of choline chloride on glassy carbon electrode surface using cyclic voltammetry technique. The modified electrode surface was characterized by electrochemical, spectroscopic and microscopic imaging. The electrode yields a well-resolved peak current for the irreversible oxidation of brucine in the first scan and a pair of quasi-reversible peaks during the second scan. The CV study indicates that brucine undergoes an adsorption controlled electrochemical process with equal number of electrons and protons transfer on the ChCl/GCE. The SWV result shows that the reduction peak current of BRU at the ChCl/GCE was linear in the range of 0.001 μM-10 μM with limit of detection 8 × 10-5 μM, limit of quantification 2.6 × 10-4 μM and sensitivity of 116.4 μA/μM. The ChCl/GCE also showed an excellent selectivity, reproducibility and long-time stability towards the electrochemical reduction of Brucine. Moreover, the practical applicability of the fabricated ChCl/GCE was examined in order to determine BRU in artificial urine samples with recovery ranging from 95.5 to 102.7%. The validity of the developed method was confirmed by chromatographic techniques, high-performance liquid chromatography (HPLC) and the results obtained are consistent the HPLC method.
Collapse
|
7
|
Teradale AB, Chadchan KS, Ganesh PS, Das SN, Ebenso EE. Synergetic effects of a poly-tartrazine/CTAB modified carbon paste electrode sensor towards simultaneous and interference-free determination of benzenediol isomers. REACT CHEM ENG 2023; 8:3071-3081. [DOI: 10.1039/d3re00318c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Simultaneous and selective detection of dihydroxy benzene isomers by the synergistic effect of CTAB and tartrazine on a carbon paste electrode (poly-TZ/CTAB/MCPE) sensor by CV and DPV techniques.
Collapse
Affiliation(s)
- Amit B. Teradale
- PG Department of Chemistry, BLDEA's S.B. Arts and K.C.P. Science College, Vijayapur, Karnataka, 586103, India
| | - Kailash S. Chadchan
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur-586103, Karnataka, India
| | - Pattan-Siddappa Ganesh
- Advanced Technology Research Center, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 31253, Republic of Korea
| | - Swastika N. Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology, Vijayapur-586103, Karnataka, India
| | - Eno E. Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| |
Collapse
|
8
|
A poly(neutral red)/porous graphene modified electrode for a voltammetric hydroquinone sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Elugoke SE, Fayemi OE, Adekunle AS, Sherif ESM, Ebenso EE. Electrochemical sensor for the detection of adrenaline at poly(crystal violet) modified electrode: optimization and voltammetric studies. Heliyon 2022; 8:e10835. [PMID: 36262296 PMCID: PMC9573894 DOI: 10.1016/j.heliyon.2022.e10835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Herein, we report the electropolymerization of crystal violet (CRV) on a bare glassy carbon electrode (GCE) for the detection of adrenaline (AD). Electropolymerization parameters such as electrolyte pH, scan rate and monomer concentrations were optimized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The characterization of CRV and poly(crystal violet) (PCV) was done using FT-IR, UV-visible spectroscopy and EIS. More importantly, the charge transfer resistance (Rct) and other EIS data recorded from the EIS of various forms of the poly(crystal violet) (PCV) modified glassy carbon electrode (GCE) in AD were used for identifying the best PCV modified electrode. Subsequent application of the electrode prepared at optimum conditions (PGCE) for AD detection using the square wave voltammetry (SWV) gave a limit of detection (LOD) of 2.86 μM over a linear range of 10.3-102.7 μM. This sensor also showed considerable stability, good AD recovery from the real sample (98.9%), and excellent reproducibility, making it a suitable analytical tool for AD detection at the micromolar level.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa,Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola E. Fayemi
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa,Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | | | - El-Sayed M. Sherif
- Research Chair for Tribology, Surface, and Interface Sciences (TSIS), Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia,Center of Excellence for Research in Engineering Materials (CEREM), King Saud University, P.O. Box 800, Al-Riyadh 11421, Saudi Arabia
| | - Eno E. Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa,Corresponding author.
| |
Collapse
|
10
|
Khan MM, Yousuf MA, Ahamed P, Alauddin M, Tonu NT. Electrochemical Detection of Dihydroxybenzene Isomers at a Pencil Graphite Based Electrode. ACS OMEGA 2022; 7:29391-29405. [PMID: 36033678 PMCID: PMC9404491 DOI: 10.1021/acsomega.2c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this work, an HB pencil electrode (HBPE) was electrochemically modified by amino acids (AAs) glycine (GLY) and aspartic acid (ASA) and designated as GLY-HB and ASA-HB electrodes. They were used in the detection of dihydroxybenzene isomers (DHBIs) such as hydroquinone (HQ), catechol (CC), and resorcinol (RS), by cyclic voltammetry (CV), and by differential pulse voltammetry. HBPE was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. These three electrodes showed a linear relationship of current with concentration of DHBIs, and the electrochemical processes were diffusion controlled in all cases. In simultaneous detection, the limit of detection, based on signal-to-noise ratio (S/N = 3), for HQ, CC, and RS was 12.473, 16.132, and 25.25 μM, respectively, at bare HBPE; 5.498, 7.119, and 14.794 μM, respectively, at GLY-HB; and 22.459, 25.478, and 38.303 μM, respectively, at ASA-HB. The sensitivity for HQ, CC, and RS was 470.481, 363.781, and 232.416 μA/mM/cm2, respectively, at bare HBPE; 364.785, 282.712, and 135.560 μA/mM/cm2, respectively, at GLY-HB; and 374.483, 330.108, and 219.574, respectively, at ASA-HB. The interference studies clarified the suitability and reliability of the electrodes for the detection of HQ, CC, and RS in an environmental system. Real sample analysis was done using tap water, and the proposed electrodes expressed recovery with high reproducibility. Meanwhile, these three electrodes have excellent sensitivity and selectivity, which can be used as a promising technique for the detection of DHBIs simultaneously.
Collapse
Affiliation(s)
- Md. Muzahedul
I. Khan
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Mohammad A. Yousuf
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Parbhej Ahamed
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
| | - Mohammad Alauddin
- Department
of Theoretical and Computational Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat T. Tonu
- Department
of Chemistry, Khulna University of Engineering
and Technology, Khulna 9203, Bangladesh
- Chemistry
Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
11
|
Ganesh PS, Kim SY, Kaya S, Salim R. An experimental and theoretical approach to electrochemical sensing of environmentally hazardous dihydroxy benzene isomers at polysorbate modified carbon paste electrode. Sci Rep 2022; 12:2149. [PMID: 35140315 PMCID: PMC8828899 DOI: 10.1038/s41598-022-06207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
It is well known that, surfactants provide a neutral, positive and/or negative charge on the electrode surface by forming a monolayer, which in turn affects the charge transfer and redox potential during the electroanalysis process. However, the molecular level understanding of these surfactant-modified electrodes is worth investigating because the interaction of the analyte with the electrode surface is still unclear. In this report, we used quantum chemical models based on computational density functional theory (DFT) to investigate the polysorbate 80 structure as well as the locations of energy levels and electron transfer sites. Later, the bare carbon paste electrode (bare/CPE) was modified with polysorbate 80 and used to resolve the overlapped oxidation signals of dihydroxy benzene isomers. The m/n values obtained at polysorbate/CPE was approximately equal to 1, signifying the transfer of same number of protons and electrons. Moreover, the analytical applicability of the modified electrode for the determination of catechol (CC) and hydroquinone (HQ) in tap water samples gave an acceptable recovery result. Overall, the application of DFT to understand the molecular level interaction of modifiers for sensing applications laid a new foundation for fabricating electrochemical sensors.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, 31253, Chungcheongnam-do, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, 31253, Chungcheongnam-do, Republic of Korea.
| | - Savas Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| | - Rajae Salim
- Laboratory of Engineering, Organometallic, Molecular and Environment (LIMOME), Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
12
|
Hari Krishna R, Chandraprabha MN, Mamatha GM, Mallappa M, Kundagol D, Manjunatha C. Non-enzymatic Catalytic Oxidation of Glucose and Dual Mode Sensing by Fluorescence/Electrochemical Methods Using MO–GO Composites (MO = ZnO, CuO, NiO and Co3O4). Top Catal 2022. [DOI: 10.1007/s11244-022-01588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Tesfaye G, Hailu T, Ele E, Negash N, Tessema M. Square wave voltammetric determination of quercetin in wine and fruit juice samples at poly (safranine O) modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Gege Ü, Karakaya S, Dilgin Y. Sensitive Electrochemical Determination of Trifluralin at a Disposable Pencil Graphite Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ümit Gege
- Department of Chemistry Faculty of Arts and Sciences Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - Serkan Karakaya
- Department of Chemistry Faculty of Arts and Sciences Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| | - Yusuf Dilgin
- Department of Chemistry Faculty of Arts and Sciences Çanakkale Onsekiz Mart University 17100 Çanakkale Turkey
| |
Collapse
|
15
|
Souza Magossi M, Souza Magossi M, Dias Filho NL, Ribeiro do Carmo D. Isoniazid‐sensing Behavior of a Hybrid Silsesquioxane and Cobalt Pentacyanonitrosylferrate‐based Nanocomposite. ELECTROANAL 2021. [DOI: 10.1002/elan.202100119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mariana Souza Magossi
- Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista “Júlio de Mesquita Filho” Departamento de Física e Química Av. Brasil, 56 15385-000 Ilha Solteira-SP Brazil
| | - Maiara Souza Magossi
- Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista “Júlio de Mesquita Filho” Departamento de Física e Química Av. Brasil, 56 15385-000 Ilha Solteira-SP Brazil
| | - Newton Luiz Dias Filho
- Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista “Júlio de Mesquita Filho” Departamento de Física e Química Av. Brasil, 56 15385-000 Ilha Solteira-SP Brazil
| | - Devaney Ribeiro do Carmo
- Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista “Júlio de Mesquita Filho” Departamento de Física e Química Av. Brasil, 56 15385-000 Ilha Solteira-SP Brazil
| |
Collapse
|
16
|
Promsuwan K, Kaewjunlakan C, Saichanapan J, Soleh A, Saisahas K, Thipwimonmas Y, Kongkaew S, Kanatharana P, Thavarungkul P, Limbut W. Poly(phenol red) hierarchical micro-structure interface enhanced electrode kinetics for adsorption and determination of hydroquinone. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Ganesh PS, Shimoga G, Lee SH, Kim SY, Ebenso EE. Simultaneous electrochemical sensing of dihydroxy benzene isomers at cost-effective allura red polymeric film modified glassy carbon electrode. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
A simple and simultaneous electrochemical sensing platform was fabricated by electropolymerization of allura red on glassy carbon electrode (GCE) for the interference-free detection of dihydroxy benzene isomers.
Methods
The modified working electrode was characterized by electrochemical and field emission scanning electron microscopy methods. The modified electrode showed excellent electrocatalytic activity for the electrooxidation of catechol (CC) and hydroquinone (HQ) at physiological pH of 7.4 by cyclic voltammetric (CV) and differential pulse voltammetric (DPV) techniques.
Results
The effective split in the overlapped oxidation signal of CC and HQ was achieved in a binary mixture with peak to peak separation of 0.102 V and 0.103 V by CV and DPV techniques. The electrode kinetics was found to be adsorption-controlled. The oxidation potential directly depends on the pH of the buffer solution, and it witnessed the transfer of equal number of protons and electrons in the redox phenomenon.
Conclusions
The limit of detection (LOD) for CC and HQ was calculated to be 0.126 μM and 0.132 μM in the linear range of 0 to 80.0 μM and 0 to 110.0 μM, respectively, by ultra-sensitive DPV technique. The practical applicability of the proposed sensor was evaluated for tap water sample analysis, and good recovery rates were observed.
Graphical abstract
Electrocatalytic interaction of ALR/GCE with dihydroxy benzene isomers.
Collapse
|
18
|
Uzun D. Determination of Paracetamol Based on 3‐Amino‐4H‐1,2,4‐triazole Coated Glassy Carbon Surface in Pharmaceutical Sample. ELECTROANAL 2021. [DOI: 10.1002/elan.202100002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Demet Uzun
- Gazi University Faculty of Science Department of Chemistry 06500 Ankara/ Turkey
| |
Collapse
|
19
|
Xin Y, Wang N, Wang C, Gao W, Chen M, Liu N, Duan J, Hou B. Electrochemical detection of hydroquinone and catechol with covalent organic framework modified carbon paste electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114530] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Chetankumar K, Kumara Swamy B, Sharma S. Electrochemical preparation of poly (direct yellow 11) modified pencil graphite electrode sensor for catechol and hydroquinone in presence of resorcinol: A voltammetric study. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Cakmak D, Bulut T, Uzun D. Electrocatalytic Investigations of Cu(II) and Fe(III) Complexes of Salophen Derivative Schiff Bases on the Pencil Graphite Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.202000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- D. Cakmak
- Department of ChemistryFaculty of Arts and Sciences, Mustafa Kemal University 31040 Hatay TURKEY
| | - T. Bulut
- Department of ChemistryFaculty of Arts and Sciences, Mustafa Kemal University 31040 Hatay TURKEY
| | - D. Uzun
- Department of ChemistryFaculty of Science, Gazi University Ankara TURKEY
| |
Collapse
|