1
|
Tekin H, Kaya Y. A new approach for heart disease detection using Motif transform-based CWT's time-frequency images with DenseNet deep transfer learning methods. BIOMED ENG-BIOMED TE 2024; 69:407-417. [PMID: 38425179 DOI: 10.1515/bmt-2023-0580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Electrocardiogram (ECG) signals are extensively utilized in the identification and assessment of diverse cardiac conditions, including congestive heart failure (CHF) and cardiac arrhythmias (ARR), which present potential hazards to human health. With the aim of facilitating disease diagnosis and assessment, advanced computer-aided systems are being developed to analyze ECG signals. METHODS This study proposes a state-of-the-art ECG data pattern recognition algorithm based on Continuous Wavelet Transform (CWT) as a novel signal preprocessing model. The Motif Transformation (MT) method was devised to diminish the drawbacks and limitations inherent in the CWT, such as the issue of boundary effects, limited localization in time and frequency, and overfitting conditions. This transformation technique facilitates the formation of diverse patterns (motifs) within the signals. The patterns (motifs) are constructed by comparing the amplitudes of each individual sample value in the ECG signals in terms of their largeness and smallness. In the subsequent stage, the obtained one-dimensional signals from the MT transformation were subjected to CWT to obtain scalogram images. In the last stage, the obtained scalogram images were subjected to classification using DenseNET deep transfer learning techniques. RESULTS AND CONCLUSIONS The combined approach of MT + CWT + DenseNET yielded an impressive success rate of 99.31 %.
Collapse
Affiliation(s)
- Hazret Tekin
- Electrical Department, Sirnak University, Sirnak, Türkiye
| | - Yılmaz Kaya
- Computer Engineering, Batman University, Batman, Türkiye
| |
Collapse
|
2
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
3
|
Neri L, Oberdier MT, van Abeelen KCJ, Menghini L, Tumarkin E, Tripathi H, Jaipalli S, Orro A, Paolocci N, Gallelli I, Dall’Olio M, Beker A, Carrick RT, Borghi C, Halperin HR. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4805. [PMID: 37430719 PMCID: PMC10223364 DOI: 10.3390/s23104805] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 07/12/2023]
Abstract
Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data.
Collapse
Affiliation(s)
- Luca Neri
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Matt T. Oberdier
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Kirsten C. J. van Abeelen
- Department of Informatics, Systems, and Communication, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Internal Medicine, Radboud University Medical Center, 6525 AJ Nijmegen, The Netherlands
| | - Luca Menghini
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Ethan Tumarkin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Hemantkumar Tripathi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Sujai Jaipalli
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alessandro Orro
- Institute of Biomedical Technologies, National Research Council, 20054 Segrate, Italy
| | - Nazareno Paolocci
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Ilaria Gallelli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Massimo Dall’Olio
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Amir Beker
- AccYouRate Group S.p.A., 67100 L’Aquila, Italy
| | - Richard T. Carrick
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Henry R. Halperin
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21218, USA; (L.N.)
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Escobar-Linero E, Muñoz-Saavedra L, Luna-Perejón F, Sevillano JL, Domínguez-Morales M. Wearable Health Devices for Diagnosis Support: Evolution and Future Tendencies. SENSORS (BASEL, SWITZERLAND) 2023; 23:1678. [PMID: 36772718 PMCID: PMC9920884 DOI: 10.3390/s23031678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The use of wearable devices has increased substantially in recent years. This, together with the rise of telemedicine, has led to the use of these types of devices in the healthcare field. In this work, we carried out a detailed study on the use of these devices (regarding the general trends); we analyzed the research works and devices marketed in the last 10 years. This analysis extracted relevant information on the general trend of use, as well as more specific aspects, such as the use of sensors, communication technologies, and diseases. A comparison was made between the commercial and research aspects linked to wearables in the healthcare field, and upcoming trends were analyzed.
Collapse
Affiliation(s)
- Elena Escobar-Linero
- Architecture and Computer Technology Department, ETSII-EPS, University of Seville, 41004 Sevilla, Spain
- Robotics and Technology of Computers Laboratory, University of Seville, 41004 Sevilla, Spain
| | - Luis Muñoz-Saavedra
- Architecture and Computer Technology Department, ETSII-EPS, University of Seville, 41004 Sevilla, Spain
- Robotics and Technology of Computers Laboratory, University of Seville, 41004 Sevilla, Spain
| | - Francisco Luna-Perejón
- Architecture and Computer Technology Department, ETSII-EPS, University of Seville, 41004 Sevilla, Spain
- Robotics and Technology of Computers Laboratory, University of Seville, 41004 Sevilla, Spain
| | - José Luis Sevillano
- Architecture and Computer Technology Department, ETSII-EPS, University of Seville, 41004 Sevilla, Spain
- Robotics and Technology of Computers Laboratory, University of Seville, 41004 Sevilla, Spain
- Research Institute of Computer Engineering (I3US), University of Seville, 41004 Sevilla, Spain
| | - Manuel Domínguez-Morales
- Architecture and Computer Technology Department, ETSII-EPS, University of Seville, 41004 Sevilla, Spain
- Robotics and Technology of Computers Laboratory, University of Seville, 41004 Sevilla, Spain
- Research Institute of Computer Engineering (I3US), University of Seville, 41004 Sevilla, Spain
| |
Collapse
|
5
|
Method for Solving Difficulties in Rhythm Classification Caused by Few Samples and Similar Characteristics in Electrocardiograms. Bioengineering (Basel) 2023; 10:bioengineering10020196. [PMID: 36829690 PMCID: PMC9952353 DOI: 10.3390/bioengineering10020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
A method for accurately analyzing electrocardiograms (ECGs), which are obtained from electrical signals generated by cardiac activity, is essential in heart disease diagnosis. However, rhythms are typically obtained with relatively few data samples and similar characteristics, making them difficult to classify. To solve these issues, we proposed a novel method that distinguishes a given ECG rhythm using a beat score map (BSM) image. Through the proposed method, the associations between beats and previously used features, such as the R-R interval, were considered. Rhythm classification was implemented by training a convolutional neural network model and using transfer learning with the created BSM image. As a result, the proposed method for ECG rhythms with small data samples showed significant results. It also showed good performance in differentiating atrial fibrillation (AFIB) and atrial flutter (AFL) rhythms, which are difficult to distinguish due to their similar characteristics. The performance for rhythms with a small number of samples of the proposed method is 20% better than an existing method. In addition, the performance based on the F-1 score for classifying AFIB and AFL of the proposed method is 30% better than the existing method. This study solved the previous limitations caused by small sample numbers and similar rhythms.
Collapse
|
6
|
Moshawrab M, Adda M, Bouzouane A, Ibrahim H, Raad A. Smart Wearables for the Detection of Cardiovascular Diseases: A Systematic Literature Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020828. [PMID: 36679626 PMCID: PMC9865666 DOI: 10.3390/s23020828] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 06/02/2023]
Abstract
Background: The advancement of information and communication technologies and the growing power of artificial intelligence are successfully transforming a number of concepts that are important to our daily lives. Many sectors, including education, healthcare, industry, and others, are benefiting greatly from the use of such resources. The healthcare sector, for example, was an early adopter of smart wearables, which primarily serve as diagnostic tools. In this context, smart wearables have demonstrated their effectiveness in detecting and predicting cardiovascular diseases (CVDs), the leading cause of death worldwide. Objective: In this study, a systematic literature review of smart wearable applications for cardiovascular disease detection and prediction is presented. After conducting the required search, the documents that met the criteria were analyzed to extract key criteria such as the publication year, vital signs recorded, diseases studied, hardware used, smart models used, datasets used, and performance metrics. Methods: This study followed the PRISMA guidelines by searching IEEE, PubMed, and Scopus for publications published between 2010 and 2022. Once records were located, they were reviewed to determine which ones should be included in the analysis. Finally, the analysis was completed, and the relevant data were included in the review along with the relevant articles. Results: As a result of the comprehensive search procedures, 87 papers were deemed relevant for further review. In addition, the results are discussed to evaluate the development and use of smart wearable devices for cardiovascular disease management, and the results demonstrate the high efficiency of such wearable devices. Conclusions: The results clearly show that interest in this topic has increased. Although the results show that smart wearables are quite accurate in detecting, predicting, and even treating cardiovascular disease, further research is needed to improve their use.
Collapse
Affiliation(s)
- Mohammad Moshawrab
- Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Mehdi Adda
- Département de Mathématiques, Informatique et Génie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Abdenour Bouzouane
- Département d’Informatique et de Mathématique, Université du Québec à Chicoutimi, 555 Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada
| | - Hussein Ibrahim
- Institut Technologique de Maintenance Industrielle, 175 Rue de la Vérendrye, Sept-Îles, QC G4R 5B7, Canada
| | - Ali Raad
- Faculty of Arts & Sciences, Islamic University of Lebanon, Wardaniyeh P.O. Box 30014, Lebanon
| |
Collapse
|
7
|
Huang JD, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8002. [PMID: 36298352 PMCID: PMC9610988 DOI: 10.3390/s22208002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 06/06/2023]
Abstract
Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide. In this review, we identify and describe recent developments in the application of digital health for CVD, focusing on AI approaches for CVD detection, diagnosis, and prediction through AI models driven by data collected from wearables. We summarise the literature on the use of wearables and AI in cardiovascular disease diagnosis, followed by a detailed description of the dominant AI approaches applied for modelling and prediction using data acquired from sensors such as wearables. We discuss the AI algorithms and models and clinical applications and find that AI and machine-learning-based approaches are superior to traditional or conventional statistical methods for predicting cardiovascular events. However, further studies evaluating the applicability of such algorithms in the real world are needed. In addition, improvements in wearable device data accuracy and better management of their application are required. Lastly, we discuss the challenges that the introduction of such technologies into routine healthcare may face.
Collapse
Affiliation(s)
- Jian-Dong Huang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Jinling Wang
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Elaine Ramsey
- Department of Global Business & Enterprise, Ulster University at Magee, Londonderry BT48 7JL, UK
| | - Gerard Leavey
- School of Psychology, Ulster University at Coleraine, Londonderry BT52 1SA, UK
| | - Timothy J. A. Chico
- Department of Infection, Immunity and Cardiovascular Disease, The Medical School, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Joan Condell
- School of Computing, Engineering and Intelligent Systems, Ulster University at Magee, Londonderry BT48 7JL, UK
| |
Collapse
|
8
|
Classification System of National Music Rhythm Spectrogram Based on Biological Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2047576. [PMID: 36275983 PMCID: PMC9581626 DOI: 10.1155/2022/2047576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022]
Abstract
National music is a treasure of Chinese traditional culture. It contains the cultural characteristics of various regions and reflects the core value of Chinese traditional culture. Classification technology classifies a large number of unorganized drama documents, which are not labeled, and to some extent, it helps folk music better enter the lives of ordinary people. Simulate folk music of different spectrum and record corresponding music audio under laboratory conditions Through Fourier transform and other methods, music audio is converted into spectrogram, and a total of 2608 two-dimensional spectrogram images are obtained as datasets. The sonogram dataset is imported into the deep convolution neural network GoogLeNet for music type recognition, and the test accuracy is 99.6%. In addition, the parallel GoogLeNet technology based on inverse autoregressive flow is used. The unique improvement is that acoustic features can be quickly converted into corresponding speech time-domain waveforms, reaching the real-time level, improving the efficiency of model training and loading, and outputting speech with higher naturalness. In order to further prove the reliability of the experimental results, the spectrogram datasets are imported into Resnet18 and Shufflenet for training, and the test accuracy of 99.2% is obtained. The results show that this method can effectively classify and recognize music. The experimental results show that this scheme can achieve more accurate classification. The research realizes the recognition of national music through deep learning spectrogram classification for the first time, which is an intelligent and fast new method of classification and recognition.
Collapse
|
9
|
Mohonta SC, Motin MA, Kumar DK. Electrocardiogram based arrhythmia classification using wavelet transform with deep learning model. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Zhang L, Liu J. Research Progress of ECG Monitoring Equipment and Algorithms Based on Polymer Materials. MICROMACHINES 2021; 12:1282. [PMID: 34832693 PMCID: PMC8624836 DOI: 10.3390/mi12111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022]
Abstract
Heart diseases such as myocardial ischemia (MI) are the main causes of human death. The prediction of MI and arrhythmia is an effective method for the early detection, diagnosis, and treatment of heart disease. For the rapid detection of arrhythmia and myocardial ischemia, the electrocardiogram (ECG) is widely used in clinical diagnosis, and its detection equipment and algorithm are constantly optimized. This paper introduces the current progress of portable ECG monitoring equipment, including the use of polymer material sensors and the use of deep learning algorithms. First, it introduces the latest portable ECG monitoring equipment and the polymer material sensor it uses and then focuses on reviewing the progress of detection algorithms. We mainly introduce the basic structure of existing deep learning methods and enumerate the internationally recognized ECG datasets. This paper outlines the deep learning algorithms used for ECG diagnosis, compares the prediction results of different classifiers, and summarizes two existing problems of ECG detection technology: imbalance of categories and high computational overhead. Finally, we put forward the development direction of using generative adversarial networks (GAN) to improve the quality of the ECG database and lightweight ECG diagnosis algorithm to adapt to portable ECG monitoring equipment.
Collapse
Affiliation(s)
| | - Jihong Liu
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China;
| |
Collapse
|
11
|
Analysis of atrial and ventricular premature contractions using the Short Time Fourier Transform with the window size fixed in the frequency domain. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|