3
|
Nicodemus KK, Callicott JH, Higier RG, Luna A, Nixon DC, Lipska BK, Vakkalanka R, Giegling I, Rujescu D, St Clair D, Muglia P, Shugart YY, Weinberger DR. Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Hum Genet 2011; 127:441-52. [PMID: 20084519 DOI: 10.1007/s00439-009-0782-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/24/2009] [Indexed: 02/05/2023]
Abstract
The etiology of schizophrenia likely involves genetic interactions. DISC1, a promising candidate susceptibility gene, encodes a protein which interacts with many other proteins, including CIT, NDEL1, NDE1, FEZ1 and PAFAH1B1, some of which also have been associated with psychosis. We tested for epistasis between these genes in a schizophrenia case-control study using machine learning algorithms (MLAs: random forest, generalized boosted regression andMonteCarlo logic regression). Convergence of MLAs revealed a subset of seven SNPs that were subjected to 2-SNP interaction modeling using likelihood ratio tests for nested unconditional logistic regression models. Of the 7C2 = 21 interactions, four were significant at the α = 0.05 level: DISC1 rs1411771-CIT rs10744743 OR = 3.07 (1.37, 6.98) p = 0.007; CIT rs3847960-CIT rs203332 OR = 2.90 (1.45, 5.79) p = 0.003; CIT rs3847960-CIT rs440299 OR = 2.16 (1.04, 4.46) p = 0.038; one survived Bonferroni correction (NDEL1 rs4791707-CIT rs10744743 OR = 4.44 (2.22, 8.88) p = 0.00013). Three of four interactions were validated via functional magnetic resonance imaging (fMRI) in an independent sample of healthy controls; risk associated alleles at both SNPs predicted prefrontal cortical inefficiency during the N-back task, a schizophrenia-linked intermediate biological phenotype: rs3847960-rs440299; rs1411771-rs10744743, rs4791707-rs10744743 (SPM5 p < 0.05, corrected), although we were unable to statistically replicate the interactions in other clinical samples. Interestingly, the CIT SNPs are proximal to exons that encode theDISC1 interaction domain. In addition, the 3' UTR DISC1 rs1411771 is predicted to be an exonic splicing enhancer and the NDEL1 SNP is ~3,000 bp from the exon encoding the region of NDEL1 that interacts with the DISC1 protein, giving a plausible biological basis for epistasis signals validated by fMRI.
Collapse
Affiliation(s)
- Kristin K Nicodemus
- Genes, Cognition and Psychosis Program, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietiläinen OPH, Buizer-Voskamp JE, Strengman E, Francks C, Muglia P, Gylfason A, Gustafsson O, Olason PI, Steinberg S, Hansen T, Jakobsen KD, Rasmussen HB, Giegling I, Möller HJ, Hartmann A, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Bramon E, Kiemeney LA, Franke B, Murray R, Vassos E, Toulopoulou T, Mühleisen TW, Tosato S, Ruggeri M, Djurovic S, Andreassen OA, Zhang Z, Werge T, Ophoff RA, Rietschel M, Nöthen MM, Petursson H, Stefansson H, Peltonen L, Collier D, Stefansson K, St Clair DM. Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 2011; 16:17-25. [PMID: 19786961 PMCID: PMC3330746 DOI: 10.1038/mp.2009.101] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 01/22/2023]
Abstract
Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients and 35,079 controls from 8 European populations for duplications and deletions at the 16p13.1 locus, using microarray data. We found a threefold excess of duplications and deletions in schizophrenia cases compared with controls, with duplications present in 0.30% of cases versus 0.09% of controls (P=0.007) and deletions in 0.12 % of cases and 0.04% of controls (P>0.05). The region can be divided into three intervals defined by flanking low copy repeats. Duplications spanning intervals I and II showed the most significant (P = 0.00010) association with schizophrenia. The age of onset in duplication and deletion carriers among cases ranged from 12 to 35 years, and the majority were males with a family history of psychiatric disorders. In a single Icelandic family, a duplication spanning intervals I and II was present in two cases of schizophrenia, and individual cases of alcoholism, attention deficit hyperactivity disorder and dyslexia. Candidate genes in the region include NTAN1 and NDE1. We conclude that duplications and perhaps also deletions of chromosome 16p13.1, previously reported to be associated with autism and MR, also confer risk of schizophrenia.
Collapse
Affiliation(s)
- A Ingason
- deCODE genetics, Reykjavík, Iceland
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - D Rujescu
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University and Genetics Research Centre GmbH, Munich, Germany
| | - S Cichon
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Sigurdsson
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | - T Sigmundsson
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | - OPH Pietiläinen
- Department for Molecular Medicine, National Public Health Institute, Helsinki, Finland
| | - JE Buizer-Voskamp
- Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Strengman
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Francks
- Medical Genetics, GlaxoSmithKline R&D, Verona, Italy
| | - P Muglia
- Medical Genetics, GlaxoSmithKline R&D, Verona, Italy
| | | | | | | | | | - T Hansen
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - KD Jakobsen
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - HB Rasmussen
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - I Giegling
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University and Genetics Research Centre GmbH, Munich, Germany
| | - H-J Möller
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University and Genetics Research Centre GmbH, Munich, Germany
| | - A Hartmann
- Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University and Genetics Research Centre GmbH, Munich, Germany
| | - C Crombie
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| | - G Fraser
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| | - N Walker
- Ravenscraig Hospital, Greenock, Scotland
| | - J Lonnqvist
- Department of Mental Health and Addiction, National Public Health Institute, Helsinki, Finland
| | - J Suvisaari
- Department of Mental Health and Addiction, National Public Health Institute, Helsinki, Finland
| | - A Tuulio-Henriksson
- Department of Mental Health and Addiction, National Public Health Institute, Helsinki, Finland
| | - E Bramon
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College, London, UK
| | - LA Kiemeney
- Department of Epidemiology & Biostatistics (133 EPIB)/Department of Urology (659 URO), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - R Murray
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College, London, UK
| | - E Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College, London, UK
| | - T Toulopoulou
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College, London, UK
| | - TW Mühleisen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - S Tosato
- Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy
| | - M Ruggeri
- Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy
| | - S Djurovic
- Institute of Psychiatry, University of Oslo, Oslo, Norway
- Departments of Medical Genetics and Psychiatry, Ulleval University Hospital, Oslo, Norway
| | - OA Andreassen
- Institute of Psychiatry, University of Oslo, Oslo, Norway
- Departments of Medical Genetics and Psychiatry, Ulleval University Hospital, Oslo, Norway
| | - Z Zhang
- Department of Statistics, UCLA, Los Angeles, CA, USA
| | - T Werge
- Research Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - RA Ophoff
- Department of Medical Genetics and Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
- UCLA Center for Neurobehavioral Genetics and Department of Human Genetics, Los Angeles, CA, USA
| | | | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health Mannheim, University of Heidelberg, Mannheim, Germany
| | - MM Nöthen
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - H Petursson
- Department of Psychiatry, National University Hospital, Reykjavík, Iceland
| | | | - L Peltonen
- Department for Molecular Medicine, National Public Health Institute, Helsinki, Finland
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- The Broad Institute, Cambridge, MA, USA
| | - D Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King’s College, London, UK
| | | | - DM St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
5
|
Burdick KE, Kamiya A, Hodgkinson CA, Lencz T, DeRosse P, Ishizuka K, Elashvili S, Arai H, Goldman D, Sawa A, Malhotra AK. Elucidating the relationship between DISC1, NDEL1 and NDE1 and the risk for schizophrenia: evidence of epistasis and competitive binding. Hum Mol Genet 2008; 17:2462-73. [PMID: 18469341 PMCID: PMC2486442 DOI: 10.1093/hmg/ddn146] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DISC1 influences susceptibility to psychiatric disease and related phenotypes. Intact functions of DISC1 and its binding partners, NDEL1 and NDE1, are critical to neurodevelopmental processes aberrant in schizophrenia (SZ). Despite evidence of an NDEL1-DISC1 protein interaction, there have been no investigations of the NDEL1 gene or the relationship between NDEL1 and DISC1 in SZ. We genotyped six NDEL1 single-nucleotide polymorphisms (SNPs) in 275 Caucasian SZ patients and 200 controls and tested for association and interaction between the functional SNP Ser704Cys in DISC1 and NDEL1. We also evaluated the relationship between NDE1 and DISC1 genotype and SZ. Finally, in a series of in vitro assays, we determined the binding profiles of NDEL1 and NDE1, in relation to DISC1 Ser704Cys. We observed a single haplotype block within NDEL1; the majority of variation was captured by NDEL1 rs1391768. We observed a significant interaction between rs1391768 and DISC1 Ser704Cys, with the effect of NDEL1 on SZ evident only against the background of DISC1 Ser704 homozygosity. Secondary analyses revealed no direct relationship between NDE1 genotype and SZ; however, there was an opposite pattern of risk for NDE1 genotype when conditioned on DISC1 Ser704Cys, with NDE1 rs3784859 imparting a significant effect but only in the context of a Cys-carrying background. In addition, we report opposing binding patterns of NDEL1 and NDE1 to Ser704 versus Cys704, at the same DISC1 binding domain. These data suggest that NDEL1 significantly influences risk for SZ via an interaction with DISC1. We propose a model where NDEL1 and NDE1 compete for binding with DISC1.
Collapse
Affiliation(s)
- Katherine E Burdick
- Department of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, NY 11004, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|