1
|
Borlepawar A, Schmiedel N, Eden M, Christen L, Rosskopf A, Frank D, Lüllmann-Rauch R, Frey N, Rangrez AY. Dysbindin deficiency Alters Cardiac BLOC-1 Complex and Myozap Levels in Mice. Cells 2020; 9:cells9112390. [PMID: 33142804 PMCID: PMC7692170 DOI: 10.3390/cells9112390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
Dysbindin, a schizophrenia susceptibility marker and an essential constituent of BLOC-1 (biogenesis of lysosome-related organelles complex-1), has recently been associated with cardiomyocyte hypertrophy through the activation of Myozap-RhoA-mediated SRF signaling. We employed sandy mice (Dtnbp1_KO), which completely lack Dysbindin protein because of a spontaneous deletion of introns 5-7 of the Dtnbp1 gene, for pathophysiological characterization of the heart. Unlike in vitro, the loss-of-function of Dysbindin did not attenuate cardiac hypertrophy, either in response to transverse aortic constriction stress or upon phenylephrine treatment. Interestingly, however, the levels of hypertrophy-inducing interaction partner Myozap as well as the BLOC-1 partners of Dysbindin like Muted and Pallidin were dramatically reduced in Dtnbp1_KO mouse hearts. Taken together, our data suggest that Dysbindin's role in cardiomyocyte hypertrophy is redundant in vivo, yet essential to maintain the stability of its direct interaction partners like Myozap, Pallidin and Muted.
Collapse
Affiliation(s)
- Ankush Borlepawar
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Nesrin Schmiedel
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Matthias Eden
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Lynn Christen
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
| | - Alexandra Rosskopf
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | | | - Norbert Frey
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, 24105 Kiel, Germany; (A.B.); (N.S.); (M.E.); (L.C.); (A.R.); (D.F.); (N.F.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
- Correspondence: ; Tel.: +49-431-500-22966; Fax: +49-431-500-22938
| |
Collapse
|
2
|
Waddington JL, Zhen X, O'Tuathaigh CMP. Developmental Genes and Regulatory Proteins, Domains of Cognitive Impairment in Schizophrenia Spectrum Psychosis and Implications for Antipsychotic Drug Discovery: The Example of Dysbindin-1 Isoforms and Beyond. Front Pharmacol 2020; 10:1638. [PMID: 32063853 PMCID: PMC7000454 DOI: 10.3389/fphar.2019.01638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alongside positive and negative symptomatology, deficits in working memory, attention, selective learning processes, and executive function have been widely documented in schizophrenia spectrum psychosis. These cognitive abnormalities are strongly associated with impairment across multiple function domains and are generally treatment-resistant. The DTNBP1 (dystrobrevin-binding protein-1) gene, encoding dysbindin, is considered a risk factor for schizophrenia and is associated with variation in cognitive function in both clinical and nonclinical samples. Downregulation of DTNBP1 expression in dorsolateral prefrontal cortex and hippocampal formation of patients with schizophrenia has been suggested to serve as a primary pathophysiological process. Described as a "hub," dysbindin is an important regulatory protein that is linked with multiple complexes in the brain and is involved in a wide variety of functions implicated in neurodevelopment and neuroplasticity. The expression pattern of the various dysbindin isoforms (-1A, -1B, -1C) changes depending upon stage of brain development, tissue areas and subcellular localizations, and can involve interaction with different protein partners. We review evidence describing how sequence variation in DTNBP1 isoforms has been differentially associated with schizophrenia-associated symptoms. We discuss results linking these isoform proteins, and their interacting molecular partners, with cognitive dysfunction in schizophrenia, including evidence from drosophila through to genetic mouse models of dysbindin function. Finally, we discuss preclinical evidence investigating the antipsychotic potential of molecules that influence dysbindin expression and functionality. These studies, and other recent work that has extended this approach to other developmental regulators, may facilitate identification of novel molecular pathways leading to improved antipsychotic treatments.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Medical Education Unit, School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Hao Z, Wei L, Feng Y, Chen X, Du W, Ma J, Zhou Z, Chen L, Li W. Impaired maturation of large dense core vesicles in muted-deficient adrenal chromaffin cells. J Cell Sci 2015; 128:1365-74. [DOI: 10.1242/jcs.161414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The large dense-core vesicle (LDCV), a type of lysosome-related organelle, is involved in the secretion of hormones and neuropeptides in specialized secretory cells. The granin family is a driving force in LDCV biogenesis, but the machinery for granin sorting to this biogenesis pathway is largely unknown. The mu mutant mouse, which carries a spontaneous null mutation on the Muted gene (also known as Bloc1s5) that encodes a subunit of lysosome-related organelles complex-1 (BLOC-1), is a mouse model of Hermansky-Pudlak syndrome. We here found that LDCVs were enlarged in mu adrenal chromaffin cells. Chromogranin A (CgA) was increased in mu adrenals and muted-knockdown cells. The increased CgA in mu mice was likely due to the failure of its sorting-out, which impairs LDCV maturation and docking. In mu chromaffin cells, the size of readily releasable pool and the vesicle release frequency were reduced. Our studies suggest that the muted protein is involved in the sorting-out of CgA during the biogenesis of LDCVs.
Collapse
|
4
|
Wang H, Yuan Y, Zhang Z, Yan H, Feng Y, Li W. Dysbindin-1C is required for the survival of hilar mossy cells and the maturation of adult newborn neurons in dentate gyrus. J Biol Chem 2014; 289:29060-72. [PMID: 25157109 DOI: 10.1074/jbc.m114.590927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DTNBP1 (dystrobrevin-binding protein 1), which encodes dysbindin-1, is one of the leading susceptibility genes for schizophrenia. Both dysbindin-1B and -1C isoforms are decreased, but the dysbindin-1A isoform is unchanged in schizophrenic hippocampal formation, suggesting dysbindin-1 isoforms may have distinct roles in schizophrenia. We found that mouse dysbindin-1C, but not dysbindin-1A, is localized in the hilar glutamatergic mossy cells of the dentate gyrus. The maturation rate of newborn neurons in sandy (sdy) mice, in which both dysbindin-1A and -1C are deleted, is significantly delayed when compared with that in wild-type mice or with that in muted (mu) mice in which dysbindin-1A is destabilized but dysbindin-1C is unaltered. Dysbindin-1C deficiency leads to a decrease in mossy cells, which causes the delayed maturation of newborn neurons. This suggests that dysbindin-1C, rather than dysbindin-1A, regulates adult hippocampal neurogenesis in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Hao Wang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Yefeng Yuan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Zhao Zhang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100039
| | - Hui Yan
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Yaqin Feng
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Department of Histology and Embryology, Shanxi Medical University, Taiyuan 030001, and
| | - Wei Li
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China
| |
Collapse
|
5
|
Mullin AP, Gokhale A, Larimore J, Faundez V. Cell biology of the BLOC-1 complex subunit dysbindin, a schizophrenia susceptibility gene. Mol Neurobiol 2011; 44:53-64. [PMID: 21520000 PMCID: PMC3321231 DOI: 10.1007/s12035-011-8183-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
Abstract
There is growing interest in the biology of dysbindin and its genetic locus (DTNBP1) due to genetic variants associated with an increased risk of schizophrenia. Reduced levels of dysbindin mRNA and protein in the hippocampal formation of schizophrenia patients further support involvement of this locus in disease risk. Here, we discuss phylogenetically conserved dysbindin molecular interactions that define its contribution to the assembly of the biogenesis of lysosome-related organelles complex-1 (BLOC-1). We explore fundamental cellular processes where dysbindin and the dysbindin-containing BLOC-1 complex are implicated. We propose that cellular, tissue, and system neurological phenotypes from dysbindin deficiencies in model genetic organisms, and likely individuals affected with schizophrenia, emerge from abnormalities in few core cellular mechanisms controlled by BLOC-1-dysbindin-containing complex rather than from defects in dysbindin itself.
Collapse
Affiliation(s)
- Ariana P Mullin
- Graduate Program in Neuroscience, Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|