1
|
Gallucci J, Secara MT, Chen O, Oliver LD, Jones BDM, Marawi T, Foussias G, Voineskos AN, Hawco C. A systematic review of structural and functional magnetic resonance imaging studies on the neurobiology of depressive symptoms in schizophrenia spectrum disorders. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:59. [PMID: 38961144 PMCID: PMC11222445 DOI: 10.1038/s41537-024-00478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Depressive symptoms in Schizophrenia Spectrum Disorders (SSDs) negatively impact suicidality, prognosis, and quality of life. Despite this, efficacious treatments are limited, largely because the neural mechanisms underlying depressive symptoms in SSDs remain poorly understood. We conducted a systematic review to provide an overview of studies that investigated the neural correlates of depressive symptoms in SSDs using neuroimaging techniques. We searched MEDLINE, PsycINFO, EMBASE, Web of Science, and Cochrane Library databases from inception through June 19, 2023. Specifically, we focused on structural and functional magnetic resonance imaging (MRI), encompassing: (1) T1-weighted imaging measuring brain morphology; (2) diffusion-weighted imaging assessing white matter integrity; or (3) T2*-weighted imaging measures of brain function. Our search yielded 33 articles; 14 structural MRI studies, 18 functional (f)MRI studies, and 1 multimodal fMRI/MRI study. Reviewed studies indicate potential commonalities in the neurobiology of depressive symptoms between SSDs and major depressive disorders, particularly in subcortical and frontal brain regions, though confidence in this interpretation is limited. The review underscores a notable knowledge gap in our understanding of the neurobiology of depression in SSDs, marked by inconsistent approaches and few studies examining imaging metrics of depressive symptoms. Inconsistencies across studies' findings emphasize the necessity for more direct and comprehensive research focusing on the neurobiology of depression in SSDs. Future studies should go beyond "total score" depression metrics and adopt more nuanced assessment approaches considering distinct subdomains. This could reveal unique neurobiological profiles and inform investigations of targeted treatments for depression in SSDs.
Collapse
Affiliation(s)
- Julia Gallucci
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Maria T Secara
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Oliver Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lindsay D Oliver
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Brett D M Jones
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tulip Marawi
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - George Foussias
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Fan S, Yu Y, Wu Y, Kai Y, Wang H, Chen Y, Zu M, Pang X, Tian Y. Altered brain entropy and functional connectivity patterns in generalized anxiety disorder patients. J Affect Disord 2023; 332:168-175. [PMID: 36972849 DOI: 10.1016/j.jad.2023.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Generalized anxiety disorder (GAD) is a highly prevalent disease characterized by chronic, pervasive, and intrusive worry. Previous resting-state functional MRI (fMRI) studies on GAD have mainly focused on conventional static linear features. Entropy analysis of resting-state functional magnetic resonance imaging (rs-fMRI) has recently been adopted to characterize brain temporal dynamics in some neuropsychological or psychiatric diseases. However, the nonlinear dynamic complexity of brain signals has been rarely explored in GAD. METHODS We measured the approximate entropy (ApEn) and sample entropy (SampEn) of the resting-state fMRI data from 38 GAD patients and 37 matched healthy controls (HCs). The brain regions with significantly different ApEn and SampEn values between the two groups were extracted. Using these brain regions as seed points, we also investigated whether there are differences in whole brain resting-state function connectivity (RSFC) pattern between GADs and HCs. Correlation analysis was subsequently conducted to investigate the association between brain entropy, RSFC and the severity of anxiety symptoms. A linear support vector machine (SVM) was used to assess the discriminative power of BEN and RSFC features among GAD patients and HCs. RESULTS Compared to the HCs, patients with GAD showed increased levels of ApEn in the right angular cortex (AG) and increased levels of SampEn in the right middle occipital gyrus (MOG) as well as the right inferior occipital gyrus (IOG). Contrarily, compared to the HCs, patients with GAD showed decreased RSFC between the right AG and the right inferior parietal gyrus (IPG). The SVM-based classification model achieved 85.33 % accuracy (sensitivity: 89.19 %; specificity: 81.58 %; and area under the receiver operating characteristic curve: 0.9018). The ApEn of the right AG and the SVM-based decision value was positively correlated with the Hamilton Anxiety Scale (HAMA). LIMITATIONS This study used cross-sectional data and sample size was small. CONCLUSION Patients with GAD showed increased level of nonlinear dynamical complexity of ApEn in the right AG and decreased linear features of RSFC in the right IPG. Combining the linear and nonlinear features of brain signals may be used to effectively diagnose psychiatric disorders.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Yu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yiao Kai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hongping Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yue Chen
- Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai 200081, China
| | - Meidan Zu
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiaonan Pang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230032, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei 230032, China.
| |
Collapse
|
3
|
Zeng J, Yan J, Cao H, Su Y, Song Y, Luo Y, Yang X. Neural substrates of reward anticipation and outcome in schizophrenia: a meta-analysis of fMRI findings in the monetary incentive delay task. Transl Psychiatry 2022; 12:448. [PMID: 36244990 PMCID: PMC9573872 DOI: 10.1038/s41398-022-02201-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
Dysfunction of the mesocorticolimbic dopaminergic reward system is a core feature of schizophrenia (SZ), yet its precise contributions to different stages of reward processing and their relevance to disease symptomology are not fully understood. We performed a coordinate-based meta-analysis, using the monetary incentive delay task, to identify which brain regions are implicated in different reward phases in functional magnetic resonance imaging in SZ. A total of 17 studies (368 SZ and 428 controls) were included in the reward anticipation, and 10 studies (229 SZ and 281 controls) were included in the reward outcome. Our meta-analysis revealed that during anticipation, patients showed hypoactivation in the striatum, anterior cingulate cortex, median cingulate cortex (MCC), amygdala, precentral gyrus, and superior temporal gyrus compared with controls. Striatum hypoactivation was negatively associated with negative symptoms and positively associated with the proportion of second-generation antipsychotic users (percentage of SGA users). During outcome, patients displayed hyperactivation in the striatum, insula, amygdala, hippocampus, parahippocampal gyrus, cerebellum, postcentral gyrus, and MCC, and hypoactivation in the dorsolateral prefrontal cortex (DLPFC) and medial prefrontal cortex (mPFC). Hypoactivity of mPFC during outcome was negatively associated with positive symptoms. Moderator analysis showed that the percentage of SGA users was a significant moderator of the association between symptom severity and brain activity in both the anticipation and outcome stages. Our findings identified the neural substrates for different reward phases in SZ and may help explain the neuropathological mechanisms underlying reward processing deficits in the disorder.
Collapse
Affiliation(s)
- Jianguang Zeng
- grid.190737.b0000 0001 0154 0904School of Economics and Business Administration, Chongqing University, Chongqing, 400044 China
| | - Jiangnan Yan
- grid.190737.b0000 0001 0154 0904School of Economics and Business Administration, Chongqing University, Chongqing, 400044 China
| | - Hengyi Cao
- grid.250903.d0000 0000 9566 0634Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hempstead, NY USA ,grid.440243.50000 0004 0453 5950Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY USA
| | - Yueyue Su
- grid.190737.b0000 0001 0154 0904School of Public Affairs, Chongqing University, Chongqing, 400044 China
| | - Yuan Song
- grid.190737.b0000 0001 0154 0904School of Public Affairs, Chongqing University, Chongqing, 400044 China
| | - Ya Luo
- grid.412901.f0000 0004 1770 1022Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
4
|
Cao X, Li Q, Liu S, Li Z, Wang Y, Cheng L, Yang C, Xu Y. Enhanced Resting-State Functional Connectivity of the Nucleus Accumbens in First-Episode, Medication-Naïve Patients With Early Onset Schizophrenia. Front Neurosci 2022; 16:844519. [PMID: 35401094 PMCID: PMC8990232 DOI: 10.3389/fnins.2022.844519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
There is abundant evidence that early onset schizophrenia (EOS) is associated with abnormalities in widespread regions, including the cortical, striatal, and limbic areas. As a main component of the ventral striatum, the nucleus accumbens (NAc) is implicated in the pathology of schizophrenia. However, functional connection patterns of NAc in patients with schizophrenia, especially EOS, are seldom explored. A total of 78 first-episode, medication-naïve patients with EOS and 90 healthy controls were recruited in the present study, and resting-state, seed-based functional connectivity (FC) analyses were performed to investigate temporal correlations between NAc and the rest of the brain in the two groups. Additionally, correlation analyses were done between regions showing group differences in NAc functional integration and clinical features of EOS. Group comparison found enhanced FC of the NAc in the EOS group relative to the HCs with increased FC in the right superior temporal gyrus and left superior parietal gyrus with the left NAc region of interest (ROI) and elevated FC in left middle occipital gyrus with the right NAc ROI. No significant associations were found between FC strength and symptom severity as well as the age of the patients. Our findings reveal abnormally enhanced FC of the NAc with regions located in the temporal, parietal, and occipital areas, which were implicated in auditory/visual processing, sensorimotor integration, and cognitive functions. The results suggest disturbed relationships between regions subserving reward, salience processing, and regions subserving sensory processing as well as cognitive functions, which may deepen our understanding of the role of NAc in the pathology of EOS.
Collapse
Affiliation(s)
- Xiaohua Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qiang Li
- Shanxi Provincial Corps Hospital of Chinese People’s Armed Police Force, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Zexuan Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Long Cheng
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chengxiang Yang
- Department of Psychiatry, Shanxi Bethune Hospital, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Brain Science and Neuropsychiatric Diseases, Taiyuan, China
- *Correspondence: Yong Xu, ;
| |
Collapse
|
5
|
Zhao Q, Li J, Xiao Y, Cao H, Wang X, Zhang W, Li S, Liao W, Gong Q, Lui S. Distinct neuroanatomic subtypes in antipsychotic-treated patients with schizophrenia classified by the predefined classification in a never-treated sample. PSYCHORADIOLOGY 2021; 1:212-224. [PMID: 38666223 PMCID: PMC11025559 DOI: 10.1093/psyrad/kkab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Background Distinct neuroanatomic subtypes have been identified in never-treated patients with schizophrenia based on cerebral structural abnormalities, but whether antipsychotic-treated patients would be stratified under the guidance of such previously formed classification remains unclear. Objective The present study aimed to investigate alterations of brain structures in antipsychotic-treated patients with schizophrenia based on a predefined morphological classification and their relationships with cognitive performance. Methods Cortical thickness, surface area, and subcortical volume were extracted from 147 antipsychotic-treated patients with schizophrenia using structural magnetic resonance imaging for classification. The Brief Assessment of Cognition in Schizophrenia (BACS) and Positive and Negative Syndrome Scale (PANSS) were used to assess cognition and symptoms. Results Antipsychotic-treated patients were categorized into three subtypes with distinct patterns of brain morphological alterations. Subtypes 1 and 2 were characterized by widespread deficits in cortical thickness but relatively limited deficits in surface area. In contrast, subtype 3 demonstrated cortical thickening mainly in parietal-occipital regions and widespread deficits in surface area. All three subgroups demonstrated cognitive deficits compared with healthy controls. Significant associations between neuroanatomic and cognitive abnormalities were only observed in subtype 1, where cortical thinning in the left lingual gyrus was conversely related to symbol coding performance. Conclusions Similar to drug-naïve patients, neuroanatomic heterogeneity exists in antipsychotic-treated patients, with disparate associations with cognition. These findings promote our understanding of relationships between neuroanatomic abnormalities and cognitive performance in the context of heterogeneity. Moreover, these results suggest that neurobiological heterogeneity needs to be considered in cognitive research in schizophrenia.
Collapse
Affiliation(s)
- Qiannan Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hengyi Cao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY 11030, United States
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY 11004, United States
| | - Xiao Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhou C, Xue C, Chen J, Amdanee N, Tang X, Zhang H, Zhang F, Zhang X, Zhang C. Altered Functional Connectivity of the Nucleus Accumbens Network Between Deficit and Non-deficit Schizophrenia. Front Psychiatry 2021; 12:704631. [PMID: 34658949 PMCID: PMC8514672 DOI: 10.3389/fpsyt.2021.704631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Deficit schizophrenia (DS), which is marked by stable negative symptoms, is regarded as a homogeneous subgroup of schizophrenia. While DS patients have structurally altered nucleus accumbens (NAcc) compared to non-deficit schizophrenia (NDS) patients and healthy individuals, the investigation of NAcc functional connectivity (FC) with negative symptoms and neurocognition could provide insights into the pathophysiology of schizophrenia. 58 DS, 93 NDS, and 113 healthy controls (HCs) underwent resting-state functional magnetic resonance (rsfMRI). The right and left NAcc were respectively used as seed points to construct the functional NAcc network in whole-brain FC analysis. ANCOVA compared the differences in NAcc network FC and partial correlation analysis explored the relationships between altered FC of NAcc, negative symptoms and neurocognition. Compared to HCs, both DS and NDS patients showed decreased FC between the left NAcc (LNAcc) and bilateral middle cingulate gyrus, and between the right NAcc (RNAcc) and right middle frontal gyrus (RMFG), as well as increased FC between bilateral NAcc and bilateral lingual gyrus. Moreover, the FC between the LNAcc and bilateral calcarine gyrus (CAL) was lower in the DS group compared to NDS patients. Correlation analysis indicated that FC value of LNAcc-CAL was negatively correlated to negative symptoms. Furthermore, aberrant FC values within the NAcc network were correlated with severity of clinical symptoms and neurocognitive impairments in DS and NDS patients. This study demonstrated abnormal patterns of FC in the NAcc network between DS and NDS. The presence of altered LNAcc-CAL FC might be involved in the pathogenesis of negative symptoms in schizophrenia.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Nousayhah Amdanee
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Radiology, Subei People's Hospital of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Fuquan Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Caiyi Zhang
- Department of Psychiatry, Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Stephan-Otto C, Lombardini F, Núñez C, Senior C, Ochoa S, Usall J, Brébion G. Fluctuating asymmetry in patients with schizophrenia is related to hallucinations and thought disorganisation. Psychiatry Res 2020; 285:112816. [PMID: 32036154 DOI: 10.1016/j.psychres.2020.112816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 01/21/2020] [Accepted: 01/25/2020] [Indexed: 11/26/2022]
Abstract
Fluctuating asymmetry represents the degree to which the right and left side of the body are asymmetrical, and is a sign of developmental instability. Higher levels of fluctuating asymmetry have been observed in individuals within the schizophrenia spectrum. We aimed to explore the associations of fluctuating asymmetry with psychotic and affective symptoms in schizophrenia patients, as well as with propensity to these symptoms in non-clinical individuals. A measure of morphological fluctuating asymmetry was calculated for 39 patients with schizophrenia and 60 healthy individuals, and a range of clinical and subclinical psychiatric symptoms was assessed. Regression analyses of the fluctuating asymmetry measure were conducted within each group. In the patient cohort, fluctuating asymmetry was significantly associated with the hallucination and thought disorganisation scores. T-test comparisons revealed that the patients presenting either hallucinations or thought disorganisation were significantly more asymmetrical than were the healthy individuals, while the patients without these key symptoms were equivalent to the healthy individuals. A positive association with the anxiety score emerged in a subsample of 36 healthy participants who were rated on affective symptoms. These findings suggest that fluctuating asymmetry may be an indicator of clinical hallucinations and thought disorganisation rather than an indicator of schizophrenia disease.
Collapse
Affiliation(s)
- Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | | | - Christian Núñez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Carl Senior
- School of Life & Health Sciences, Aston University, Birmingham, UK; Research and Development Unit - Parc Sanitari Sant Joan de Déu, c/ Dr. Antoni Pujadas, 42, 08830 - Sant Boi de Llobregat, Barcelona, Spain
| | - Susana Ochoa
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Judith Usall
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Gildas Brébion
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| |
Collapse
|
8
|
Lander SS, Chornyy S, Safory H, Gross A, Wolosker H, Gaisler‐Salomon I. Glutamate dehydrogenase deficiency disrupts glutamate homeostasis in hippocampus and prefrontal cortex and impairs recognition memory. GENES BRAIN AND BEHAVIOR 2020; 19:e12636. [DOI: 10.1111/gbb.12636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sergiy Chornyy
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Hazem Safory
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | - Amit Gross
- Department of PsychologyUniversity of Haifa Haifa Israel
| | - Herman Wolosker
- Department of Biochemistry, The Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of Technology Haifa Israel
| | | |
Collapse
|
9
|
Jonak K, Krukow P, Jonak KE, Grochowski C, Karakuła-Juchnowicz H. Quantitative and Qualitative Comparison of EEG-Based Neural Network Organization in Two Schizophrenia Groups Differing in the Duration of Illness and Disease Burden: Graph Analysis With Application of the Minimum Spanning Tree. Clin EEG Neurosci 2019; 50:231-241. [PMID: 30322279 DOI: 10.1177/1550059418807372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study was to compare neural network topology of 30 patients with first episode schizophrenia (FES) and 30 multiepisode schizophrenia (mean number of psychotic relapses =4 years, duration of illness >5 years) patients, who were assessed with graph theory methods. This comparison was designed to identify network differences, which might be assigned to the burden of a mental disease. To estimate functional connectivity, we applied the phase lag index algorithm and the minimum spanning tree (MST) for the characterization of network topology. Group comparison revealed significant between-group differences of maximal betweenness centrality and tree hierarchy in the beta-band and hierarchy in the gamma-band. MST results showed that in the beta-band the network of patients with longer duration of illness (LDI) was characterized by more centralized network, while subjects with short duration of illness (FES) showed more decentralized topology. Furthermore, in the gamma-band, our results suggest that illness duration can disturb the balance between overload prevention and large-scale integration in the brain network. A qualitative analysis proved that the topological displacement of hubs also differentiated the FES and LDI groups. Our findings suggest that the duration of illness significantly affects the topology of resting-state functional network, supporting the "disconnectivity hypothesis' in schizophrenia.
Collapse
Affiliation(s)
- Kamil Jonak
- 1 Department of Biomedical Engineering, Lublin University of Technology, Lublin, Poland.,2 Chair and I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland
| | - Paweł Krukow
- 3 Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Katarzyna E Jonak
- 4 Department of Foreign Languages, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Cezary Grochowski
- 5 Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Hanna Karakuła-Juchnowicz
- 2 Chair and I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Lublin, Poland.,3 Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Lubelskie, Poland
| |
Collapse
|
10
|
Li J, Guo H, Ge L, Cheng L, Wang J, Li H, Zhang K, Xiang J, Chen J, Zhang H, Xu Y. Mechanism of Cerebralcare Granule® for Improving Cognitive Function in Resting-State Brain Functional Networks of Sub-healthy Subjects. Front Neurosci 2017; 11:410. [PMID: 28769748 PMCID: PMC5509764 DOI: 10.3389/fnins.2017.00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Cerebralcare Granule® (CG), a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI). Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS), and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM) and frequent subgraph mining (FSM). Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ) and Memory Quotient (MQ) scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.
Collapse
Affiliation(s)
- Jing Li
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China
| | - Hao Guo
- Department of Computer Science and Technology, Taiyuan University of TechnologyTaiyuan, China
| | - Ling Ge
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China.,Department of Medical Psychology, Shanxi Medical College for Continuing EducationTaiyuan, China
| | - Long Cheng
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China
| | - Junjie Wang
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China
| | - Hong Li
- Department of Humanities and Social Science, Shanxi Medical UniversityTaiyuan, China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China
| | - Jie Xiang
- Department of Computer Science and Technology, Taiyuan University of TechnologyTaiyuan, China
| | - Junjie Chen
- Department of Computer Science and Technology, Taiyuan University of TechnologyTaiyuan, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical UniversityTaiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital, First Clinical Medical College of Shanxi Medical UniversityTaiyuan, China
| |
Collapse
|
11
|
Remembering verbally-presented items as pictures: Brain activity underlying visual mental images in schizophrenia patients with visual hallucinations. Cortex 2017; 94:113-122. [PMID: 28746902 DOI: 10.1016/j.cortex.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Previous research suggests that visual hallucinations in schizophrenia consist of mental images mistaken for percepts due to failure of the reality-monitoring processes. However, the neural substrates that underpin such dysfunction are currently unknown. We conducted a brain imaging study to investigate the role of visual mental imagery in visual hallucinations. METHOD Twenty-three patients with schizophrenia and 26 healthy participants were administered a reality-monitoring task whilst undergoing an fMRI protocol. At the encoding phase, a mixture of pictures of common items and labels designating common items were presented. On the memory test, participants were requested to remember whether a picture of the item had been presented or merely its label. RESULTS Visual hallucination scores were associated with a liberal response bias reflecting propensity to erroneously remember pictures of the items that had in fact been presented as words. At encoding, patients with visual hallucinations differentially activated the right fusiform gyrus when processing the words they later remembered as pictures, which suggests the formation of visual mental images. On the memory test, the whole patient group activated the anterior cingulate and medial superior frontal gyrus when falsely remembering pictures. However, no differential activation was observed in patients with visual hallucinations, whereas in the healthy sample, the production of visual mental images at encoding led to greater activation of a fronto-parietal decisional network on the memory test. CONCLUSIONS Visual hallucinations are associated with enhanced visual imagery and possibly with a failure of the reality-monitoring processes that enable discrimination between imagined and perceived events.
Collapse
|
12
|
Núñez C, Paipa N, Senior C, Coromina M, Siddi S, Ochoa S, Brébion G, Stephan-Otto C. Global brain asymmetry is increased in schizophrenia and related to avolition. Acta Psychiatr Scand 2017; 135:448-459. [PMID: 28332705 PMCID: PMC5407086 DOI: 10.1111/acps.12723] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Schizophrenia may be the result of a failure of the normal lateralization process of the brain. However, whole-brain asymmetry has not been assessed up to date. Here, we propose a novel measure of global brain asymmetry based on the Dice coefficient to quantify similarity between brain hemispheres. METHOD Global gray and white matter asymmetry was calculated from high-resolution T1 structural images acquired from 24 patients with schizophrenia and 26 healthy controls, age- and sex-matched. Some of the analyses were replicated in a much larger sample (n = 759) obtained from open-access online databases. RESULTS Patients with schizophrenia had more global gray matter asymmetry than controls. Additionally, increased gray matter asymmetry was associated with avolition, whereas the inverse relationship was found for anxiety at a trend level. These analyses were replicated in a larger sample and confirmed previous results. CONCLUSION Our findings suggest that global gray matter asymmetry is related to the concept of developmental stability and is a useful indicator of perturbations during neurodevelopment.
Collapse
Affiliation(s)
- Christian Núñez
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain,Corresponding author: Christian Núñez (; phone: 93 640 63 50), Address: C/Doctor Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Barcelona, Spain
| | - Nataly Paipa
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Carl Senior
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Marta Coromina
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain
| | - Sara Siddi
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain,Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain,Section of Clinical Psychology, Department of Education, Psychology, and Philosophy, University of Cagliari, Italy,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Susana Ochoa
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Gildas Brébion
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| | - Christian Stephan-Otto
- Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Madrid, Spain
| |
Collapse
|