1
|
Ziereis A, Schacht A. Gender congruence and emotion effects in cross-modal associative learning: Insights from ERPs and pupillary responses. Psychophysiology 2023; 60:e14380. [PMID: 37387451 DOI: 10.1111/psyp.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/01/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Social and emotional cues from faces and voices are highly relevant and have been reliably demonstrated to attract attention involuntarily. However, there are mixed findings as to which degree associating emotional valence to faces occurs automatically. In the present study, we tested whether inherently neutral faces gain additional relevance by being conditioned with either positive, negative, or neutral vocal affect bursts. During learning, participants performed a gender-matching task on face-voice pairs without explicit emotion judgments of the voices. In the test session on a subsequent day, only the previously associated faces were presented and had to be categorized regarding gender. We analyzed event-related potentials (ERPs), pupil diameter, and response times (RTs) of N = 32 subjects. Emotion effects were found in auditory ERPs and RTs during the learning session, suggesting that task-irrelevant emotion was automatically processed. However, ERPs time-locked to the conditioned faces were mainly modulated by the task-relevant information, that is, the gender congruence of the face and voice, but not by emotion. Importantly, these ERP and RT effects of learned congruence were not limited to learning but extended to the test session, that is, after removing the auditory stimuli. These findings indicate successful associative learning in our paradigm, but it did not extend to the task-irrelevant dimension of emotional relevance. Therefore, cross-modal associations of emotional relevance may not be completely automatic, even though the emotion was processed in the voice.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Institute of Psychology, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Ziereis A, Schacht A. Motivated attention and task relevance in the processing of cross-modally associated faces: Behavioral and electrophysiological evidence. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1244-1266. [PMID: 37353712 PMCID: PMC10545602 DOI: 10.3758/s13415-023-01112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/25/2023]
Abstract
It has repeatedly been shown that visually presented stimuli can gain additional relevance by their association with affective stimuli. Studies have shown effects of associated affect in event-related potentials (ERP) like the early posterior negativity (EPN), late positive complex (LPC), and even earlier components as the P1 or N170. However, findings are mixed as to the extent associated affect requires directed attention to the emotional quality of a stimulus and which ERP components are sensitive to task instructions during retrieval. In this preregistered study ( https://osf.io/ts4pb ), we tested cross-modal associations of vocal affect-bursts (positive, negative, neutral) to faces displaying neutral expressions in a flash-card-like learning task, in which participants studied face-voice pairs and learned to correctly assign them to each other. In the subsequent EEG test session, we applied both an implicit ("old-new") and explicit ("valence-classification") task to investigate whether the behavior at retrieval and neurophysiological activation of the affect-based associations were dependent on the type of motivated attention. We collected behavioral and neurophysiological data from 40 participants who reached the preregistered learning criterium. Results showed EPN effects of associated negative valence after learning and independent of the task. In contrast, modulations of later stages (LPC) by positive and negative associated valence were restricted to the explicit, i.e., valence-classification, task. These findings highlight the importance of the task at different processing stages and show that cross-modal affect can successfully be associated to faces.
Collapse
Affiliation(s)
- Annika Ziereis
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Georg-August-University of Göttingen, Goßlerstraße 14, 37073 Göttingen, Germany
| | - Anne Schacht
- Department for Cognition, Emotion and Behavior, Affective Neuroscience and Psychophysiology Laboratory, Georg-August-University of Göttingen, Goßlerstraße 14, 37073 Göttingen, Germany
| |
Collapse
|
3
|
Osborne KJ, Kraus B, Curran T, Earls H, Mittal VA. An Event-Related Potential Investigation of Early Visual Processing Deficits During Face Perception in Youth at Clinical High Risk for Psychosis. Schizophr Bull 2022; 48:90-99. [PMID: 34111294 PMCID: PMC8781328 DOI: 10.1093/schbul/sbab068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Impairments in early visual face perception are well documented in patients with schizophrenia. Specifically, event-related potential (ERP) research in patients with schizophrenia has demonstrated deficits in early sensory processing of stimulus properties (P1 component) and the structural encoding of faces (N170 component). However, it is not well understood if similar impairments are present in individuals at clinical high risk (CHR) for psychosis (ie, those in the putative prodromal stage of the illness). Thus, it is unknown if face perception deficits are the result of illness onset or are present in the high-risk period for the illness. The present study used the ERP technique to examine neural activation when viewing facial emotion expressions and objects in 44 CHR and 47 control adolescents and young adults (N = 91). P1 amplitude was similar across groups, indicating that early sensory processing impairments did not substantially contribute to face perception deficits in CHR youth. CHR youth exhibited reduced N170 amplitude compared to controls when viewing faces but not objects, implicating a specific deficit in the structural encoding of faces rather than a general perceptual deficit. Further, whereas controls demonstrated the expected face-selective N170 effect (ie, larger amplitude for faces than objects), CHR youth did not, which suggests that facial emotion expressions do not elicit the expected preferential perceptual processing for critical social information in individuals at CHR for psychosis. Together, these findings provide valuable information regarding the specific impairments contributing to face perception deficits in the high-risk period where treatment stands to aid in preventing illness progression.
Collapse
Affiliation(s)
- K Juston Osborne
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Brian Kraus
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Tim Curran
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO, USA
| | - Holly Earls
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Boulder, CO, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Psychiatry, Northwestern University, Evanston, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Medical Social Sciences, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences (DevSci), Evanston, Chicago, IL, USA
| |
Collapse
|
4
|
Lee SK, Lee JS, Shin YB, Kim HE, Kim BH, Kim JJ. The relationship between ambivalence, alexithymia, and salience network dysfunction in schizophrenia. Psychiatry Res Neuroimaging 2021; 310:111271. [PMID: 33711658 DOI: 10.1016/j.pscychresns.2021.111271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 10/22/2022]
Abstract
Ambivalence in schizophrenia is worth investigating its association with salience processing and alexithymia using functional MRI. Twenty-two patients with schizophrenia and 22 healthy controls were scanned during the ambivalence task of matching picture (ambivalent, positive and negative) and word (positive and negative) stimuli, and the Toronto Alexithymia Scale (TAS) was rated. Patients exhibited decreased activity in the anterior cingulate cortex (ACC) and insula compared to controls, and ACC activity in the ambivalent condition was negatively correlated with the TAS score in patients. Ambivalence in schizophrenia may be based on salience network dysfunction, and this disturbance may be related to alexithymia.
Collapse
Affiliation(s)
- Seon-Koo Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Bundang Jesaeng Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Jung Suk Lee
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Yu-Bin Shin
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hesun Erin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung-Hoon Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Sperl MFJ, Wroblewski A, Mueller M, Straube B, Mueller EM. Learning dynamics of electrophysiological brain signals during human fear conditioning. Neuroimage 2020; 226:117569. [PMID: 33221446 DOI: 10.1016/j.neuroimage.2020.117569] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/13/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Electrophysiological studies in rodents allow recording neural activity during threats with high temporal and spatial precision. Although fMRI has helped translate insights about the anatomy of underlying brain circuits to humans, the temporal dynamics of neural fear processes remain opaque and require EEG. To date, studies on electrophysiological brain signals in humans have helped to elucidate underlying perceptual and attentional processes, but have widely ignored how fear memory traces evolve over time. The low signal-to-noise ratio of EEG demands aggregations across high numbers of trials, which will wash out transient neurobiological processes that are induced by learning and prone to habituation. Here, our goal was to unravel the plasticity and temporal emergence of EEG responses during fear conditioning. To this end, we developed a new sequential-set fear conditioning paradigm that comprises three successive acquisition and extinction phases, each with a novel CS+/CS- set. Each set consists of two different neutral faces on different background colors which serve as CS+ and CS-, respectively. Thereby, this design provides sufficient trials for EEG analyses while tripling the relative amount of trials that tap into more transient neurobiological processes. Consistent with prior studies on ERP components, data-driven topographic EEG analyses revealed that ERP amplitudes were potentiated during time periods from 33-60 ms, 108-200 ms, and 468-820 ms indicating that fear conditioning prioritizes early sensory processing in the brain, but also facilitates neural responding during later attentional and evaluative stages. Importantly, averaging across the three CS+/CS- sets allowed us to probe the temporal evolution of neural processes: Responses during each of the three time windows gradually increased from early to late fear conditioning, while long-latency (460-730 ms) electrocortical responses diminished throughout fear extinction. Our novel paradigm demonstrates how short-, mid-, and long-latency EEG responses change during fear conditioning and extinction, findings that enlighten the learning curve of neurophysiological responses to threat in humans.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, 35032 Marburg, Germany; Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, 35394 Giessen, Germany.
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany.
| | - Madeleine Mueller
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Translational Neuroimaging Marburg, University of Marburg, 35039 Marburg, Germany.
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, 35032 Marburg, Germany.
| |
Collapse
|
6
|
Quarmley M, Gur RC, Turetsky BI, Watters AJ, Bilker WB, Elliott MA, Calkins ME, Kohler CG, Ruparel K, Rupert P, Gur RE, Wolf DH. Reduced safety processing during aversive social conditioning in psychosis and clinical risk. Neuropsychopharmacology 2019; 44:2247-2253. [PMID: 31112989 PMCID: PMC6898578 DOI: 10.1038/s41386-019-0421-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
Social impairment occurs across the psychosis spectrum, but its pathophysiology remains poorly understood. Here we tested the hypothesis that reduced differential responses (aversive vs. neutral) in neural circuitry underpinning aversive conditioning of social stimuli characterizes the psychosis spectrum. Participants age 10-30 included a healthy control group (HC, analyzed n = 36) and a psychosis spectrum group (PSY, n = 71), including 49 at clinical risk for psychosis and 22 with a frank psychotic disorder. 3T fMRI utilized a passive aversive conditioning paradigm, with neutral faces as conditioned stimuli (CS) and a scream as the unconditioned stimulus. fMRI conditioning was indexed as the activation difference between aversive and neutral trials. Analysis focused on amygdala, ventromedial prefrontal cortex, and anterior insula, regions previously implicated in aversive and social-emotional processing. Ventromedial prefrontal cortex activated more to neutral than aversive CS; this "safety effect" was driven by HC and reduced in PSY, and correlated with subjective emotional ratings following conditioning. Insula showed the expected aversive conditioning effect, and although no group differences were found, its activation in PSY correlated with anxiety severity. Unexpectedly, amygdala did not show aversive conditioning; its activation trended greater for neutral than aversive CS, and did not differ significantly based on group or symptom severity. We conclude that abnormalities in social aversive conditioning are present across the psychosis spectrum including clinical risk, linked to a failure of safety processing. Aversive and safety learning provide translational paradigms yielding insight into pathophysiology of psychosis risk, and providing potential targets for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Megan Quarmley
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ruben C. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruce I. Turetsky
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Anna J. Watters
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Warren B. Bilker
- 0000 0004 1936 8972grid.25879.31Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mark A. Elliott
- 0000 0004 1936 8972grid.25879.31Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Monica E. Calkins
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Christian G. Kohler
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kosha Ruparel
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Petra Rupert
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Raquel E. Gur
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Daniel H. Wolf
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|