1
|
Devine EA, Imami AS, Eby H, Sahay S, Hamoud AR, Golchin H, Ryan W, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. Mol Psychiatry 2024:10.1038/s41380-024-02770-8. [PMID: 39424930 DOI: 10.1038/s41380-024-02770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of canonical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
| |
Collapse
|
2
|
Devine EA, Imami AS, Eby H, Hamoud AR, Golchin H, Ryan W, Sahay S, Shedroff EA, Arvay T, Joyce AW, Asah SM, Walss-Bass C, O'Donovan S, McCullumsmith RE. Neuronal alterations in AKT isotype expression in schizophrenia. RESEARCH SQUARE 2024:rs.3.rs-3940448. [PMID: 38559131 PMCID: PMC10980160 DOI: 10.21203/rs.3.rs-3940448/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of conical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Emily A Devine
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ali S Imami
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hunter Eby
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Abdul-Rizaq Hamoud
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Hasti Golchin
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - William Ryan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Smita Sahay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Elizabeth A Shedroff
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Taylen Arvay
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Alex W Joyce
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Consuelo Walss-Bass
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sinead O'Donovan
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Neurosciences Institute, ProMedica, Toledo, OH, USA
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
3
|
Machine Learning algorithm unveils glutamatergic alterations in the post-mortem schizophrenia brain. NPJ SCHIZOPHRENIA 2022; 8:8. [PMID: 35217646 PMCID: PMC8881508 DOI: 10.1038/s41537-022-00231-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/06/2021] [Indexed: 01/24/2023]
Abstract
Schizophrenia is a disorder of synaptic plasticity and aberrant connectivity in which a major dysfunction in glutamate synapse has been suggested. However, a multi-level approach tackling diverse clusters of interacting molecules of the glutamate signaling in schizophrenia is still lacking. We investigated in the post-mortem dorsolateral prefrontal cortex (DLPFC) and hippocampus of schizophrenia patients and non-psychiatric controls, the levels of neuroactive d- and l-amino acids (l-glutamate, d-serine, glycine, l-aspartate, d-aspartate) by HPLC. Moreover, by quantitative RT-PCR and western blotting we analyzed, respectively, the mRNA and protein levels of pre- and post-synaptic key molecules involved in the glutamatergic synapse functioning, including glutamate receptors (NMDA, AMPA, metabotropic), their interacting scaffolding proteins (PSD-95, Homer1b/c), plasma membrane and vesicular glutamate transporters (EAAT1, EAAT2, VGluT1, VGluT2), enzymes involved either in glutamate-dependent GABA neurotransmitter synthesis (GAD65 and 67), or in post-synaptic NMDA receptor-mediated signaling (CAMKIIα) and the pre-synaptic marker Synapsin-1. Univariable analyses revealed that none of the investigated molecules was differently represented in the post-mortem DLPFC and hippocampus of schizophrenia patients, compared with controls. Nonetheless, multivariable hypothesis-driven analyses revealed that the presence of schizophrenia was significantly affected by variations in neuroactive amino acid levels and glutamate-related synaptic elements. Furthermore, a Machine Learning hypothesis-free unveiled other discriminative clusters of molecules, one in the DLPFC and another in the hippocampus. Overall, while confirming a key role of glutamatergic synapse in the molecular pathophysiology of schizophrenia, we reported molecular signatures encompassing elements of the glutamate synapse able to discriminate patients with schizophrenia and normal individuals.
Collapse
|