1
|
Tendilla-Beltrán H, Perez-Osornio DL, Apam-Castillejos DJ, Flores G. Atypical antipsychotics improve dendritic spine pathology in temporal lobe cortex neurons in a developmental rodent model of schizophrenia. Behav Brain Res 2025; 478:115341. [PMID: 39549876 DOI: 10.1016/j.bbr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
"Dendritic spine pathology" refers to alterations in density and morphology of dendritic spines, crucial in corticolimbic neurons in schizophrenia. These structural neuroplasticity changes contribute to the disease's neurobiological underpinnings, alongside alterations in other brain regions, such as temporal lobe cortices like the auditory cortex (Au1) and the entorhinal cortex (Ent), involved in sensory processing, memory, and learning. The neonatal ventral hippocampus lesion (NVHL) in rats exhibits behavioral abnormalities akin to schizophrenia symptoms and corticolimbic dendritic spine pathology, mitigated by atypical antipsychotic drugs (AADs) like risperidone (RISP) and olanzapine (OLZ). This study investigated NVHL-induced dendritic spine pathology in Au1 and Ent, evaluating RISP and OLZ effects. NVHL induced dendritic spine pathology mainly by reducing the dendritic spine density in Au1 and Ent neurons; both RISP and OLZ mitigated it, increasing dendritic spine density and mushroom spine population, the ones related with synaptic strengthening, while decreasing stubby spine population. These findings underscore the role of impaired neuroplasticity in the temporal lobe cortices in schizophrenia pathophysiology and highlight the relevance of the NVHL model for studying neuroplasticity mechanisms in the disease. They also contribute to the growing understanding of targeting structural and functional neuroplasticity for novel drugs in the pharmacotherapy of the disease.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
2
|
Pontes JGDM, Nani JVS, Correia BSB, Carneiro Costa TBB, Stanisic D, Hayashi MAF, Tasic L. An Investigation of the Sodium Nitroprusside Effects on Serum Lipids in an Animal Model of Schizophrenia by the Magnetic Resonance Study. ACS OMEGA 2024; 9:48480-48487. [PMID: 39676991 PMCID: PMC11635526 DOI: 10.1021/acsomega.4c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Schizophrenia (SCZ) is a multifactorial mental illness with limited knowledge concerning pathogenesis, contributing to the lack of effective therapies. More recently, the use of a nitric oxide donor named sodium nitroprusside (sNP) was suggested as a potential therapeutic drug for the treatment of SCZ. Despite the mixed results regarding the effectiveness of the sNP in reducing SCZ symptoms, successful trials on sNP in treatment-resistant SCZ were published. We have also demonstrated the power of evaluating the lipidic profiles of human clinical and animal model samples to identify the biomarkers of the pharmacological response to the diagnosis of mental disorders. Aim of this work is to evaluate the sNP effects in an animal model for SCZ studies through lipidomic profiles assessed by magnetic resonance spectroscopy (NMR). Lipidic profiling of serum from these animals indicated a more pronounced effect of sNP on lipids in the 0.50-6.00 ppm spectral region. Chemometric analysis also indicated an approximation of the lipidic profiling of SCZ animal model rats treated with sNP compared to that of the control group. In addition, we have compared the sNP treatment with other antipsychotics classically used in the clinic, such as haloperidol and clozapine, and the sNP treatment evaluated herein confirms the potential of sNP for the treatment of SCZ.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - João Victor Silva Nani
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM, CNPq), Ribeirão Preto 14026, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil
| | - Banny Silva Barbosa Correia
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Tássia Brena Barroso Carneiro Costa
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Danijela Stanisic
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Mirian A F Hayashi
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM, CNPq), Ribeirão Preto 14026, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| |
Collapse
|
3
|
Boyzo Montes de Oca A, Tendilla-Beltrán H, Bringas ME, Flores G, Aceves J. Chronic pramipexole and rasagiline treatment enhances dendritic spine structural neuroplasticity in striatal and prefrontal cortex neurons of rats with bilateral intrastriatal 6-hydroxydopamine lesions. J Chem Neuroanat 2024; 141:102468. [PMID: 39383978 DOI: 10.1016/j.jchemneu.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease manifests as neurological alterations within dendritic spines in the striatal and neocortical brain regions, where their functionality closely correlates with morphology. However, the impact of current pharmacotherapy on dendritic spine neuroplasticity, crucial for novel drug development in neurological and psychiatric disorders, remains unclear. This study investigated the effects of 6-OHDA intrastriatal bilateral lesions in male adult rats on behavior and dendritic spine neuroplasticity in striatal and cortical neurons. Furthermore, it evaluated the influence of chronic co-administration of pramipexole (PPX), a D3 receptor agonist, and rasagiline (Ras), a selective MAO-B inhibitor, on these alterations. Lesioned animals exhibited impaired balance behavior, with no improvement following PPX-Ras treatment. The 6-OHDA lesion decreased dendritic spine density in caudate putamen (CPU) spiny projection neurons (SPNs), a change unaffected by treatment, though PPX-Ras increased mushroom spines and reduced stubby spines in these neurons. In nucleus accumbens (NAcc) SPNs and prefrontal cortex layer 3 (PFC-3) pyramidal cells, dendritic spine density remained unaltered, but PPX-Ras decreased mushroom spines and increased bifurcated spines in the NAcc, while increasing mushroom spines and decreasing stubby spines in PFC-3 in lesioned rats. These findings emphasize the importance of dendritic spines as promising targets for innovative pharmacotherapies for Parkinson's disease.
Collapse
Affiliation(s)
- Alfonso Boyzo Montes de Oca
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - María E Bringas
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| | - Jorge Aceves
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
4
|
Ozkalayci O, Tastekin N. Can simple biomarkers of inflammation guide the diagnosis of psychiatric disorders? Int J Psychiatry Clin Pract 2024:1-7. [PMID: 39373486 DOI: 10.1080/13651501.2024.2412641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
OBJECTIVE In this study, we wanted to investigate the usability of routine blood samples taken at the beginning of hospitalisation in inpatients to predict the presence of psychotic symptoms in patients. METHODS We divided the hospitalised patients into two groups those with and without psychotic symptoms according to their ICD-10 diagnosis codes. Then, we compared the complete blood count, c-reactive protein (CRP), and fasting glucose levels, which can be used as simple markers of inflammation. RESULTS In this retrospective study, which included 349 patients, we found that blood leukocytes, neutrophils, CRP, and fasting glucose levels were higher in patients with psychotic symptoms than in patients without psychotic symptoms (p = 0.015; p = 0.013; p = 0.002; and p = 0.001, respectively). According to regression analysis, patients with high glucose levels were 4.9 times more likely to have psychotic symptoms than those with low glucose levels. In addition, according to the ROC analysis results; when we used 87 mg/dl as the cut-off value for fasting glucose, it was observed that it predicted psychotic symptoms with approximately 69% sensitivity and 71% specificity. CONCLUSION Although our results still have some limitations, they are promising for the future use of simple biomarkers of inflammation for the differential diagnosis of psychiatric disorders.
Collapse
Affiliation(s)
- Ozgur Ozkalayci
- Bolu İzzet Baysal Mental Health and Diseases Hospital, Bolu, Turkey
| | - Nihal Tastekin
- Bolu İzzet Baysal Mental Health and Diseases Hospital, Bolu, Turkey
| |
Collapse
|
5
|
Tendilla-Beltrán H, Garcés-Ramírez L, Martínez-Vásquez E, Nakakawa A, Gómez-Villalobos MDJ, Flores G. Differential Effects of Neonatal Ventral Hippocampus Lesion on Behavior and Corticolimbic Plasticity in Wistar-Kyoto and Spontaneously Hypertensive Rats. Neurochem Res 2024; 49:959-979. [PMID: 38157113 DOI: 10.1007/s11064-023-04074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Dysfunction of the corticolimbic system, particularly at the dendritic spine level, is a recognized core mechanism in neurodevelopmental disorders such as schizophrenia. Neonatal ventral hippocampus lesion (NVHL) in Sprague-Dawley rats induces both a schizophrenia-related behavioral phenotype and dendritic spine pathology (reduced total number and mature spines) in corticolimbic areas, which is mitigated by antipsychotics. However, there is limited information on the impact of rat strain on NVHL outcomes and antipsychotic effects. We compared the behavioral performance in the open field, novel object recognition (NORT), and social interaction tests, as well as structural neuroplasticity with the Golgi-Cox stain in Wistar-Kyoto (WKY) and spontaneously hypertensive (SH) male rats with and without NVHL. Additionally, we explored the effect of the atypical antipsychotic risperidone (RISP). WKY rats with NVHL displayed motor hyperactivity without impairments in memory and social behavior, accompanied by dendritic spine pathology in the neurons of the prefrontal cortex (PFC) layer 3 and basolateral amygdala. RISP treatment reduced motor activity and had subtle and selective effects on the neuroplasticity alterations. In SH rats, NVHL increased the time spent in the border area during the open field test, impaired the short-term performance in NORT, and reduced social interaction time, deficits that were corrected after RISP administration. The NVHL caused dendritic spine pathology in the PFC layers 3 and 5 of SH rats, which RISP treatment ameliorated. Our results support the utility of the NVHL model for exploring neuroplasticity mechanisms in schizophrenia and understanding pharmacotherapy.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, 72570, Puebla, Mexico
| | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Edwin Martínez-Vásquez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, 72570, Puebla, Mexico
| | - Andrea Nakakawa
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, 72570, Puebla, Mexico
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur 6301, 72570, Puebla, Mexico.
| |
Collapse
|
6
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
7
|
Flores-Gómez GD, Apam-Castillejos DJ, Juárez-Díaz I, Fuentes-Medel E, Díaz A, Tendilla-Beltrán H, Flores G. Aripiprazole attenuates the medial prefrontal cortex morphological and biochemical alterations in rats with neonatal ventral hippocampus lesion. J Chem Neuroanat 2023; 132:102316. [PMID: 37481172 DOI: 10.1016/j.jchemneu.2023.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Schizophrenia is a neurodevelopmental disorder characterized by a loss of dendritic spines in the medial prefrontal cortex (mPFC). Multiple subclinical and clinical studies have evidenced the ability of antipsychotics to improve neuroplasticity. In this study, it was evaluated the effect of the atypical antipsychotic aripiprazole (ARI) on the behavioral and mPFC neuronal disturbances of rats with neonatal ventral hippocampus lesion (nVHL), which is a heuristic developmental model relevant to the study of schizophrenia. ARI attenuated open field hyperlocomotion in the rats with nVHL. Also, ARI ameliorated structural neuroplasticity disturbances of the mPFC layer 3 pyramidal cells, but not in the layer 5 neurons. These effects can be associated with the ARI capability of increasing brain-derived neurotrophic factor (BDNF) levels. Moreover, in the animals with nVHL, ARI attenuated the immunoreactivity for some oxidative stress-related molecules such as the nitric oxide synthase 2 (NOS-2), 3-nitrotyrosine (3-NT), and cyclooxygenase 2 (COX-2), as well as the reactive astrogliosis in the mPFC. These results contribute to current knowledge about the neurotrophic, anti-inflammatory, and antioxidant properties of antipsychotics which may be contributing to their clinical effects and envision promising therapeutic targets for the treatment of schizophrenia.
Collapse
Affiliation(s)
| | | | - Ismael Juárez-Díaz
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
8
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wolf A, Yitzhaky A, Hertzberg L. SMAD genes are up-regulated in brain and blood samples of individuals with schizophrenia. J Neurosci Res 2023. [PMID: 36977612 DOI: 10.1002/jnr.25188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Schizophrenia is a severe psychiatric disorder, with heritability around 80%, but a not fully understood pathophysiology. Signal transduction through the mothers against decapentaplegic (SMADs) are eight different proteins involved in the regulation of inflammatory processes, cell cycle, and tissue patterning. The literature is not consistent regarding the differential expression of SMAD genes among subjects with schizophrenia. In this article, we performed a systematic meta-analysis of the expression of SMAD genes in 423 brain samples (211 schizophrenia vs. 212 healthy controls), integrating 10 datasets from two public repositories, following the PRISMA guidelines. We found a statistically significant up-regulation of SMAD1, SMAD4, SMAD5, and SMAD7, and a tendency for up-regulation of SMAD3 and SMAD9 in brain samples of patients with schizophrenia. Overall, six of the eight genes showed a tendency for up-regulation, and none of them was found to have a tendency for down-regulation. SMAD1 and SMAD4 were up-regulated also in blood samples of 13 individuals with schizophrenia versus eight healthy controls, suggesting the SMAD genes' potential role as biomarkers of schizophrenia. Furthermore, SMAD genes' expression levels were significantly correlated with those of Sphingosine-1-phosphate receptor-1 (S1PR1), which is known to regulate inflammatory processes. Our meta-analysis supports the involvement of SMAD genes in the pathophysiology of schizophrenia through their role in inflammatory processes, as well as demonstrates the importance of gene expression meta-analysis for improving our understanding of psychiatric diseases.
Collapse
Affiliation(s)
- Ammie Wolf
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Libi Hertzberg
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, 13 Aliat Hanoar St., Hod Hasharon, 45100, Israel
| |
Collapse
|
10
|
Apam-Castillejos DJ, Tendilla-Beltrán H, Vázquez-Roque RA, Vázquez-Hernández AJ, Fuentes-Medel E, García-Dolores F, Díaz A, Flores G. Second-generation antipsychotic olanzapine attenuates behavioral and prefrontal cortex synaptic plasticity deficits in a neurodevelopmental schizophrenia-related rat model. J Chem Neuroanat 2022; 125:102166. [PMID: 36156295 DOI: 10.1016/j.jchemneu.2022.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Specifically, second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL animals but failed to enhance social disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.
Collapse
Affiliation(s)
| | | | | | | | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Mexico.
| |
Collapse
|
11
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
12
|
Sánchez‐Olguin CP, Zamudio SR, Guzmán‐Velázquez S, Márquez‐Portillo M, Caba‐Flores MD, Camacho‐Abrego I, Flores G, Melo AI. Neonatal ventral hippocampus lesion disrupts maternal behavior in rats: An animal model of schizophrenia. Dev Psychobiol 2022; 64:e22283. [DOI: 10.1002/dev.22283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Claudia P. Sánchez‐Olguin
- Departamento de Fisiología Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Mexico City Mexico
- Maestría en Ciencias Biológicas Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| | - Sergio R. Zamudio
- Departamento de Fisiología Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Mexico City Mexico
| | - Sonia Guzmán‐Velázquez
- Departamento de Fisiología Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Mexico City Mexico
| | - Mariana Márquez‐Portillo
- Centro de Investigación en Reproducción Animal CINVESTAV Laboratorio Tlaxcala Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| | | | - Israel Camacho‐Abrego
- Laboratorio de Neuropsiquiatría Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
- Doctorado en Ciencias Biológicas Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría Instituto de Fisiología Benemérita Universidad Autónoma de Puebla Puebla Mexico
| | - Angel I. Melo
- Centro de Investigación en Reproducción Animal CINVESTAV Laboratorio Tlaxcala Universidad Autónoma de Tlaxcala Tlaxcala Mexico
| |
Collapse
|
13
|
Liang X, Ruan W, Xu Z, Liu J. Analysis of Safe Storage of Network Information Data and Financial Risks Under Blockchain Combined With Edge Computing. JOURNAL OF GLOBAL INFORMATION MANAGEMENT 2022. [DOI: 10.4018/jgim.312580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To discuss the control of financial risks (FRs) under blockchain (BC) and improve network information security (NIS) and data security, edge computing (EC) combined with BC is proposed to control the risks of the big data (BD) financial system. Firstly, the BC-based financial system is introduced, and the characteristics of BC such as decentralization, tamper-resistant, and smart contract are analyzed. Secondly, the development status of NIS and the characteristics of marginal computing are explained, and the control model of NIS is established. Then, EC is used to encrypt the identity authentication system to ensure data security, and the BC-based FR evaluation model is established. Finally, a questionnaire is designed regarding the NIS model, and the results are analyzed. A simulation experiment is conducted regarding the index evaluation of the BC-based FR evaluation model. The experimental results indicate that network personnel control, environment, and technology have positive effects on NIS, and the impact factors are 0.26, 0.24, and 0.33, respectively.
Collapse
Affiliation(s)
- Xiao Liang
- Shanxi VC/PE Fund Management Co., Ltd., China
| | - Wenxi Ruan
- Taizhou Vocational College of Science and Technology, China
| | - Zheng Xu
- Shenzhen Institute of Information Technology, China
| | - Ji Liu
- University of Sydney, Australia
| |
Collapse
|
14
|
Borjeni MS, Korani M, Meftahi GH, Davoodian N, Hadipour M, Jahromi GP. Laterality dissociation of ventral hippocampus inhibition in learning and memory, glial activation and neural arborization in response to chronic stress in male Wistar rats. J Chem Neuroanat 2022; 121:102090. [DOI: 10.1016/j.jchemneu.2022.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022]
|
15
|
Bayassi-Jakowicka M, Lietzau G, Czuba E, Patrone C, Kowiański P. More than Addiction—The Nucleus Accumbens Contribution to Development of Mental Disorders and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052618. [PMID: 35269761 PMCID: PMC8910774 DOI: 10.3390/ijms23052618] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/09/2023] Open
Abstract
Stress and negative emotions evoked by social relationships and working conditions, frequently accompanied by the consumption of addictive substances, and metabolic and/or genetic predispositions, negatively affect brain function. One of the affected structures is nucleus accumbens (NAc). Although its function is commonly known to be associated with brain reword responses and addiction, a growing body of evidence also suggests its role in some mental disorders, such as depression and schizophrenia, as well as neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s. This may result from disintegration of the extensive connections based on numerous neurotransmitter systems, as well as impairment of some neuroplasticity mechanisms in the NAc. The consequences of NAc lesions are both morphological and functional. They include changes in the NAc’s volume, cell number, modifications of the neuronal dendritic tree and dendritic spines, and changes in the number of synapses. Alterations in the synaptic plasticity affect the efficiency of synaptic transmission. Modification of the number and structure of the receptors affects signaling pathways, the content of neuromodulators (e.g., BDNF) and transcription factors (e.g., pCREB, DeltaFosB, NFκB), and gene expression. Interestingly, changes in the NAc often have a different character and intensity compared to the changes observed in the other parts of the basal ganglia, in particular the dorsal striatum. In this review, we highlight the role of the NAc in various pathological processes in the context of its structural and functional damage, impaired connections with the other brain areas cooperating within functional systems, and progression of the pathological processes.
Collapse
Affiliation(s)
- Martyna Bayassi-Jakowicka
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Grazyna Lietzau
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| | - Ewelina Czuba
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Sjukhusbacken 17, 11883 Stockholm, Sweden;
| | - Przemysław Kowiański
- Division of Anatomy and Neurobiology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdansk, Poland; (M.B.-J.); (E.C.)
- Correspondence: (G.L.); (P.K.); Tel.: +48-58-349-14-01 (G.L. & P.K.)
| |
Collapse
|
16
|
Coatl-Cuaya H, Tendilla-Beltrán H, de Jesús-Vásquez LM, Garcés-Ramírez L, Gómez-Villalobos MDJ, Flores G. Losartan enhances cognitive and structural neuroplasticity impairments in spontaneously hypertensive rats. J Chem Neuroanat 2021; 120:102061. [PMID: 34952137 DOI: 10.1016/j.jchemneu.2021.102061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
Abstract
Hypertension is a risk factor for vascular dementia, which is the second most prevalent type of dementia, just behind Alzheimer's disease. This highlights the brain vulnerability due to hypertension, which may increase with aging. Thus, studying how hypertension affects neural cells and behavior, as well as the effects of antihypertensives on these alterations, it's important to understand the hypertension consequences in the brain. The spontaneously hypertensive rat (SHR) has been useful for the study of hypertension alterations in diverse organs, including the brain. Thus, we studied the losartan effects on cognitive and structural neuroplasticity impairments in SHR of 10 months of age. In the first instance, we evaluated the losartan effects on exploratory behavior and novel object recognition test (NORT) in the SHR. Then, we assessed the density and morphology of dendritic spines of pyramidal neurons from the prefrontal cortex (PFC) layers 3 and 5, and CA1 of the dorsal Hp (dHp). Our results indicate that in SHR, losartan treatment (2 months, 15 mg/Kg/day) reduces high blood pressure to age-matched vehicle-treated Wistar-Kyoto (WKY) rat levels. Moreover, losartan improved long-term memory in SHR compared with age-matched vehicle-treated WKY rats, without affecting the locomotor and anxiety behaviors. The behavioral improvement of the SHR can be associated with the increase in the number of dendritic spines and the mushroom spine population in the PFC and the dHp. In conclusion, losartan enhances cognitive impairments by controlling the high blood pressure and improving neuroplasticity in animals with chronic hypertension.
Collapse
Affiliation(s)
- Heriberto Coatl-Cuaya
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Linda Garcés-Ramírez
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|