1
|
Oladeji OS, Odelade KA, Mahal A, Obaidullah AJ, Zainul R. Systematic appraisals of naturally occurring alkaloids from medicinal plants. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7439-7471. [PMID: 38767672 DOI: 10.1007/s00210-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.
Collapse
Affiliation(s)
- Oluwole Solomon Oladeji
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, Omu-Aran, PMB 1001, Nigeria
- Landmark University Sustainable Development Goals III (SDG 3), Good Health and Well-Being, Landmark University, Omu-Aran, PMB 1001, Nigeria
| | | | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
2
|
Agbebi EA, Omotuyi OI, Oyinloye BE, Okeke UB, Apanisile I, Okor B, Adefabijo D. Ethnomedicine, phytochemistry, and pharmacological activities of Uvaria chamae P. Beauv.: A comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5421-5436. [PMID: 38421410 DOI: 10.1007/s00210-024-03018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The use of medicinal plants as food and medicine has been a common practice in the world, especially in tropical African countries. One such plant in West Africa is Uvaria chamae, also known as Bush banana, renowned for its diverse ethnomedicinal applications and, more recently, for its pharmacological activities attributed to a rich array of phytochemical constituents. Various parts of the plant have been traditionally employed for the treatment of diverse health issues such as digestive disorders, fever, dysmenorrhea, cancer, wound healing, and many more. To unravel the bioactive compounds responsible for these medicinal properties, a comprehensive phytochemical analysis has been undertaken. Notable isolates include chamanetin, dichamanetin, uvaretin, and uvarinol from different parts of the plant. The pharmacological evaluation of these compounds has revealed significant anticancer and antimicrobial properties. Therefore, this review provides a thorough examination of the phytochemicals derived from Uvaria chamae, detailing their associated pharmacological activities both in vitro and in vivo. The review emphasizes the potential of Uvaria chamae as a valuable source of lead compounds for cancer chemotherapy and antimicrobial drug discovery.
Collapse
Affiliation(s)
- Emmanuel Ayodeji Agbebi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria.
- Department of Pharmacognosy and Natural Products, College of Pharmacy, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria.
| | - Olaposi Idowu Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Bio-Computing & Drug Research Unit, Mols and Sims, Ado Ekiti, Ekiti State, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwa-Dlangezwa, 3886, South Africa
| | - Uchenna Benjamin Okeke
- Department of Pharmaceutical and Medicinal Chemistry, College of Pharmacy, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| | - IyanuOluwa Apanisile
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| | - Beatrice Okor
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| | - Daniel Adefabijo
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, PMB 5454, Ado Ekiti, 360001, Nigeria
| |
Collapse
|
3
|
Du X, Zhang M, Wang S, Li J, Zhang J, Liu D. Ethnopharmacology, chemical composition and functions of Cymbopogon citratus. CHINESE HERBAL MEDICINES 2024; 16:358-374. [PMID: 39072200 PMCID: PMC11283232 DOI: 10.1016/j.chmed.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/20/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2024] Open
Abstract
Cymbopogon citratus in the gramineous family, also known as lemongrass (LG), is a perennial herb. LG, a drug and food homologous medicine, has a widely recorded medicinal value and food applications. To date, 158 LG compounds have been reported, including terpenoids, flavonoids, phenolic acids. Pharmacological and clinical studies have indicated that LG has antibacterial, neuroprotective, hypoglycemic, hypotensive, anti-inflammatory, and anti-tumor effects. This article reviews LG in ethnopharmacology, chemical composition, pharmacology, food, medicine, and daily chemical applications to provide a basis for the subsequent development of food and medicine.
Collapse
Affiliation(s)
- Xiqin Du
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Meng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Shuping Wang
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300300, China
| | - Jingyang Li
- Department of Pharmacy, Logistics College of Chinese People’s Armed Police Force, Tianjin 300309, China
| | - Jingze Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| | - Dailin Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Modern Innovation Chinese Medicine Technology Co., Ltd., Tianjin 300380, China
| |
Collapse
|
4
|
Ashaq B, Rasool K, Habib S, Bashir I, Nisar N, Mustafa S, Ayaz Q, Nayik GA, Uddin J, Ramniwas S, Mugabi R, Wani SM. Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances. Food Chem X 2024; 22:101521. [PMID: 38952570 PMCID: PMC11215000 DOI: 10.1016/j.fochx.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Lemongrass essential oil (LEO), extracted from high-oil lemongrass, gains prominence as a versatile natural product due to growing demand for safe health solutions. LEO comprises beneficial compounds like citral, isoneral, geraniol, and citronellal, offering diverse pharmacological benefits such as antioxidant, antifungal, antibacterial, antiviral, and anticancer effects. LEO finds applications in food preservation, cosmetics, and pharmaceuticals, enhancing profitability across these sectors. The review focuses on the extraction of LEO, emphasizing the need for cost-effective methods. Ultrasound and supercritical fluid extraction are effective in reducing extraction time, increasing yields, and enhancing oil quality. LEO shows promise as a valuable natural resource across industries, with applications in packaging, coating, and film development. LEO's ability to extend the shelf life of food items and impart natural flavors positions it as a valuable asset. Overall, the review emphasizes LEO's therapeutic, antimicrobial, and antioxidant properties, strengthening its potential in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Barjees Ashaq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Khansa Rasool
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Samira Habib
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Naseh Nisar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Sehrish Mustafa
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Qudsiya Ayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| |
Collapse
|
5
|
Oladeji OS, Oluyori AP, Dada AO. Landolphia (P. Beauv.) genus: Ethnobotanical, phytochemical and pharmacological studies. Saudi J Biol Sci 2024; 31:103988. [PMID: 38725580 PMCID: PMC11078703 DOI: 10.1016/j.sjbs.2024.103988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
The genus Landolphia (P. Beauv.) belongs to the Apocynaceae family with over 65 species distributed all over the tropical regions. This genus has a considerable number of documented medicinal, industrial, and ecologically beneficial effects. Therefore, this review is tailored towards the appraisal of the traditional significance, phytochemistry, and pharmacological activities of the genus Landolphia. This will help researchers understand future research trends by bridging the gaps between documented literature and contemporary uses. Relevant information was obtained from selection of scientific databases such as Web of Science, PubMed, Scopus, Google Scholar, ScienceDirect and Wiley. From documented literature, different parts of Landolphia have been used to improve fertility, lessen menstrual pain, boost sex libido, cure malaria and typhoid. Several classes of bioactive constituents such as terpenoids, phenolics, flavonoids, steroids, fatty acids, saponins, phytosterol and phenylpropanoid, volatile compounds, lignans and coumarins have been isolated from this genus. These secondary metabolites could be responsible for the reported antimicrobial, antimalarial, aphrodisiac, antioxidant, anti-inflammatory, antidiabetic and anticancer activities exhibited by this genus. The leaves, flower, bark and root of this genus have a wide range of essential nutrients and antinutrients which are essential for normal growth and development in living organisms. Despite all findings indicating the economical, industrial and pharmacological activities of Landolphia species, secondary metabolites and pharmacological potency of Landolphia of this genus are not adequately documented. Therefore, bioassay-guided isolation on the Landolphia extracts with proven biological activities should be prioritised in order to isolate pharmacophores with unique structural frameworks.
Collapse
Affiliation(s)
- Oluwole Solomon Oladeji
- Industrial Chemistry Unit, Department of Physical Sciences, Landmark University, PMB 1001 Omu-Aran, Nigeria
- Landmark University SDG III: Good Health and Well-Being, Landmark University, PMB 1001 Omu-Aran, Nigeria
| | - Abimbola Peter Oluyori
- Industrial Chemistry Unit, Department of Physical Sciences, Landmark University, PMB 1001 Omu-Aran, Nigeria
- Landmark University SDG III: Good Health and Well-Being, Landmark University, PMB 1001 Omu-Aran, Nigeria
| | - Adewumi Oluwasogo Dada
- Industrial Chemistry Unit, Department of Physical Sciences, Landmark University, PMB 1001 Omu-Aran, Nigeria
- Landmark University SDG VI: Clean Water and Sanitation, Landmark University, PMB 1001 Omu-Aran, Nigeria
- Landmark University SDG XI: Sustainable Cities and Communities, Landmark University, PMB 1001 Omu-Aran, Nigeria
| |
Collapse
|
6
|
Morya S, Menaa F, Lourenço-Lopes C, Jimenez-Lopez C, Khalid W, Moreno A, Ikram A, Khan KA, Ramniwas S, Mugabi R. An Overview on Flavor Extraction, Antimicrobial and Antioxidant Significance, and Production of Herbal Wines. ACS OMEGA 2024; 9:16893-16903. [PMID: 38645323 PMCID: PMC11024944 DOI: 10.1021/acsomega.3c09887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024]
Abstract
Wine has been utilized as a source for medicinal preparations, combined with various herbs, to treat particular ailments and disorders. By utilizing herb extracts, regular but limited consumption of these herbal wines helps to decrease the need for prescription medications to treat a variety of ailments. The diversity and the composition of the yeast micropopulation significantly contribute to the sensory characteristics of wine. A particular metabolic activity characterizes the growth of each wine yeast species, which determines the concentrations of flavor compounds in the final wine. Numerous herbs, such as tulsi, ginger, aloe vera, tea, amla, lemongrass, and peppermint, are used in the preparation of herbal wines, where either the herb or herbal blends are primarily used as the substrate. The variants provided improved accuracy, increased acceptability, and broader uses for the novel product. Herbal wines pave the way to provide nutraceuticals to consumers and protection against pathogenic microorganisms and inflammation through their richness in antioxidants. The existing herbal wines and their health advantages are discussed in this Review, along with some new directions for the herbal wine business.
Collapse
Affiliation(s)
- Sonia Morya
- Department
of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Farid Menaa
- Department
of Internal Medicine and Nanomedicine, California
Innovations Corporation, San Diego, California 92037, United States
| | - Catarina Lourenço-Lopes
- Nutrition
and Bromatology Group, Analytical and Food Chemistry Department, Faculty
of Food Science and Technology, University
of Vigo, 36310 Vigo, Pontevedra, Spain
| | | | - Waseem Khalid
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
- University
Institute of Food Science and Technology, The University of Lahore, Lahore, Punjab 54000, Pakistan
| | - Andres Moreno
- Department
of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, 13071 Ciudad Real, Spain
| | - Ali Ikram
- University
Institute of Food Science and Technology, The University of Lahore, Lahore, Punjab 54000, Pakistan
| | - Khalid Ali Khan
- Applied College,
Center of Bee Research and its Products, Unit of Bee Research and
Honey Production, and Research Center for Advanced Materials Science
(RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali, Punjab 140413, India
| | - Robert Mugabi
- Department
of Food Technology and Nutrition, Makerere
University, Kampala, Uganda
| |
Collapse
|
7
|
Evbuomwan IO, Alejolowo OO, Elebiyo TC, Nwonuma CO, Ojo OA, Edosomwan EU, Chikwendu JI, Elosiuba NV, Akulue JC, Dogunro FA, Rotimi DE, Osemwegie OO, Ojo AB, Ademowo OG, Adeyemi OS, Oluba OM. In silico modeling revealed phytomolecules derived from Cymbopogon citratus (DC.) leaf extract as promising candidates for malaria therapy. J Biomol Struct Dyn 2024; 42:101-118. [PMID: 36974933 DOI: 10.1080/07391102.2023.2192799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The emergence of varying levels of resistance to currently available antimalarial drugs significantly threatens global health. This factor heightens the urgency to explore bioactive compounds from natural products with a view to discovering and developing newer antimalarial drugs with novel mode of actions. Therefore, we evaluated the inhibitory effects of sixteen phytocompounds from Cymbopogon citratus leaf extract against Plasmodium falciparum drug targets such as P. falciparum circumsporozoite protein (PfCSP), P. falciparum merozoite surface protein 1 (PfMSP1) and P. falciparum erythrocyte membrane protein 1 (PfEMP1). In silico approaches including molecular docking, pharmacophore modeling and 3D-QSAR were adopted to analyze the inhibitory activity of the compounds under consideration. The molecular docking results indicated that a compound swertiajaponin from C. citratus exhibited a higher binding affinity (-7.8 kcal/mol) to PfMSP1 as against the standard artesunate-amodiaquine (-6.6 kcal/mol). Swertiajaponin also formed strong hydrogen bond interactions with LYS29, CYS30, TYR34, ASN52, GLY55 and CYS28 amino acid residues. In addition, quercetin another compound from C. citratus exhibited significant binding energies -6.8 and -8.3 kcal/mol with PfCSP and PfEMP1, respectively but slightly lower than the standard artemether-lumefantrine with binding energies of -7.4 kcal/mol against PfCSP and -8.7 kcal/mol against PfEMP1. Overall, the present study provides evidence that swertiajaponin and other phytomolecules from C. citratus have modulatory properties toward P. falciparum drug targets and thus may warrant further exploration in early drug discovery efforts against malaria. Furthermore, these findings lend credence to the folkloric use of C. citratus for malaria treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ikponmwosa Owen Evbuomwan
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Department of Food Science and Microbiology, Landmark University, Omu-Aran, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | - Charles Obiora Nwonuma
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology and Computational Biochemistry Research Group, Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Evelyn Uwa Edosomwan
- Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
| | | | | | | | | | - Damilare Emmanuel Rotimi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Drug Research Laboratory, Institute of Advanced Medical Research and Training (IMRAT), College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluyomi Stephen Adeyemi
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - Olarewaju Michael Oluba
- SDG #03 Group - Good Health and Well-Being Research Cluster, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
8
|
Punetha S, Vuppu S. The sustainable conversion of floral waste into natural snake repellent and docking studies for antiophidic activity. Toxicon 2023; 233:107254. [PMID: 37597788 DOI: 10.1016/j.toxicon.2023.107254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023]
Abstract
Snakes play an important role as predators, prey, ecosystem regulators and in advancing the human economy and pharmaceutical industries by producing venom-based medications such as anti-serums and anti-venoms. On the other hand, snakebites are responsible for over 120,000 annual fatalities; due to snakebites people lose their lives and suffer from diseases such as snake envenoming, epilepsy, and symptoms such as punctures, swelling, haemorrhage, bruising, blistering, and inflammation. Moreover, there are several challenges associated with different interventions for managing snakebites. Therefore, finding a natural way of repelling snakes without harming them will save lives and decrease the disease's symptoms. Usually, snakes are exacerbated by noxious odours and shrill sounds. There are various strategies to repel snakes, including chemical, natural, and electronic repellents being the most prevalent. Chemical snake repellents such as mothballs, sulphur powder, and cayenne pepper act as a barrier; natural snake repellents produce a pungent and foul smell, while electronic repellents generate high-frequency ultrasonic waves to repel snakes. On the other hand, anti-serums are available commercially to prevent the adverse effects of snakebite, which are species-specific, expensive, have inadequate pharmacology and impaired interaction with the immune system. Similarly, there are monovalent or polyvalent anti-serums used for the production of anti-venom depending on the snake species and the number of snakebites occurred in that area, e.g., Soro antibotropicocrotalico contains specific antibodies for Pit vipers and rattlesnakes, and Antielapidico targets coral snakes. The purpose of this review is to investigate natural, effective, and inexpensive snake-repellent from Vellore Institute of Technology (VIT) floral waste, which can be mixed with natural products such as vinegar, citronella, cinnamon, garlic, cedar, and clove and allowed for bacterial degradation which will lead to the release of several gases during floral waste degradation, including ammonia, sulphur, manganese, selenium, and gallic acid due to bacterial growth like Proteus, Bacillus, Streptococcus, etc. We assumed to convert these gases into liquid form using Linde's technique which may repel snakes. Further, molecular docking studies were performed on snake venom toxins (Phospholipase A2 (PDB-1MG6), Protein Cytotoxin II (PDB-1CB9), α-Dendrotoxins (PDB-1DTX), Neurotoxin from cobra venom (PDB-1CTX) and Cardiotoxin III (PDB-2CRS). Phytocompounds of Vellore degraded floral waste from GC-MS analysis (Tetracosane, 12, Oleanen-3-yl Acetate, (3-Alpha), Eicosane-7-Hexyl, Octadecane,3-Ethyl-5(2-Ethyl Butyl), Nonadecane,4-Methyl, Hexatriacontane and Nonacosane) were used as a ligand to determine their binding affinity with venom proteins and may be assumed to be used as an antidote for snakebite. Finally, we analysed that 12-oleanen-3yl acetate,3-α (CID-45044112) a triterpenoid showing a maximum binding affinity with all snake venom proteins (-13.8k/cal) with Phospholipase A2 (PLA2), Cardiotoxin-II (-8.2k/cal), Dendrotoxin (-12.1 k/cal), Cardiotoxin-III (-8.2 kcal/mol) and alpha-Neurotoxin (-11.0 kcal/mol), which may have potential to counteract the adverse effects caused by snakebites, however, in-vitro and in-vivo studies still challenging tasks for our further analysis. Overall, we propose an innovative method for the sustainable conversion of floral waste into snake repellent, as well as molecular docking studies were performed with phytocompounds and snake venom proteins for antiophidic activity, which can be experimentally investigated further to confirm its use as anti-venom for snakebites.
Collapse
Affiliation(s)
- Swati Punetha
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India
| | - Suneetha Vuppu
- Vellore Institute of Technology, School of Biosciences and Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
9
|
Hussain S, Javed W, Tajammal A, Khalid M, Rasool N, Riaz M, Shahid M, Ahmad I, Muhammad R, Shah SAA. Synergistic Antibacterial Screening of Cymbopogon citratus and Azadirachta indica: Phytochemical Profiling and Antioxidant and Hemolytic Activities. ACS OMEGA 2023; 8:16600-16611. [PMID: 37214690 PMCID: PMC10193546 DOI: 10.1021/acsomega.2c06785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/02/2023] [Indexed: 05/24/2023]
Abstract
Current studies were performed to investigate the phytochemistry, synergistic antibacterial, antioxidant, and hemolytic activities of ethanolic and aqueous extracts of Azadirachta indica (EA and WA) and Cymbopogon citratus (EC and WC) leaves. Fourier transform infrared data verified the existence of alcoholic, carboxylic, aldehydic, phenyl, and bromo moieties in plant leaves. The ethanolic extracts (EA and EC) were significantly richer in phenolics and flavonoids as compared to the aqueous extracts (WA and WC). The ethanolic extract of C. citratus (EC) contained higher concentrations of caffeic acid (1.432 mg/g), synapic acid (6.743 mg/g), and benzoic acid (7.431 mg/g) as compared to all other extracts, whereas chlorogenic acid (0.311 mg/g) was present only in the aqueous extract of A. indica (WA). Food preservative properties of C. citratus can be due to the presence of benzoic acid (7.431 mg/g). -Gas chromatography-mass spectrometry analysis demonstrated the presence of 36 and 23 compounds in A. indica and C. citratus leaves, respectively. Inductively coupled plasma analysis was used to determine the concentration of 26 metals (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Sr, V, Zn, Zr, Ti); the metal concentrations were higher in aqueous extracts as compared to the ethanolic extracts. The extracts were generally richer in calcium (3000-7858 ppm), potassium (13662-53,750 ppm), and sodium (3181-8445 ppm) and hence can be used in food supplements as a source of these metals. Antioxidant potential (DDPH method) of C. citratus ethanolic extract was the highest (74.50 ± 0.66%), whereas it was the lowest (32.22 ± 0.28%) for the aqueous extract of A. indica. Synergistic inhibition of bacteria (Staphylococcus aureus and Escherichia coli) was observed when the aqueous extracts of both the plants were mixed together in certain ratios (v/v). The highest antibacterial potential was exhibited by the pure extract of C. citratus, which was even higher than that of the standard drug (ciprofloxacin). The plant extracts and their mixtures were more active against S. aureus as compared to E. coli. No toxic hemolytic effects were observed for the investigated extracts indicating their safe medicinal uses for human beings.
Collapse
Affiliation(s)
- Shabbir Hussain
- Institute
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Warda Javed
- Department
of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore 54792, Pakistan
| | - Affifa Tajammal
- Department
of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore 54792, Pakistan
| | - Muhammad Khalid
- Institute
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre
for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Nasir Rasool
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department
of Basic and Applied Chemistry, Faculty
of Science and Technology University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Shahid
- Department
of Chemistry and Biochemistry, University
of Agriculture, Faisalabad 38040, Pakistan
| | - Iqbal Ahmad
- Department
of Chemistry, Allama Iqbal Open University, 44000 Islamabad, Pakistan
| | - Riaz Muhammad
- Department
of Chemistry, Lahore Garrison University, DHA Phase VI, Lahore 54792, Pakistan
| | - Syed Adnan Ali Shah
- Faculty
of Pharmacy, Universiti Teknologi MARA Cawangan
Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
- Atta-ur-Rahman
Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor D. E., Malaysia
| |
Collapse
|
10
|
Narayanan M, Gothandapani A, Venugopalan R, Rethinam M, Pitchai S, Alahmadi TA, Almoallim HS, Kandasamy S, Brindhadevi K. Antioxidant and anticancer potential of ethyl acetate extract of bark and flower of Tecoma stans (Linn) and In Silico studies on phytoligands against Bcl2 and VEGFR2 factors. ENVIRONMENTAL RESEARCH 2023; 231:116112. [PMID: 37182829 DOI: 10.1016/j.envres.2023.116112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
This study was designed to appraise the antioxidant and anticancer competence of solvent extracts of Tecoma stans (Linn) and analyze the phytoligands interaction against Bcl2 VEGFR2 through in silico studies. The phytochemical analysis revealed that the ethyl acetate extract contains more number of pharmaceutically valuable phytochemicals than other solvent extracts. Among the various phytochemicals, flavonoid was found as a predominant component, and UV-Vis- spectrophotometer analysis initially confirmed it. Hence, the column chromatogram was performed to purify the flavonoid, and High-performance liquid chromatography (HPLC) was performed. It revealed that the flavonoid enriched fraction by compared with standard flavonoid molecules. About 84.69% and 80.43% of antioxidant activity were found from ethyl acetate extract of bark and flower at the dosage of 80 μg mL-1 with the IC50 value of 47.24 and 43.40 μg mL-1, respectively. In a dose-dependent mode, the ethyl acetate extract of bark and flower showed cytotoxicity against breast cancer cell line MCF 7 (Michigan Cancer Foundation-7) as up to 81.38% and 80.94% of cytotoxicity respectively. Furthermore, the IC50 was found as 208.507 μg mL-1 and 207.38 μg mL-1 for bark and flower extract correspondingly. About 10 medicinal valued flavonoid components were identified from bark (6) and flower (4) ethyl acetate extract through LC-MS analysis. Out of 10 components, the 3,5-O-dicaffeoylquinic acid (ΔG -8.8) and Isorhamnetin-3-O-rutinoside (ΔG -8.3) had the competence to interact with Bcl2 (B-Cell Lymphoma 2) and VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) respectively with more energy. Hence, these results confirm that the ethyl acetate extract of bark and flower of T. stans has significant medicinal potential and could be used as antioxidant and anticancer agent after some animal performance study.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Anburaj Gothandapani
- Department of Chemistry PRIST Deemed to be University Thanjavur, Tamil Nadu, India
| | - Rajasudha Venugopalan
- Department of Chemistry, Annai Velankanni Arts & Science College, Thanjavur, Tamil Nadu, India
| | - Manikandan Rethinam
- Department of Chemistry, A.V.V.M Sri Pushpam College, Poondi, Thanjavur, Tamil Nadu, India
| | - Sakunthala Pitchai
- Deparment of Chemistry, Government Arts & Science College for Women, Orathanad, Thanjavur, Tamil Nadu, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
11
|
Duan WY, Zhang SB, Lei JD, Qin YL, Li YN, Lv YY, Zhai HC, Cai JP, Hu YS. Protection of postharvest grains from fungal spoilage by biogenic volatiles. Appl Microbiol Biotechnol 2023; 107:3375-3390. [PMID: 37115251 DOI: 10.1007/s00253-023-12536-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Fungal spoilage of postharvest grains poses serious problems with respect to food safety, human health, and the economic value of grains. The protection of cereal grains from deleterious fungi is a critical aim in postharvest grain management. Considering the bulk volume of grain piles in warehouses or bins and food safety, fumigation with natural gaseous fungicides is a promising strategy to control fungal contamination on postharvest grains. Increasing research has focused on the antifungal properties of biogenic volatiles. This review summarizes the literature related to the effects of biogenic volatiles from microbes and plants on spoilage fungi on postharvest grains and highlights the underlying antifungal mechanisms. Key areas for additional research on fumigation with biogenic volatiles in postharvest grains are noted. The research described in this review supports the protective effects of biogenic volatiles against grain spoilage by fungi, providing a basis for their expanded application in the management of postharvest grains.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu-Liang Qin
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yan-Nan Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
12
|
Ramphinwa ML, Mchau GRA, Mashau ME, Madala NE, Chimonyo VGP, Modi TA, Mabhaudhi T, Thibane VS, Mudau FN. Eco-physiological response of secondary metabolites of teas: Review of quality attributes of herbal tea. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.990334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Herbal tea is a rich source of secondary metabolites which are reputed to have medicinal and nutritional efficacy. These secondary metabolites are influenced by the abiotic and biotic stresses that improve the production of herbal teas in terms of biomass production, accumulation and partitioning of assimilates of compounds. In this study, various examples of herbal teas have been shown to respond differently to secondary metabolites affected by environmental factors. Thus, the meta-analysis of this study confirms that different herbal teas' response to environmental factors depends on the type of species, cultivar, and the degree of shade that the plant is exposed. It is also evident that the metabolic processes are also known to optimize the production of secondary metabolites which can thus be achieved by manipulating agronomic practices on herbal teas. The different phenolic compound in herbal teas possesses the antioxidant, antimicrobial, antiatherosclerosis, anti-inflammatory, antimutagenic, antitumor, antidiabetic and antiviral activities that are important in managing chronic diseases associated with lifestyle. It can be precluded that more studies should be conducted to establish interactive responses of biotic and abiotic environmental factors on quality attributes of herbal teas.
Collapse
|
13
|
Ocampo Arango CM, Cañas Ángel Z, Carazzone C, Largo Ávila E, Martínez Álvarez OL, Mutis González JS. Effect of solar drying on physical, chemical, and sensory properties of
Cymbopogon citratus
grown in Antioquia ‐ Colombia. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Carlos Mario Ocampo Arango
- Sensory Science Research Group, Pharmaceutical and Food Sciences Faculty Universidad de Antioquia UdeA Medellín Antioquia Colombia
| | - Zoraida Cañas Ángel
- Sensory Science Research Group, Pharmaceutical and Food Sciences Faculty Universidad de Antioquia UdeA Medellín Antioquia Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Chemistry Department Universidad de los Andes Bogotá D.C. Colombia
| | - Esteban Largo Ávila
- Sensory Science Research Group, Pharmaceutical and Food Sciences Faculty Universidad de Antioquia UdeA Medellín Antioquia Colombia
- Universidad del Valle Caicedonia Regional Campus Caicedonia Colombia
| | - Olga Lucia Martínez Álvarez
- Sensory Science Research Group, Pharmaceutical and Food Sciences Faculty Universidad de Antioquia UdeA Medellín Antioquia Colombia
| | - Juan Sebastián Mutis González
- Laboratory of Advanced Analytical Techniques in Natural Products, Chemistry Department Universidad de los Andes Bogotá D.C. Colombia
| |
Collapse
|
14
|
Buathong R, Duangsrisai S. Plant ingredients in Thai food: a well-rounded diet for natural bioactive associated with medicinal properties. PeerJ 2023; 11:e14568. [PMID: 36879911 PMCID: PMC9985418 DOI: 10.7717/peerj.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/23/2022] [Indexed: 03/05/2023] Open
Abstract
Background Seeking cures for chronic inflammation-associated diseases and infectious diseases caused by critical human pathogens is challenging and time-consuming. Even as the research community searches for novel bioactive agents, consuming a healthy diet with functional ability might be an effective way to delay and prevent the progression of severe health conditions. Many plant ingredients in Thai food are considered medicinal, and these vegetables, herbs, and spices collectively possess multiple biological and pharmacological activities, such as anti-inflammatory, antimicrobial, antidiabetic, antipyretic, anticancer, hepatoprotective, and cardioprotective effects. Methodology In this review, the selected edible plants are unspecific to Thai food, but our unique blend of recipes and preparation techniques make traditional Thai food healthy and functional. We searched three electronic databases: PUBMED, Science Direct, and Google Scholar, using the specific keywords "Plant name" followed by "Anti-inflammatory" or "Antibacterial" or "Antiviral" and focusing on articles published between 2017 and 2021. Results Our selection of 69 edible and medicinal plant species (33 families) is the most comprehensive compilation of Thai food sources demonstrating biological activities to date. Focusing on articles published between 2017 and 2021, we identified a total of 245 scientific articles that have reported main compounds, traditional uses, and pharmacological and biological activities from plant parts of the selected species. Conclusions Evidence indicates that the selected plants contain bioactive compounds responsible for anti-inflammatory, antibacterial, and antiviral properties, suggesting these plants as potential sources for bioactive agents and suitable for consumption for health benefits.
Collapse
Affiliation(s)
- Raveevatoo Buathong
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
15
|
Camel Grass Phenolic Compounds: Targeting Inflammation and Neurologically Related Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227707. [PMID: 36431805 PMCID: PMC9694793 DOI: 10.3390/molecules27227707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The use of plants for therapeutic purposes has been supported by growing scientific evidence. METHODS This work consisted of (i) characterizing the phenolic compounds present in both aqueous and hydroethanol (1:1, v/v) extracts of camel grass, by hyphenated liquid chromatographic techniques, (ii) evaluating their anti-inflammatory, antioxidant, and neuromodulation potential, through in vitro cell and cell-free models, and (iii) establishing a relationship between the chemical profiles of the extracts and their biological activities. RESULTS Several caffeic acid and flavonoid derivatives were determined in both extracts. The extracts displayed scavenging capacity against the physiologically relevant nitric oxide (•NO) and superoxide anion (O2•-) radicals, significantly reduced NO production in lipopolysaccharide (LPS)-stimulated macrophages (RAW 264.7), and inhibited the activity of hyaluronidase (HAase), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Some of these bioactivities were found to be related with the chemical profile of the extracts, namely with 3-caffeoylquinic, 4-caffeoylquinic, chlorogenic, and p-coumaric acids, as well as with luteolin and apigenin derivatives. CONCLUSIONS This study reports, for the first time, the potential medicinal properties of aqueous and hydroethanol extracts of camel grass in the RAW 264.7 cell model of inflammation, and in neurologically related conditions.
Collapse
|
16
|
Pathaw N, Devi KS, Sapam R, Sanasam J, Monteshori S, Phurailatpam S, Devi HC, Chanu WT, Wangkhem B, Mangang NL. A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Front Nutr 2022; 9:988964. [PMID: 36276812 PMCID: PMC9581206 DOI: 10.3389/fnut.2022.988964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Tea is an important beverage consumed worldwide. Of the different types of tea available, herbal tea is an important beverage consumed owing to its popularity as a drink and stress relieving factors, several different herbal concoctions made from seeds, leaves, or roots are currently consumed and sold as herbal teas. The herbal teas are not the usual tea but "tisanes." They are caffeine free and popular for their medicinal property or immune boosters. Herbal tea formulations are popularly sold and consumed by millions owing to their health benefits as they are rich in antioxidants and minerals. However, plants are also known to contain toxic and anti-nutritional factors. Anti-nutritional factors are known to interfere with the metabolic process and hamper the absorption of important nutrients in the body. These anti-nutritional factors include saponins, tannins, alkaloids, oxalates, lectins, goitrogens, cyanogens, and lethogens. These chemicals are known to have deleterious effects on human health. Therefore, it is important to understand and assess the merits and demerits before consumption. Also, several techniques are currently used to process and reduce the anti-nutrients in foods. This review is focused on comparing the contents of various anti-nutritional factors in some underutilized plants of North-East India used as herbal tea along with processing methods that can be used to reduce the level of these anti-nutrients.
Collapse
Affiliation(s)
- Neeta Pathaw
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Konjengbam Sarda Devi
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Redina Sapam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Jyotsana Sanasam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sapam Monteshori
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sumitra Phurailatpam
- Multi Technology Testing Centre and Vocational Training Centre, College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | | | | | - Baby Wangkhem
- College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | - Naorem Loya Mangang
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| |
Collapse
|
17
|
Tibenda JJ, Yi Q, Wang X, Zhao Q. Review of phytomedicine, phytochemistry, ethnopharmacology, toxicology, and pharmacological activities of Cymbopogon genus. Front Pharmacol 2022; 13:997918. [PMID: 36105217 PMCID: PMC9465289 DOI: 10.3389/fphar.2022.997918] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 12/27/2022] Open
Abstract
The Cymbopogon genus belongs to the Andropoganeae family of the family Poaceae, which is famous for its high essential oil concentration. Cymbopogon possesses a diverse set of characteristics that supports its applications in cosmetic, pharmaceuticals and phytotherapy. The purpose of this review is to summarize and connect the evidence supporting the use of phytotherapy, phytomedicine, phytochemistry, ethnopharmacology, toxicology, pharmacological activities, and quality control of the Cymbopogon species and their extracts. To ensure the successful completion of this review, data and studies relating to this review were strategically searched and obtained from scientific databases like PubMed, Google Scholar, ResearchGate, ScienceDirect, and Elsevier. Approximately 120 acceptable reviews, original research articles, and other observational studies were included and incorporated for further analysis. Studies showed that the genus Cymbopogon mainly contained flavonoids and phenolic compounds, which were the pivotal pharmacological active ingredients. When combined with the complex β-cyclodextrin, phytochemicals such as citronellal have been shown to have their own mechanism of action in inhibiting the descending pain pathway. Another mechanism of action described in this review is that of geraniol and citral phytochemicals, which have rose and lemon-like scents and can be exploited in soaps, detergents, mouthwash, cosmetics, and other products. Many other pharmacological effects, such as anti-protozoal, anti-bacterial, anti-inflammatory and anti-cancer have been discussed sequentially, along with how and which phytochemicals are responsible for the observed effect. Cymbopogon species have proven to be extremely valuable, with many applications. Its phytotherapy is proven to be due to its rich phytochemicals, obtained from different parts of the plant like leaves, roots, aerial parts, rhizomes, and even its essential oils. For herbs of Cymbopogon genus as a characteristic plant therapy, significant research is required to ensure their efficacy and safety for a variety of ailments.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Qiong Yi
- Meishan Traditional Chinese Medicine Hospital, Meishan, China
| | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
18
|
In Vivo Antiplasmodial Potential of the Leaf, Mesocarp, and Epicarp of the Raphia hookeri Plant in Mice Infected with Plasmodium berghei NK65. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4129045. [PMID: 35873624 PMCID: PMC9300302 DOI: 10.1155/2022/4129045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Results The presence of alkaloids, fats and oils, phenolic, and flavonoids was detected via the qualitative test which was confirmed from the result obtained from the GC-MS chromatogram of ethanolic leaves extract. The GC-MS chromatogram of the constituents analogous to the twenty peaks was analyzed as follows: dodecanoic acid (1.94%), 2-undecanone (3.42%), hexadecanoic acid (44.84%), oleic acid (7.45%), octadecanoic acid (8.41%), narcissidine (2.38%), 1-dotriacontanol (2.38%), α-sitosterol (2.02%), and lupeol (1.42%). The total phenolics and flavonoids of 118 and 23.3702 mg/g were analyzed in the leaves extract. The leave extract exhibited inhibitory activity of 73.49% against free radicals which could lead to inflammation. The extracts and chloroquine-treated groups showed significant decrease in percentage parasitaemia with pronounced activity observed in chloroquine groups. Conclusion The curative and scavenging potencies of studied plant could be attributed to the metabolites analyzed and could guide the formulation of new pharmacophores against malaria infections and inflammations.
Collapse
|
19
|
Data fusion from several densitometric modes in fingerprinting of 70 grass species. JPC-J PLANAR CHROMAT 2022. [DOI: 10.1007/s00764-022-00180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
de Oliveira IC, Oliveira RSM, Lemos CHDP, de Oliveira CPB, Felix E Silva A, Lorenzo VP, Lima AO, da Cruz AL, Copatti CE. Essential oils from Cymbopogon citratus and Lippia sidoides in the anesthetic induction and transport of ornamental fish Pterophyllum scalare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:501-519. [PMID: 35435543 DOI: 10.1007/s10695-022-01075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
This study verified the effects of essential oils from Lippia sidoides (EOLS) and Cymbopogon citratus (EOCC) on the anesthesia of freshwater angelfish (Pterophyllum scalare) of two different sizes (juveniles I (0.82 g) and II (2.40 g)) and the transport (8 h) of juveniles II. Fish were exposed to different concentrations of EOLS and EOCC: 0, 10, 25, 50, 75, 100, 150, 200, and 250 mg L-1. Ventilatory rate (VR) and transport for 8 h with 0, 10, and 15 mg L-1 of each essential oil were evaluated in juveniles II. The major components found in EOLS and EOCC were carvacrol (44.50%) and α-citral (73.56%), respectively. The best sedation and anesthesia times for both essential oils were obtained with 10 and 25 mg L-1 and 200 and 250 mg L-1 for juveniles I and II, respectively. Fish sedated with EOLS had lower VR values than the other treatments. Blood glucose levels were higher in ornamental fish transported with 10 and 15 mg EOLS L-1 and 15 mg EOCC L-1. Hepatic glycogen values were higher in the control group. In general, fish transported with 10 mg EOLS L-1 showed fewer gill histological alterations than other transported fish. When the type of lesion was evaluated, the highest gill alterations occurred in fish transported with EOCC. In conclusion, 10 mg EOLS L-1 could be used to transport of juveniles II because although this concentration increased blood glucose levels, it decreased the VR and muscle glycogen levels and caused only mild alterations to the gills.
Collapse
Affiliation(s)
- Iara Cruz de Oliveira
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Salvador, BA, 40170-110, Brazil
| | - Rebeca Santos Matos Oliveira
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Salvador, BA, 40170-110, Brazil
| | - Carlos Henrique da Paixão Lemos
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Salvador, BA, 40170-110, Brazil
| | | | - Altiery Felix E Silva
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Salvador, BA, 40170-110, Brazil
| | - Vitor Prates Lorenzo
- Instituto Federal Do Sertão Pernambucano, Campus Petrolina Setor Rural, Petrolina, PE, Brazil
| | - Alberto Oliveira Lima
- União Metropolitana de Educação E Cultura, Av. Luis Tarquinio Pontes, 600-Centro, Lauro de Freitas, BA, 42700-000, Brazil
| | - André Luis da Cruz
- Programa de Pós-Graduação Em Biodiversidade E Evolução, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n 40170-115, Salvador, BA, Brazil
| | - Carlos Eduardo Copatti
- Programa de Pós-Graduação Em Zootecnia, Universidade Federal da Bahia, Av. Adhemar de Barros, s/n, Salvador, BA, 40170-110, Brazil.
| |
Collapse
|
21
|
Antioxidant, Hypoglycemic and Molecular Docking Studies of Methanolic Extract, Fractions and Isolated Compounds from Aerial Parts of Cymbopogon citratus (DC.) Stapf. Molecules 2022; 27:molecules27092858. [PMID: 35566208 PMCID: PMC9104508 DOI: 10.3390/molecules27092858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Traditionally, Cymbopogon citratus is used to treat a variety of ailments, including cough, indigestion, fever, and diabetes. The previous chemical and bioactive research on C. citratus mainly focused on its volatile oil. In this study, 20 non-volatile known compounds were isolated from the dried aerial part of C. citratus, and their structures were elucidated by MS, NMR spectroscopy, and comparison with the published spectroscopic data. Among them, 16 compounds were reported for the first time from this plant. The screening results for antioxidant and α-glucosidase inhibitory activities indicated that compounds caffeic acid (5), 1-O-p-coumaroyl-3-O-caffeoylglycerol (8), 1,3-O-dicaffeoylglycerol (9) and luteolin-7-O-β-D-glucopyranoside (12) had potent antioxidant capacities, with IC50 values from 7.28 to 14.81 μM, 1.70 to 2.15 mol Trolox/mol and 1.31 to 2.42 mol Trolox/mol for DPPH, ABTS, and FRAP, respectively. Meanwhile, compounds 8 and 9 also exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 11.45 ± 1.82 μM and 5.46 ± 0.25 μM, respectively, which were reported for the first time for their α-glucosidase inhibitory activities. The molecular docking result provided a molecular comprehension of the interaction between compounds (8 and 9) and α-glucosidase. The significant antioxidant and α-glucosidase inhibitory activities of compounds 8 and 9 suggested that they could be developed into antidiabetic drugs because of their potential regulatory roles on oxidative stress and digestive enzyme.
Collapse
|
22
|
Saavedra Gonzales PJ, Cabrera Iberico MA. [In vitro study of the effect of three commercial solvents on gutta-percha cones used for the cold and thermoplastic technique]. REVISTA CIENTÍFICA ODONTOLÓGICA 2022; 10:e104. [PMID: 38389662 PMCID: PMC10880700 DOI: 10.21142/2523-2754-1002-2022-104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/10/2022] [Indexed: 02/24/2024] Open
Abstract
The objective of this research was to compare the solvent action of orange oil, eucalyptol and experimental lemongrass oil on gutta-percha cones for cold technique and thermoplastic technique. Methodology The sample consisted of 80 gutta-percha cones No. 80 Endomedic and F3 ProTaper Universal. The cones were divided into 4 groups (n = 20) according to the type of solvent, and each one was divided into two subgroups (n = 10) according to the exposure time (5 min and 10 min). The cones were immersed in the respective solvent for 5 or 10 minutes. Then, they were washed with 5 ml of alcohol for 5 minutes and rinsed with water. Finally, after drying at room temperature for one hour, the solvent action was recorded in grams (g) of weight loss. The results were analyzed and compared using Tukey's test (p<0.05). Results The Endomedic cone exposed for 5 min to eucalyptol obtained the lowest average weight (0.0625 ± 0.0009 g), followed by Lemongrass oil (0.0629 ± 0.0003 g) and orange oil (0.0629 ± 0.0010 g), although not a significant difference (p > 0.05) was found between each one. Conclusion The experimental solvent of Lemongrass, eucalyptol and orange oil presented a similar solvent effect on the guta-percha cone for cold and thermoplastic technique. At a clinical level, the three solvents studied could be used in endodontic retreatment as alternative solutions with a similar solvent effect.
Collapse
Affiliation(s)
- Paul Josep Saavedra Gonzales
- División de Carielogía y Endodoncia, Carrera de Odontología de la Universidad Científica del Sur. Lima, Perú. , Universidad Científica del Sur División de Carielogía y Endodoncia Carrera de Odontología Universidad Científica del Sur Lima Peru
| | - Miguel Angel Cabrera Iberico
- División de Carielogía y Endodoncia, Carrera de Odontología de la Universidad Científica del Sur. Lima, Perú. , Universidad Científica del Sur División de Carielogía y Endodoncia Carrera de Odontología Universidad Científica del Sur Lima Peru
| |
Collapse
|
23
|
Wojtunik-Kulesza KA. Toxicity of Selected Monoterpenes and Essential Oils Rich in These Compounds. Molecules 2022; 27:molecules27051716. [PMID: 35268817 PMCID: PMC8912113 DOI: 10.3390/molecules27051716] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Monoterpenes make up the largest group of plant secondary metabolites. They can be found in numerous plants, among others, the Lamiaceae family. The compounds demonstrate antioxidative, antibacterial, sedative and anti-inflammatory activity, hence, they are often employed in medicine and pharmaceuticals. Additionally, their fragrant character is often made use of, notably in the food and cosmetic industries. Nevertheless, long-lasting studies have revealed their toxic properties. This fact has led to a detailed analysis of the compounds towards their side effects on the human organism. Although most are safe for human food and medical applications, there are monoterpene compounds that, in certain amounts or under particular circumstances (e.g., pregnancy), can cause serious disorders. The presented review characterises in vitro and in vivo, the toxic character of selected monoterpenes (α-terpinene, camphor, citral, limonene, pulegone, thujone), as well as that of their original plant sources and their essential oils. The selected monoterpenes reveal various toxic properties among which are embryotoxic, neurotoxic, allergenic and genotoxic. It is also known that the essential oils of popular plants can also reveal toxic characteristics that many people are unaware of.
Collapse
|
24
|
Agnish S, Sharma AD, Kaur I. Nanoemulsions (O/W) containing Cymbopogon pendulus essential oil: development, characterization, stability study, and evaluation of in vitro anti-bacterial, anti-inflammatory, anti-diabetic activities. BIONANOSCIENCE 2022; 12:540-554. [PMID: 35251888 PMCID: PMC8889062 DOI: 10.1007/s12668-022-00964-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
Abstract
Essential oil from Cymbopogon pendulus is immensely useful in various sectors like food, pharmaceutical, and cosmetic industries. Since this oil is hydrophobic, unstable, and volatile, hence encapsulation by using nanoemulsions technology is the best way to protect it. This study reports biosynthesis of O/W (oil/water) nanoemulsions based on essential oil from Cymbopogon pendulus and analysis of its biological activities. O/W nanoemulsions were prepared by using tween 20/80, sodium dodecyl sulphate as surfactants, and ethanol as co-surfactants. Fingerprinting of nanoemulsions using UV, fluorescent, and FT-IR was studied along with other parameters like pH and conductivity. Biological activities like antibacterial, anti-inflammatory, and anti-diabetic activities and drug release pharmokinetics were evaluated. Ethanol containing nanoemulsions was noticeably smaller than other nanoemulsions. Encapsulation efficiency of nanoemulsions was in the range from 41 to 60%. Nanoemulsions were spherical in shape and stable even after 50 days of storage. Appreciable biological activities like anti-bacterial, anti-inflammatory, and anti-diabetic activities were detected. Drug kinetic study revealed that nanoemulsions exhibited Korsmeyer-Peppas model. Based on this, the possible role of lemon grass oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s12668-022-00964-4.
Collapse
Affiliation(s)
- Suraj Agnish
- PG Dept. of Biotechnology, Lyallpur Khalsa College, Jalandhar, Punjab India
| | - Arun Dev Sharma
- PG Dept. of Biotechnology, Lyallpur Khalsa College, Jalandhar, Punjab India
| | - Inderjeet Kaur
- PG Dept. of Biotechnology, Lyallpur Khalsa College, Jalandhar, Punjab India
| |
Collapse
|
25
|
Brandão RM, Batista LR, de Oliveira JE, Ferreira VRF, Lunguinho ADS, Nelson DL, Cardoso MDG. Active packaging of poly(lactic acid) nanofibers and essential oils with antifungal action on table grapes. FEMS Microbiol Lett 2022; 369:6865357. [PMID: 36460045 DOI: 10.1093/femsle/fnac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/23/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
The table grape is a non-climateric fruit that is very susceptible to fungal contamination, in addition to suffering an accelerated loss of quality during storage. The in vitro and in grape antifungal and antiocratoxigenic effects of the essential oils from Alpinia speciosa and Cymbopogon flexuosus against Aspergillus carbonarius and Aspergillus niger were studied. The oils were encapsulated in poly(lactic acid) (PLA) nanofibers as a potential active packaging to be applied to control the degradation of grapes stored during the post-harvest period. Fungal proliferation and ochratoxin A synthesis in A. carbonarius and A. niger decreased in the presence of the active packaging. However, the nanofiber containing the essential oil from C. flexuosus was more efficient in providing a fungicidal effect against A. carbonarius (10% and 20%) and A. niger (20%). In addition, weight loss and color changes were controlled and the parameters of acidity, °Brix, softening and the texture of the grape were maintained. A very small mass loss of the essential oils encapsulated in nanofibers was observed by thermogravimetric analysis, showing that the nanofiber was efficient in enabling the controlled release. The quality and safety of table grapes were maintained for longer periods of storage in the presence of active packaging, so the incorporation of these oils in nanofibers can be a promising way to increase the shelf life of grapes.
Collapse
Affiliation(s)
| | - Luís Roberto Batista
- Food Sciences Department, Federal University of Lavras (UFLA), Lavras, MG 37200-900, Brazil
| | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, MG 39803-371, Brazil
| | | |
Collapse
|
26
|
Nadeem A, Fatima I, Safdar N, Yasmin A. Customized heating treatments variably affect the biological activities and chemical compositions of three indigenous culinary herbs. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2035069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Aqsa Nadeem
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Iram Fatima
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Naila Safdar
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
27
|
Bioactivity assessment of essential oils of Cymbopogon species using a network pharmacology approach. Biol Futur 2022; 73:107-118. [PMID: 35098495 DOI: 10.1007/s42977-022-00111-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Essential oils of Cymbopogon species have wide commercial applications in fragrance, perfumery, and pharmaceuticals as they exhibit a horizon of bioactivities. Here, essential oils of C. flexuosus and C. martinii were analysed to identify bioactive constituents and bioactivities using a network pharmacology approach. Essential oils were isolated using hydro-distillation in a mini Clevenger apparatus. Analysis of essential oils by GC-MS revealed 20 and 15 chemical constituents in C. flexuosus and C. martinii, respectively. An ingredient-target protein-pathway network was constructed comprising 10 oil constituents (citral, geraniol, geranyl acetate, limonene, linalool, α-terpineol, borneol, α-pinene, myrcene, and n-decanol), 14 target proteins, 51 related pathways, and 108 connections. Analyses of the network showed geraniol, geranyl acetate, limonene, linalool, and citral as major active constituents. A core sub-network constructed from the ingredient-target protein-pathway network revealed bioactivities including anti-cancer, anti-inflammatory and neuroprotective. The protein association network pointed out the major target proteins viz., THRB, FXR, ALOX15, and TSHR and pathways like metabolic, and neuroactive ligand-receptor interaction pathways of essential oil constituents. The target proteins and pathways provided insights into the mechanism of action of bioactive constituents. Based on the results of the study, geraniol was correlated with neuroprotective, citral to chemo-preventive, and limonene to anti-inflammatory activities. Thus, the study offers a new way for the assessment of the bioactivities of Cymbopogon species essential oils leading to the development of new biomedicines.
Collapse
|
28
|
Abubakar IB, Kankara SS, Malami I, Danjuma JB, Muhammad YZ, Yahaya H, Singh D, Usman UJ, Ukwuani-Kwaja AN, Muhammad A, Ahmed SJ, Folami SO, Falana MB, Nurudeen QO. Traditional medicinal plants used for treating emerging and re-emerging viral diseases in northern Nigeria. Eur J Integr Med 2022; 49:102094. [PMID: 36573184 PMCID: PMC9760313 DOI: 10.1016/j.eujim.2021.102094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/09/2023]
Abstract
Introduction For decades, viral diseases have been treated using medicinal plants and herbal practices in the northern part of Nigeria. Though scarcely investigated, these medicinal plants could serve as potential sources for novel antiviral drugs against emerging and remerging viral diseases. Therefore, this study is aimed at investigating the medicinal practices and plants used to treat emerging and re-emerging viral diseases including hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19 in some northern states; Katsina, Kebbi, Kwara and Sokoto states. Method Administered questionnaires and oral interviews were used to collect information on medicinal plants, method of preparation of herbal formulations, diagnosis, and treatment of viral diseases. Medicinal plants were collected, botanically identified, and assigned voucher numbers. The plant names were verified using www.theplantlist.org, www.worldfloraonline.org and the international plant names index. Result A total of 280 participating herbal medicine practitioners (HMPs) mentioned 131 plants belonging to 65 families. Plant parts such as roots, bark, leaf, seed, and fruit were prepared as a decoction, concoction, infusion, or ointment for oral and topical treatment of viral diseases. Moringa oleifera (75.3%), Elaeis guineensis Jacq. (80%), and Acacia nilotica (70%) were the most frequently mentioned plants in Kebbi, Kwara and Sokoto states, respectively. Conclusion The study revealed scarcely investigated and uninvestigated medicinal plants used to treat hepatitis, poliomyelitis, monkeypox, smallpox, yellow fever, Lassa fever, meningitis, and COVID-19. Future studies should be conducted to determine the antiviral potency and isolate novel bioactive agents from these plants against viral diseases.
Collapse
Affiliation(s)
- Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria,Corresponding author
| | - Sulaiman Sani Kankara
- Department of Biology, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University, PMB 2218 Katsina State, Nigeria
| | - Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Jamilu Bala Danjuma
- Department of Biochemistry, Faculty of Science, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | | | - Hafsat Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodio University Sokoto, Nigeria
| | - Dharmendra Singh
- Department of Plant Science and Biotechnology, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Umar Jaji Usman
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Angela Nnenna Ukwuani-Kwaja
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Sanusi Jega Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | - Sulaimon Olayiwola Folami
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero PMB 1144, Kebbi State, Nigeria
| | | | | |
Collapse
|
29
|
Mukarram M, Choudhary S, Khan MA, Poltronieri P, Khan MMA, Ali J, Kurjak D, Shahid M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants (Basel) 2021; 11:20. [PMID: 35052524 PMCID: PMC8773226 DOI: 10.3390/antiox11010020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
The prominent cultivation of lemongrass (Cymbopogon spp.) relies on the pharmacological incentives of its essential oil. Lemongrass essential oil (LEO) carries a significant amount of numerous bioactive compounds, such as citral (mixture of geranial and neral), isoneral, isogeranial, geraniol, geranyl acetate, citronellal, citronellol, germacrene-D, and elemol, in addition to other bioactive compounds. These components confer various pharmacological actions to LEO, including antifungal, antibacterial, antiviral, anticancer, and antioxidant properties. These LEO attributes are commercially exploited in the pharmaceutical, cosmetics, and food preservations industries. Furthermore, the application of LEO in the treatment of cancer opens a new vista in the field of therapeutics. Although different LEO components have shown promising anticancer activities in vitro, their effects have not yet been assessed in the human system. Hence, further studies on the anticancer mechanisms conferred by LEO components are required. The present review intends to provide a timely discussion on the relevance of LEO in combating cancer and sustaining human healthcare, as well as in food industry applications.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Mo Ahamad Khan
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India;
| | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, ISPA-CNR, National Research Council of Italy, Via Monteroni km 7, 73100 Lecce, Italy
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.C.); (M.M.A.K.)
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Newcastle ST5 5BG, UK;
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001 Zvolen, Slovakia;
| | - Mohd Shahid
- Department of Microbiology, Immunology & Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Road 2904 Building 293 Manama, 329, Bahrain;
| |
Collapse
|
30
|
Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39:7017-7034. [PMID: 32851912 DOI: 10.21203/rs.3.rs-30484/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Shubham Trivedi
- Department of Bioengineering, Integral University Lucknow, India
| | - Mohammad Imran
- Department of Pharmacology, Shaqra University, Saudi Arabia
| | - Anuradha Sourirajan
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - David J Baumler
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Kamal Dev
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| |
Collapse
|
31
|
Rolta R, Yadav R, Salaria D, Trivedi S, Imran M, Sourirajan A, Baumler DJ, Dev K. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: an approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39:7017-7034. [PMID: 32851912 PMCID: PMC7484575 DOI: 10.1080/07391102.2020.1804457] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023]
Abstract
Currently, there is no specific treatment to cure COVID-19. Many medicinal plants have antiviral, antioxidant, antibacterial, antifungal, anticancer, wound healing etc. Therefore, the aim of the current study was to screen for potent inhibitors of N-terminal domain (NTD) of nucleocapsid phosphoprotein of SARS-CoV-2. The structure of NTD of RNA binding domain of nucleocapsid phosphoprotein of SARS coronavirus 2 was retrieved from the Protein Data Bank (PDB 6VYO) and the structures of 100 different phytocompounds were retrieved from Pubchem. The receptor protein and ligands were prepared using Schrodinger's Protein Preparation Wizard. Molecular docking was done by using the Schrodinger's maestro 12.0 software. Drug likeness and toxicity of active phytocompounds was predicted by using Swiss adme, admetSAR and protox II online servers. Molecular dynamic simulation of the best three protein- ligand complexes (alizarin, aloe-emodin and anthrarufin) was performed to study the interaction stability. We have identified three potential active sites (named as A, B, C) on receptor protein for efficient binding of the phytocompounds. We found that, among 100 phytocompounds, emodin, aloe-emodin, anthrarufin, alizarine, and dantron of Rheum emodi showed good binding affinity at all the three active sites of RNA binding domain of nucleocapsid phosphoprotein of COVID-19.The binding energies of emodin, aloe-emodin, anthrarufin, alizarine, and dantron were -8.299, -8.508, -8.456, -8.441, and -8.322 Kcal mol-1 respectively (site A), -7.714, -6.433, -6.354, -6.598, and -6.99 Kcal mol-1 respectively (site B), and -8.299, 8.508, 8.538, 8.841, and 8.322 Kcal mol-1 respectively (site C). All the active phytocompounds follows the drug likeness properties, non-carcinogenic, and non-toxic. Theses phytocompounds (alone or in combination) could be developed into effective therapy against COVID-19. From MD simulation data, we found that all three complexes of 6VYO with alizarin, aloe-emodin and anthrarufin were stable up to 50 ns. These phytocompounds can be tested further for in vitro or in vivo and used as a potential drug to cure SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajan Rolta
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Deeksha Salaria
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - Shubham Trivedi
- Department of Bioengineering, Integral University Lucknow, India
| | - Mohammad Imran
- Department of Pharmacology, Shaqra University, Saudi Arabia
| | - Anuradha Sourirajan
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| | - David J. Baumler
- Department of Food Science and Nutrition, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Kamal Dev
- Faculty of Applied sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Himachal Pradesh, India
| |
Collapse
|
32
|
Nano chitosan encapsulation of Cymbopogon citratus leaf extract promotes ROS induction leading to apoptosis in human squamous cells (HSC-3). CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
World-wide, Indonesia is ranked 17th in oral cancers, with deaths reaching 2.326 cases. Of the oral cancers, 90% are squamous cell carcinoma (HSC-3). Unfortunately, conventional cancer therapy still has many ill side effects. Therefore, pharmacologists have looked for natural ingredients to prevent the growth of oral cancer cells. One source is Cymbopogon citratus leaf. Research shows that the active compound of C. citratus leaf is a chemopreventive, doing so by increasing the production of re-active oxygen species (ROS) to induce apoptosis in cancer cells. The active compound of C. citratus leaf has low stability and solubility, so it is necessary to use an encapsulation matrix such as chitosan, and modify it into smaller particles to increase its effectiveness.
Purpose is determining the effect of nano chitosan encapsulation of C. citratus leaf ethanol extract (NCECC) on the reactive oxygen species of HSC-3 tongue cancer cells. This study is divided into ten groups – without treatment, doxorubicin (positive control), hydrogen peroxide, nano chitosan and C. citratus leaf extract groups, and five groups of NCECC treatment – concentrations of 100%, 75%, 50%, 25%, and 12.5%, respectively. The 100% NCECC group showed the highest ROS concentration (p<0.05), compared to 75%, 50%, 25%, 12.5% NCECC groups, and the 100% NCECC was higher than the positive control group. NCECC is effective in inducing oxidative stress on HSC-3 through increased production of ROS. Moreover, the higher the encapsulation concentration given, the greater the increase in ROS production.
Collapse
|
33
|
Guerrero-Guzmán A, Villarreal-Pavón F, Zamudio-Ojeda A, Velázquez-Juárez G, Ramos-Ibarra R, Sánchez-Toscano YG, Hernández-Rivera JA, Hernández-Marín JA, Sánchez-Chiprés DR. Antioxidant effect of Cymbopogon citratus and Hypericum perforatum extracts in boar semen like a new alternative for conservation. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1987337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Andrea Guerrero-Guzmán
- Posgrado Maestría Interinstitucional en Producción Pecuaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| | - Fabiola Villarreal-Pavón
- Licenciatura en Medicina Veterinaria y Zootecnista, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| | - Adalberto Zamudio-Ojeda
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingeniería, Guadalajara, México
| | | | - Roberto Ramos-Ibarra
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingeniería, Guadalajara, México
| | - Yadira G. Sánchez-Toscano
- Coordinación de investigación, Universidad de Guadalajara Lamar Campus Vallarta, Guadalajara, México
| | | | | | - David R. Sánchez-Chiprés
- Posgrado Maestría Interinstitucional en Producción Pecuaria, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
- División de Ciencias Veterinarias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Zapopan, México
| |
Collapse
|
34
|
Sousa R, Figueirinha A, Batista MT, Pina ME. Formulation Effects in the Antioxidant Activity of Extract from the Leaves of Cymbopogon citratus (DC) Stapf. Molecules 2021; 26:4518. [PMID: 34361669 PMCID: PMC8348009 DOI: 10.3390/molecules26154518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cymbopogon citratus DC (Stapf.) is a perennial grass and it is distributed around the world. It is used as a condiment for food and beverage flavouring in the form of infusions and decoctions of its dried leaves. Our previous studies have shown antioxidant, anti-inflammatory and gastroprotective activities for the infusion and its phenolic fractions. The aim of the present work was to develop oral dosage forms from a Cymbopogon citratus extract to be used as a functional food with antioxidant properties. Initially, an essential oil-free infusion was prepared, lyophilized and characterized by HPLC-PDA. Total phenols were quantified with the Folin-Ciocalteu method and the antioxidant activity was assessed by DPPH assay. Gelatine capsules containing the extract with different excipients, selected after DSC and IR trials, were prepared. A formulation exhibiting better antioxidant behaviour in a gastric environment was attained. These results suggest that the proposed formulation for this extract could be a valuable antioxidant product and, consequently, make an important contribution to "preventing" and minimizing diseases related to oxidative stress conditions.
Collapse
Affiliation(s)
- Raquel Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (R.S.); (A.F.); (M.T.B.)
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (R.S.); (A.F.); (M.T.B.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Teresa Batista
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (R.S.); (A.F.); (M.T.B.)
- CIEPQPF, FFUC, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Eugénia Pina
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (R.S.); (A.F.); (M.T.B.)
- CIEPQPF, FFUC, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
35
|
Essential Oil of Cymbopogon Citratus Grown in Umuahia: A Viable Candidate for Anti-Inflammatory and Antioxidant Therapy. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
The essential oils of Cymbopogon citratus (EOCC) has found use in medicine, food and chemical industry. This study attempts to provide evidence of its suitability for antioxidant and anti-inflammatory therapy. Total phenol and total flavonoid of EOCC was 49.83±0.39mg GAE/g of extract and 352.82±3.45 µg QEC/g of extract respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of its essential oil (EOCC) showed 25 peaks with myrcenyl acetate (9.703%), caryophyllene (8.997%), citronella (6.383%) been the most abundant. The in vitro anti-inflammatory assay using human red blood cell (HRBC) membrane stabilization shows that at 200µg/mL, the percentage inhibition of EOCC was significantly higher compared to diclofenac both for heat-induced and hypotonic induced haemolysis. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays showed a comparable and dose-dependent increase from 50 to 400 μg/mL in relation to vitamin C. Half maximal inhibitory concentration (IC50) of EOCC (73.16±12.89 μg/mL and 656.01±0.01 μmol Fe (II)/L) was remarkably higher compared to that of vitamin C (69.09±4.52 μg/mL and 246.79±0.01 μmol Fe (II)/L) both for DPPH and FRAP assays respectively. In conclusion, results from this study establish preliminary evidence on the therapeutic potential of EOCC in managing inflammation and oxidative stress caused by free radicals.
Collapse
|
36
|
Babarinde SA, Olaniran OA, Ottun AT, Oderinde AE, Adeleye AD, Ajiboye O, Dawodu EO. Chemical composition and repellent potentials of two essential oils against larger grain borer, Prostephanus truncatus (Horn.) (Coleoptera: Bostrichidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Elazab ST, Soliman AF, Nishikawa Y. Effect of some plant extracts from Egyptian herbal plants against Toxoplasma gondii tachyzoites in vitro. J Vet Med Sci 2020; 83:100-107. [PMID: 33268605 PMCID: PMC7870401 DOI: 10.1292/jvms.20-0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nowadays, herbal extracts are considered to be a potential source for developing new drugs that will overcome resistance to conventional chemotherapeutic agents.
This study was aimed to explore the efficacy of several Egyptian plant extracts against Toxoplasma gondii infection in vitro for
future development of a new, safe, and effective compound for T. gondii. Methanol extracts from Matricaria chamomilla
(German chamomile), Laurus nobilis, Citrullus colocynthis, Cinnamum camphora, Boswellia
scara, and Melissa officionalis plants and oil extracts (either essential or fixed oils) of some plants such as: lemon grass
(Cymbopogon citratus), marjoram (Origanum majorana), watercress (Nasturtium officionale), wheat germ
(Triticum aestivum), sesame (Sesamum indicum), rosemary (Salvia rosmarinus), citronella (Cymbopogon
nardus), clove (Syzygum aromaticum), jojoba (Simmondsia chinesis), and basil (Ocimum basilicum) were investigated for
their anti-Toxoplasma activities. The methanol extracts from C. colocynthis and L. nobilis and the oil extracts
from lemon grass and marjoram were active against T. gondii with half maximal inhibitory concentrations (IC50) of 22.86 µg/ml, 31.35
µg/ml, 4.6 µg/ml, and 26.24 µg/ml, respectively. Their selectivity index (SI) values were <10. Interestingly, the methanol extract from M.
chamomilla and oil from citronella had the lowest IC50 values for T. gondii (3.56 µg/ml and 2.54 µg/ml, respectively) and the
highest SI values (130.33 and 15.02, respectively). In conclusion, methanol extract from M. chamomilla and oil from citronella might be potential
sources of novel therapies for treating toxoplasmosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Mansoura 35516, Egypt.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Amal F Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
38
|
Sielicka‐Różyńska M, Gwiazdowska D. Antioxidant and antibacterial properties of lemon, sweet, and cereal grasses. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Maria Sielicka‐Różyńska
- Department of Food Quality and Safety Institute of Quality Science Poznań University of Economics and Business Poznań Poland
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance Institute of Quality Science Poznań University of Economics and Business Poznań Poland
| |
Collapse
|
39
|
ODELADE KA, OLADEJI OS. Isolation of phytopathogenic fungi associated with the post-harvest deterioration of watermelon fruits. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
40
|
Oladeji OS, Oluyori AP, Bankole DT, Afolabi TY. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. SCIENTIFICA 2020; 2020:7076139. [PMID: 32455050 PMCID: PMC7238349 DOI: 10.1155/2020/7076139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 06/03/2023]
Abstract
MATERIALS AND METHODS For this study, relevant information was procured from the inhabitants via a structured questionnaire to procure the general knowledge of antimalarial medicinal plants. Results and Discussion. A total of 90 interviewees (44 men and 46 women) were involved in this survey. A total of 59 medicinal species were identified, which were dispersed in 33 families (Asteraceae (6), Apocynaceae (5), Anacardiaceae, Annonaceae, Fabaceae, Malvaceae, Meliaceae, Poaceae, and Rubiaceae (3 each), Phyllanthaceae (2)) totaling 49% of the cited species. The most cited plants are Azadirachta indica (42), Mangifera indica (38), Carica papaya (28), Cymbopogon citratus (27), Cassia fistula (15), Morinda lucida (14), Anacardium occidentale and Vernonia amygdalina (13 each), Helianthus annuus (11), Enantia chlorantha (10), and Moringa oleifera (9) A total of 105 citations were recorded for the plant parts used (leaf (46), bark (17), fruits (9), root (9), latex (11), stem (11), and inflorescence (2)) while decoction (59%), maceration (25%), infusion (9%), and exudation (7%) were the methods of preparation. Use Values (UVs) of 0.47 to 0.11 were recorded for the frequently used antimalarial plants. The Efficiency Levels (ELs) of 11 different medicinal plants stated by the respondents were Azadirachta indica, Cassia fistula and Morinda lucida (12), Chromolaena odorata (10), Mangifera indica, Enantia chlorantha and Helianthus annuus (8), Cymbopogon citratus (7), Gossypium arboretum (4), Landolphia dulcis (3), and Aloe vera (2) Cocos nucifera, Curcuma longa, Forkia biglobosa, and Musa acuminate are mentioned for the first time in the study area with little or no reported antiplasmodial activities. CONCLUSION The study appraised the commonly used antimalarial plants in the study areas. Therefore, commitment to scientifically explore the bioactive compounds, antimalarial potential and toxicological profile of these plants is inevitable as they could lead to novel natural products for effective malaria therapy.
Collapse
Affiliation(s)
- Oluwole Solomon Oladeji
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria
| | - Abimbola Peter Oluyori
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria
| | - Deborah Temitope Bankole
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria
| | - Tokunbo Yemisi Afolabi
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu Aran, Kwara State, Nigeria
| |
Collapse
|
41
|
Ethnobotanical Description and Biological Activities of Senna alata. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2580259. [PMID: 32148534 PMCID: PMC7054808 DOI: 10.1155/2020/2580259] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022]
Abstract
Senna alata is a medicinal herb of Leguminosae family. It is distributed in the tropical and humid regions. The plant is traditionally used in the treatment of typhoid, diabetes, malaria, asthma, ringworms, tinea infections, scabies, blotch, herpes, and eczema. The review is aimed at unveiling the ethnobotanical description and pharmacological activities of S. alata. Different parts of the plant are reported in folk medicine as therapeutic substances for remediation of diverse diseases and infections. The extracts and isolated compounds displayed pronounced pharmacological activities. Display of antibacterial, antioxidant, antifungal, dermatophytic, anticancer, hepatoprotective, antilipogenic, anticonvulsant, antidiabetic, antihyperlipidemic, antimalarial, anthelmintic, and antiviral activities could be due to the array of secondary metabolites such as tannins, alkaloids, flavonoids, terpenes, anthraquinone, saponins, phenolics, cannabinoid alkaloids, 1,8-cineole, caryophyllene, limonene, α-selinene, β-caryophyllene, germacrene D, cinnamic acid, pyrazol-5-ol, methaqualone, isoquinoline, quinones, reducing sugars, steroids, and volatile oils present in different parts of the plant. The review divulges the ethnobotanical and pharmacological activities of the plant and also justifies the ethnomedical claims. The significant medicinal value of this plant necessitates a scientific adventure into the bioactive metabolites which constitute various extracts.
Collapse
|