1
|
Kumar SA, Rosaline DR, Foletto EL, Dotto GL, Inbanathan SSR, Muralidharan G. Application of green-synthesized cadmium oxide nanofibers and cadmium oxide/graphene nanosheet nanocomposites as alternative and efficient photocatalysts for methylene blue removal from aqueous matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117390-117403. [PMID: 37870670 DOI: 10.1007/s11356-023-30425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
For the first time, cadmium oxide (CdO) nanofibers (NFs) and graphene nanosheet (GNS)-doped CdO nanocomposites (NCs) have been synthesized by a simple green route using green tea (Camellia sinensis) extract, for subsequent application as photocatalysts for methylene blue (MB) removal from an aqueous matrix. In addition, the materials were tested as working electrodes for supercapacitors. The prepared samples were analyzed by FESEM, UV-Vis spectroscopy, FTIR, and X-ray diffraction (XRD). FESEM revealed that the obtained NPs and NCs show fiber-shaped nanostructure. FTIR confirmed the presence of biomolecules on CdO and carbon compounds on CdO/GNS, while XRD exhibited the cubic crystalline structure of obtained NPs and NCs. The Rietveld refinement using XRD data was performed to ascertain the crystallographic characteristics of the produced samples and look into lattice imperfections. UV-Vis spectroscopy evaluated the optical bandgap energies of CdO and CdO/GNS NCs. The CdO/GNS NCs demonstrated a fast cleavage of the dye molecule under UV irradiation, resulting in 97% removal in 120 min. In addition, CdO/GNS NCs showed remarkable chemical stability as an electrode material, with a high specific capacitance of 231 F g-1 at a scan rate of 25 mV s-1. These observed NCs characteristics are higher when compared to pristine CdO NPs. Finally, we found that the investigated NCs showed enhanced multifunctional properties, such as photocatalytic and supercapacitor characteristics, which can be useful in practical applications.
Collapse
Affiliation(s)
- Sundararajan Ashok Kumar
- Post Graduate and Research Department of Physics, The American College, Madurai, Tamil Na du, 625002, India
| | - Daniel Rani Rosaline
- Post Graduate and Research Department of Chemistry, Lady Doak College, Madurai, Tamil Na du, 625002, India
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | | | - Gopalan Muralidharan
- Department of Physics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Dindigul, Tamil Na du, 624302, India
| |
Collapse
|
2
|
Yadav P, Saini R, Bhaduri A. Facile synthesis of MgO nanoparticles for effective degradation of organic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71439-71453. [PMID: 35821325 DOI: 10.1007/s11356-022-21925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 06/14/2023]
Abstract
In the present study, we have synthesized magnesium oxide (MgO) nanoparticles by a facile and cost-effective chemical co-precipitation method with annealing at three different temperatures (350°C, 450°C, and 550°C) for the removal of various organic dyes. X-ray diffraction studies revealed that the prepared samples are having sizes below 20 nm and with pure phase. Phase transformation of hexagonal Mg(OH)2 nanoparticles to discretely cubical structured MgO nanoparticles has been observed with increasing the annealing temperatures which is also supported by the TGA/DSC analysis. Mg-O stretching vibration peaks in the range of 400-800 cm-1 obtained by FTIR spectroscopy support the formation of MgO nanoparticles. The observed Raman active bands for the annealed sample at 550°C confirm the formation of the nanocrystalline phase since these bands are typically absent in the bulk MgO as well as in Mg(OH)2. The surface morphology of the as-prepared Mg(OH)2 are aggregated nano-petals which changed into spherical shape for MgO annealed at 550°C as studied by field emission scanning electron microscopy (FESEM). The specific surface area of MgO nanoparticles annealed at 550°C using BET isotherms is found to be 37.487 m2g-1. The optical bandgaps of the prepared samples are found to be in the range of 4.4 to 5.1 eV using the Tauc plot. Adsorption studies with a variation of initial brilliant green dye concentration and contact time are carried out along with the studies of adsorption kinetic and isotherm models. Langmuir isotherm model is the most suitable model on the basis of correlation constant with maximum BG dye adsorption capacity onto MgO@550°C which is found to be 63.9 mg/g. The adsorption kinetics followed the pseudo-second-order model. Also prepared pristine MgO nanoparticles showed significant photocatalytic performance for the degradation of various dyes; brilliant green (BG: 88.91%), methylene blue (MB: 79.05%), crystal violet (CV: 76.49%), methyl orange (MO: 68.62%), and brilliant blue (BB: 40.44%) under visible irradiation. MgO nanoparticles could be a promising adsorbent and photocatalyst that may be employed in the treatment of effluents from industries.
Collapse
Affiliation(s)
- Pinky Yadav
- Department of Physics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, Haryana, 122413, India
| | - Rimpy Saini
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Ayana Bhaduri
- Department of Physics, Amity School of Applied Sciences, Amity University Haryana, Gurugram, Haryana, 122413, India.
| |
Collapse
|
3
|
Yadav S, Shakya K, Gupta A, Singh D, Chandran AR, Varayil Aanappalli A, Goyal K, Rani N, Saini K. A review on degradation of organic dyes by using metal oxide semiconductors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71912-71932. [PMID: 35595896 DOI: 10.1007/s11356-022-20818-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
The discharge of organic dye pollutants in natural water bodies has put forward a big challenge of providing clean water to a large part of the population. As the population is increasing with time, only underground water is not sufficient to complete the water requirements of everyone everywhere. Purification of wastewater and its reuse is the only way to fulfill the water needs. Nanotechnology has been used very efficiently for wastewater treatment via photocatalytic degradation of dye molecules. In the past few years, a lot of investigations have been done to enhance the photocatalytic activity of metal oxide semiconductors for water purification. In this review, we have discussed the different methods of synthesis of various metal oxide semiconductor nanoparticles, energy band gap, their role as efficient photocatalysts, radiations used for photocatalytic reactions, and their degradation efficiency to degrade the dye pollutants. We have also discussed the nanocomposites of metal oxide with graphene. These nanocomposites have been utilized as the efficient photocatalyst due to unique characteristics of graphene such as extended range of light absorption, separation of charges, and high capacity of adsorption of the dye pollutants.
Collapse
Affiliation(s)
- Sapna Yadav
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Kriti Shakya
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Aarushi Gupta
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Divya Singh
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Anjana R Chandran
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | | | - Kanika Goyal
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Nutan Rani
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Kalawati Saini
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
4
|
Dhananjaya N, Ambujakshi N, Ravikumar C, Naveen Kumar A. Comparative study on photocatalytic degradation and sensor properties of Chonemorpha fragrans leaf extract assisted MgxZn1−xO (0 ≤ x ≤ 1) nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Hassan SED, Fouda A, Saied E, Farag MMS, Eid AM, Barghoth MG, Awad MA, Hamza MF, Awad MF. Rhizopus oryzae-Mediated Green Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs): A Promising Tool for Antimicrobial, Mosquitocidal Action, and Tanning Effluent Treatment. J Fungi (Basel) 2021; 7:372. [PMID: 34068709 PMCID: PMC8150313 DOI: 10.3390/jof7050372] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
The metabolites of the fungal strain Rhizopus oryaze were used as a biocatalyst for the green-synthesis of magnesium oxide nanoparticles (MgO-NPs). The production methodology was optimized to attain the maximum productivity as follows: 4 mM of precursor, at pH 8, incubation temperature of 35 °C, and reaction time of 36 h between metabolites and precursor. The as-formed MgO-NPs were characterized by UV-Vis spectroscopy, TEM, SEM-EDX, XRD, DLS, FT-IR, and XPS analyses. These analytical techniques proved to gain crystalline, homogenous, and well-dispersed spherical MgO-NPs with an average size of 20.38 ± 9.9 nm. The potentiality of MgO-NPs was dose- and time-dependent. The biogenic MgO-NPs was found to be a promising antimicrobial agent against the pathogens including Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans with inhibition zones of 10.6 ± 0.4, 11.5 ± 0.5, 13.7 ± 0.5, 14.3 ± 0.7, and 14.7 ± 0.6 mm, respectively, at 200 μg mL-1. Moreover, MgO-NPs manifested larvicidal and adult repellence activity against Culex pipiens at very low concentrations. The highest decolorization percentages of tanning effluents were 95.6 ± 1.6% at 100 µg/ 100 mL after 180 min. At this condition, the physicochemical parameters of tannery effluents, including TSS, TDS, BOD, COD, and conductivity were reduced with percentages of 97.9%, 98.2%, 87.8%, 95.9%, and 97.3%, respectively. Moreover, the chromium ion was adsorbed with percentages of 98.2% at optimum experimental conditions.
Collapse
Affiliation(s)
- Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Mohamed M. S. Farag
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (E.S.); (M.M.S.F.); (A.M.E.); (M.G.B.)
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China;
- Nuclear Materials Authority, El-Maadi, Cairo POB 530, Egypt
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
6
|
Diana P, Saravanakumar S, Prasad KH, Sivaganesh D, Chidhambaram N, Isaac RSR, Alshahrani T, Shkir M, AIFaify S, Ali KSS. Enhanced Photocatalytic Decomposition Efficacy of Novel MgO NPs: Impact of Annealing Temperatures. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01896-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|