1
|
Kabeer S, Mary SJ, Govindarajan N, Essa MM, Qoronfleh MW. Traditional weaning foods and processing methods with fortification for sustainable development of infants to combat zero hunger: a review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2263-2274. [PMID: 39431181 PMCID: PMC11486866 DOI: 10.1007/s13197-024-06065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024]
Abstract
Weaning foods are soft digestible baby foods introduced along with breast milk for infants of 6 to 24 months. Early nutrition is a crucial one for proper growth and wellbeing. Researchers have developed weaning food from locally available ingredients with appropriate processing methods without losing actual nutrients value. Despite this, micronutrient malnutrition irrespective of the country status is a potential threat. This is overcome by fortifying micronutrients in the formulated weaning foods. Typically, formulated weaning foods are prepared from fruits and cereal grains that are abundant in micronutrients. Different processing methods are adopted to maintain the original natural characteristics of the ingredients. Traditional homemade weaning foods always have an upper hand over industrialized ones. Additionally, fortification enhances the micronutrients in weaning food and helps in uprooting the hidden hunger thereby helping in the sustainable development goals. This review focuses and delivers insights on the various processing methods and cereal-fruit weaning foods as traditional homemade ready-to-serve food supplement. It also highlights the impact of fortification of weaning foods against micronutrient malnutrition. On the whole this work emphasizes on the importance of sustainable weaning foods and how babies can be brought up into healthy grown-ups achieving zero hunger.
Collapse
Affiliation(s)
- Safreena Kabeer
- Department of Food Process Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu India
| | - S Jeroline Mary
- Department of Food Process Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
- Department of Food Technology, Dhanalakshmi Srinivasan College of Engineering and Technology, ECR, Mamallapuram, Chennai 603104, Tamil Nadu India
| | - Nagamaniammai Govindarajan
- Department of Food Process Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu 603203 India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - M. Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, P.O. Box 5825, Doha, Qatar
| |
Collapse
|
2
|
Ogunniran OP, Ayeni KI, Shokunbi OS, Krska R, Ezekiel CN. A 10-year (2014-2023) review of complementary food development in sub-Saharan Africa and the impact on child health. Compr Rev Food Sci Food Saf 2024; 23:e70022. [PMID: 39379293 DOI: 10.1111/1541-4337.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 10/10/2024]
Abstract
Complementary foods (CFs) commonly consumed by infants and young children (IYC) in sub-Saharan Africa (SSA) are processed using either single or multi-grain ingredients through simple technologies such as fermentation, malting and roasting. Interestingly, CFs (e.g., ogi, kunu, and dabo) are prepared and fed to infants alongside breastmilk until they are completely weaned up to the infant's second birthday. The grains used for preparing CFs can be contaminated with bacterial and chemical contaminants as a result of poor harvesting, handling or storage practices. The stage at which IYC are introduced to CFs is of utmost importance as it aids in addressing malnutrition and improving their overall health and well-being. Complementary feeding practices across SSA are influenced by socio-economic, cultural and geographical factors such that improper introduction can result in dire health consequences including immune suppression, severe foodborne diseases, poor child growth and development, and sometimes death from malnutrition. Malnutrition often occurs from inadequacies of nutrient intakes and assimilation which affect the ability to maintain normal body functions such as growth, learning abilities, resistance to and recovery from diseases. In SSA, IYC malnutrition still poses an enormous concern, therefore indicating the need for intervention strategies such as the promotion of indigenous crops and elevating traditional knowledge and technologies for formulating CFs. This paper clearly highlights the diversity of CFs in SSA, ingredients utilized, processing techniques, contamination by bacteria and chemicals, and demonstrates the consequences of consuming contaminated CFs, and their influence on IYC health as well as approaches to ensuring safety and scaling up indigenous CFs.
Collapse
Affiliation(s)
- Oluwabunmi P Ogunniran
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Kolawole I Ayeni
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan Remo, Ogun State, Nigeria
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, Vienna, Austria
| | - Olutayo S Shokunbi
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Rudolf Krska
- BOKU University, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen´s University Belfast, Belfast, Northern Ireland, UK
| | - Chibundu N Ezekiel
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan Remo, Ogun State, Nigeria
- BOKU University, Department of Agrobiotechnology, IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| |
Collapse
|
3
|
Amawi A, Khataybeh B, Al Aqaili R, Ababneh N, Alnimer L, Qoqazeh A, Oukal F, Jahrami H, Mousa Ay K, Al Saoud H, Ghazzawi H. Junior athletes' nutritional demands: a narrative review of consumption and prevalence of eating disorders. Front Nutr 2024; 11:1390204. [PMID: 39381351 PMCID: PMC11458482 DOI: 10.3389/fnut.2024.1390204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/23/2024] [Indexed: 10/10/2024] Open
Abstract
Information regarding the dietary requirements and consumption of young athletes is limited. Hence, the aim of this narrative review is to provide a comprehensive combination of research and review papers on the nutritional status of young athletes aged 5-18 years old, as well as quantitative, qualitative, wholesome foods, food choices, and eating disordered data concerning the dietary requirements for growing young athletes. This study involved systematic searches of electronic databases, including Google Scholar, PubMed, Science Direct, Scopus, and Web of Science. The specific criteria for identifying research papers published in English from July 1980 until May 2024 were included. Only 48 studies out of 1,262 were included in this narrative review. The findings of this study suggest that, compared with adults, junior athletes need a unique approach to meet their dietary needs. Growth, development, and general athletic performance depend on macronutrients, as they are vital nutrients for young active athletes. However, research on enhancing junior athletes' performance is still in progress, and studies on hydration status, and eating disorders are limited.
Collapse
Affiliation(s)
- Adam Amawi
- Department of Exercise Science and Kinesiology, School of Sport Sciences, The University of Jordan, Amman, Jordan
| | - Batool Khataybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Raghad Al Aqaili
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Nour Ababneh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Lana Alnimer
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Ali Qoqazeh
- Department of Nutrition and Food Processing, School of Agriculture, Al-Balqa Applied University, Al-Salt, Jordan
| | - Farah Oukal
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Haitham Jahrami
- Government Hospitals, Manama, Bahrain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Khitam Mousa Ay
- Department of Exercise Science and Kinesiology, School of Sport Sciences, The University of Jordan, Amman, Jordan
| | - Hassan Al Saoud
- Department of Exercise Science and Kinesiology, School of Sport Sciences, The University of Jordan, Amman, Jordan
| | - Hadeel Ghazzawi
- Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman, Jordan
| |
Collapse
|
4
|
Song C, Zhong R, Zeng S, Chen Z, Tan M, Zheng H, Gao J, Lin H, Zhu G, Cao W. Effect of baking on the structure and bioavailability of protein-binding zinc from oyster (Crassoetrea hongkongensis). Food Chem 2024; 451:139471. [PMID: 38692241 DOI: 10.1016/j.foodchem.2024.139471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
To compare the bioavailability of protein-binding zinc, we investigated the impact of baking on the structure of zinc-binding proteins. The results showed that zinc-binding proteins enriched in zinc with relative molecular weights distributed at 6 kDa and 3 kDa. Protein-binding zinc is predisposed to separate from proteins' interiors and converge on proteins' surface after being baked, and its structure tends to be crystalline. Especially -COO, -C-O, and -C-N played vital roles in the sites of zinc-binding proteins. However, baking did not affect protein-binding zinc's bioavailability which was superior to that of ZnSO4 and C12H22O14Zn. They were digested in the intestine, zinc-binding complexes that were easily transported and uptaken by Caco-2 cells, with transport and uptake rates as high as 62.15% and 15.85%. Consequently, baking can alter the conformation of zinc-binding proteins without any impact on protein-binding zinc's bioavailability which is superior to that of ZnSO4 and C12H22O14Zn.
Collapse
Affiliation(s)
- Chunyong Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Runfang Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shan Zeng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Mingtang Tan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Guoping Zhu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China.; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China..
| |
Collapse
|
5
|
Kefale B, Delele MA, Fanta SW, Abate S. Optimization of Awaze paste formulations: The effects of using spices through a mixture design approach. Heliyon 2024; 10:e35141. [PMID: 39170444 PMCID: PMC11336441 DOI: 10.1016/j.heliyon.2024.e35141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Previous studies have revealed the microbial quality of Awaze paste. However, limited reports describe the effect of individual spices on Awaze paste quality. A mixture design approach was used to determine the appropriate proportions, with 15 experimental points for independent variables including RP (60-90 %), GA (10-30 %), RO (5-20 %), and GI (5-10 %). The techno-functional properties, particle size, antioxidant activity (DDPH radical assay), proximate composition, iron (Fe), zinc (Zn) content, viscosity, hardness, and microbiological quality of Awaze paste were assessed. The prepared Awaze paste showed a range of characteristics, with antioxidant activity (DDPH radical assay) ranging from 11.86 % to 62.5 %, crude protein content from 6.18 % to 16.22 %, crude fat from 5.7 % to 12.6 %, crude fiber from 16.86 % to 29.06 %, total ash content from 6.32 % to 9.94 %, total carbohydrate from 41.79 % to 60.61 %, energy from 264.3 to 329.2 k cal. , iron (Fe) content from 35.59 to 108.82 mg/100g, zinc (Zn) content from 1.72 to 26.93 mg/100g, viscosity from 65.5 to 125.5 cps, hardness from 8.48 to 55.09 g, yeast and mold count from 0.83 to 2.04 log cfu/g, and total bacterial count from 1.53 to 2.61 log cfu/g. Significant differences (p < 0.05) were observed in proximate composition, techno-functional properties, particle size, antioxidant activity, physicochemical properties, and microbiological characteristics among the formulations of Awaze paste. The selected formula showed a statistically significant difference (p < 0.05) compared to the control sample. The formulation containing 74.79 % RP, 10 % GA, 10.2 % RO, and 5.0 % GI was determined to be the optimal formula with a desirability of 0.73, based on the evaluated parameters. This preferred Awaze paste had a porosity of 28.12 %, particle size of 16.49 μm, antioxidant activity of 63.63 %, crude protein content of 17.28 %, iron (Fe) content of 98.06 mg/100g, and zinc (Zn) content of 15.04 mg/100g. Therefore, this optimal blend of ingredients could be used to produce a consumer accepted Awaze paste.
Collapse
Affiliation(s)
- Biadge Kefale
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Centre, Food Science and Nutrition Research, Holeta, Ethiopia
| | - Mulugeta Admasu Delele
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
| | - Solomon Workneh Fanta
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Ethiopia
| | - Solomon Abate
- Ethiopian Institute of Agricultural Research, Head Quarter, Food Science and Nutrition Research, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Bell V, Rodrigues AR, Ferrão J, Varzakas T, Fernandes TH. The Policy of Compulsory Large-Scale Food Fortification in Sub-Saharan Africa. Foods 2024; 13:2438. [PMID: 39123628 PMCID: PMC11312076 DOI: 10.3390/foods13152438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Food fortification with micronutrients was initially justified in developed countries by a lack of availability of micronutrients in staple crops, mainly due to soil exhaustion. However, in Sub-Saharan arable lands, soil fatigue is not predominant, and communities consume mostly home-grown, organic, non-processed crops. Sub-Saharan food systems are nevertheless deeply entwined with food insecurity, driver of illnesses. Family production can promote subsistence, food stability, and self-sufficiency, the main SSA setback being the vicious cycle of poverty and the lack of dietary variety, contributing to malnutrition. Poverty reduction and women's education are significant strategies for reducing child and adolescent undernourishment. Fortification of foods consumed daily by individuals makes sense and can minimize, if not entirely, eliminate deficiencies. Compulsory mass fortification of foods in Sub-Saharan Africa (SSA) with single micronutrients is, however, controversial since they work in synergy among each other and with the food matrix, for optimal absorption and metabolism. Since the causes of malnutrition are many, caused by diverse, unequal, and unjust food distribution, interrelated with political, social, cultural, or economic factors, education status of the population, season and climatic changes, and effectiveness of nutrition programs, just food fortification cannot solve the composite of all these elements. Further, compulsory fortification is excessive, unproductive, and likely harmful to human health, while many challenges remain in assessing the quality of available premixes. Furthermore, aiming at dietary diversification is the best approach of increasing trace element intake from commonly accessible and easily available food sources.
Collapse
Affiliation(s)
- Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (V.B.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
| | - Ana Rita Rodrigues
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (V.B.)
| | - Jorge Ferrão
- Vice-Chancellor Office, Universidade Pedagógica de Maputo, Rua João Carlos Raposo Beirão 135, Maputo 1000-001, Mozambique;
| | - Theodoros Varzakas
- Food Science and Technology, University of the Peloponnese, GR-22100 Kalamata, Greece
| | - Tito H. Fernandes
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
7
|
Moslehi N, van Eekelen M, Velikov KP, Kegel WK. Ferrous Pyrophosphate and Mixed Divalent Pyrophosphates as Delivery Systems for Essential Minerals. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1388-1401. [PMID: 38934009 PMCID: PMC11197097 DOI: 10.1021/acsfoodscitech.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Poorly water-soluble iron-containing compounds are promising iron fortificants. However, ensuring high bioaccessibility and low reactivity of iron is challenging. We present the potential application of ferrous pyrophosphate (Fe(II)PP) and Fe(II)-containing M2(1-x)Fe2x P2O7 salts (0 < x < 1, M = Ca, Zn, or Mn) for delivery of iron and a second essential mineral (M). After preparation by a facile and environment-friendly coprecipitation method, the salts were investigated for their composition, pH-dependent dissolution, iron-mediated discoloration of a black tea solution, and oxidation of vitamin C. Our results suggest that these salts are possible dual-fortificants with tunable composition that compared to Fe(II)PP (i) show lower (<0.5 mM) and enhanced (to 5 mM) iron dissolution in moderate and gastric pH, respectively, (ii) exhibit less discoloration and dissolved iron in tea when x = 0.470 for M = Ca or Zn and x = 0.086 for M = Mn, and (iii) do not increase the oxidation extent of vitamin C over 48 h when x = 0.06, 0.086, or 0.053 for M = Ca, Zn, or Mn, respectively.
Collapse
Affiliation(s)
- Neshat Moslehi
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Michiel van Eekelen
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Krassimir P. Velikov
- Unilever
Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Soft
Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Institute
of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Willem K. Kegel
- Van’t
Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute
for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Onyeaka H, Nwaiwu O, Obileke K, Miri T, Al‐Sharify ZT. Global nutritional challenges of reformulated food: A review. Food Sci Nutr 2023; 11:2483-2499. [PMID: 37324840 PMCID: PMC10261815 DOI: 10.1002/fsn3.3286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Food reformulation, the process of redesigning processed food products to make them healthier, is considered a crucial step in the fight against noncommunicable diseases. The reasons for reformulating food vary, with a common focus on reducing the levels of harmful substances, such as fats, sugars, and salts. Although this topic is broad, this review aims to shed light on the current challenges faced in the reformulation of food and to explore different approaches that can be taken to overcome these challenges. The review highlights the perception of consumer risk, the reasons for reformulating food, and the challenges involved. The review also emphasizes the importance of fortifying artisanal food processing and modifying microbial fermentation in order to meet the nutrient requirements of people in developing countries. The literature suggests that while the traditional reductionist approach remains relevant and yields quicker results, the food matrix approach, which involves engineering food microstructure, is a more complex process that may take longer to implement in developing economies. The findings of the review indicate that food reformulation policies are more likely to succeed if the private sector collaborates with or responds to the government regulatory process, and further research is conducted to establish newly developed reformulation concepts from different countries. In conclusion, food reformulation holds great promise in reducing the burden of noncommunicable diseases and improving the health of people around the world.
Collapse
Affiliation(s)
- Helen Onyeaka
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Ogueri Nwaiwu
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - KeChrist Obileke
- Faculty of Science and AgricultureUniversity of Fort HareAliceSouth Africa
| | - Taghi Miri
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
| | - Zainab T. Al‐Sharify
- School of Chemical EngineeringUniversity of Birmingham, EdgbastonBirminghamUK
- Department of Environmental Engineering, College of EngineeringUniversity of Al‐MustansiriyaBaghdadIraq
| |
Collapse
|
9
|
Schoeman J, Kellerman IM, Rogers PC, Ladas EJ, Lombard CJ, Uys R, Kruger M. Prevalence of vitamin and iron deficiencies at cancer diagnosis at two pediatric oncology units in South Africa. Pediatr Hematol Oncol 2023; 40:752-765. [PMID: 36940097 DOI: 10.1080/08880018.2023.2188920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/21/2023]
Abstract
This study investigates the prevalence of vitamin and iron deficiencies at cancer diagnosis. Newly diagnosed children between October 2018 and December 2020 at two South African pediatric oncology units (POUs) were assessed for nutritional and micronutrient status (Vit A, Vit B12, Vit D, folate, and iron). A structured interview with caregivers provided information regarding hunger and poverty risks. There were 261 patients enrolled with a median age of 5.5 years and a male-to-female ratio of 1:0.8. Nearly half had iron deficiency (47.6%), while a third had either Vit A (30.6%), Vit D (32.6%), or folate (29.7%) deficiencies. Significant associations existed between moderate acute malnutrition (MAM) and low levels of Vit A (48.4%; p = .005), Vit B12 (29.6%; p < .001), and folate (47.3%; p = .003), while Vit D deficiency was associated with wasting (63.6%) (p < .001). Males had significantly lower Vit D levels (respectively, 40.9%; p = .004). Folate deficiency was significantly associated with patients born at full term (33.5%; p = .017), age older than five years (39.8%; p = .002), residing in provinces Mpumalanga (40.9%) and Gauteng (31.5%) (P = .032); as well as having food insecurity (46.3%; p < .001), or hematological malignancies (41.3%; p = .004). This study documents the high prevalence of Vit A, Vit D, Vit B12, folate, and iron deficiency in South African pediatric cancer patients, demonstrating the need to include micronutrient assessment at diagnosis to ensure optimal nutritional support for macro-and micronutrients.
Collapse
Affiliation(s)
- Judy Schoeman
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ilde-Marié Kellerman
- Division of Human Nutrition, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Paul C Rogers
- Division of Pediatric Oncology/Hematology/BMT, BC Children's Hospital and University of BC, Vancouver, Canada
| | - Elena J Ladas
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Medical Irving Center, Columbia University, New York, New York, USA
| | - Carl J Lombard
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- Biostatistics Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Ronelle Uys
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mariana Kruger
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- School of Applied Human Sciences, Discipline of Psychology, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| |
Collapse
|
10
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
11
|
Food-to-Food Fortification of a Traditional Pearl Millet Gruel with a Natural Source of β-Carotene (Sweet Potato) Improves the Bioaccessibility of Iron and Zinc. J FOOD QUALITY 2023. [DOI: 10.1155/2023/6413244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Iron and zinc deficiencies are still a major public health concern in the Far North Region of Cameroon where staple foods are mainly mineral rich cereals which equally contain inhibitors of their bioaccessibility. The effect of food-to-food fortification of a traditional pearl millet gruel with a natural source of β-carotene on the bioaccessibility of iron and zinc was assessed. A sensory evaluation of gruels fortified at 20, 30, and 40% with mashed sweet potato was carried out. The samples were analysed for carotenoids, phytates, polyphenols, iron, and zinc contents. Bioaccessible iron and zinc were evaluated using in vitro digestion method. The gruel fortified at 20% with mashed sweet potato had better scores (
< 0.05) of taste (3.93), colour (3.36), and overall acceptability (3.80) compared to the control. Carotenoid, polyphenol, and phytate contents were higher in fortified gruels (
< 0.05) compared to the control, while iron and zinc contents were lower. A significant increase (
< 0.05) in bioaccessibility of 8.08% and 26.96% for iron and 53.79% and 62.92% for zinc was observed at 20 and 30% incorporation level, respectively. However, at 40% incorporation level, the increase in bioaccessible iron was less important and bioaccessible zinc decreased. Mashed sweet potato can be used as a fortificant to improve the bioaccessibility of iron and zinc contents of local pearl millet gruel, if added moderately.
Collapse
|
12
|
Velho P, Barroca LR, Macedo EA. Partition of antioxidants available in biowaste using a green aqueous biphasic system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
De Leon DCA, Bonto AP, Tuaño APP, Juanico CB. Nutrient Composition, Starch Microstructure and Thermal Properties, and
In Vitro
Availability of Selected Minerals of Nixtamalized Philippine Quality Protein Maize Variety
IPB
Var 6 and the Production of Healthy Loaf Bread using Nixtamalized
Corn‐Wheat
Flour Blends. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deborah Christine A. De Leon
- Institute of Human Nutrition and Food College of Human Ecology, University of the Philippines Los Baños, College Laguna Philippines
- Science Education Institute Department of Science and Technology, Bicutan Taguig City Philippines
| | - Aldrin P. Bonto
- Chemistry Department De La Salle University Manila Philippines
- Chemistry Department College of Science University of Santo Tomas Manila Philippines
| | - Arvin Paul P. Tuaño
- Institute of Human Nutrition and Food College of Human Ecology, University of the Philippines Los Baños, College Laguna Philippines
- Institute of Chemistry College of Arts and Sciences, University of the Philippines Los Baños, College Laguna Philippines
| | - Clarissa B. Juanico
- Institute of Human Nutrition and Food College of Human Ecology, University of the Philippines Los Baños, College Laguna Philippines
| |
Collapse
|
14
|
Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, Nisar S, Gaber A, Brestic M, Barek V, Skalicky M, Ondrisik P, Hossain A. Biofortification-A Frontier Novel Approach to Enrich Micronutrients in Field Crops to Encounter the Nutritional Security. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041340. [PMID: 35209127 PMCID: PMC8877941 DOI: 10.3390/molecules27041340] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/21/2022]
Abstract
Globally, many developing countries are facing silent epidemics of nutritional deficiencies in human beings and animals. The lack of diversity in diet, i.e., cereal-based crops deficient in mineral nutrients is an additional threat to nutritional quality. The present review accounts for the significance of biofortification as a process to enhance the productivity of crops and also an agricultural solution to address the issues of nutritional security. In this endeavor, different innovative and specific biofortification approaches have been discussed for nutrient enrichment of field crops including cereals, pulses, oilseeds and fodder crops. The agronomic approach increases the micronutrient density in crops with soil and foliar application of fertilizers including amendments. The biofortification through conventional breeding approach includes the selection of efficient genotypes, practicing crossing of plants with desirable nutritional traits without sacrificing agricultural and economic productivity. However, the transgenic/biotechnological approach involves the synthesis of transgenes for micronutrient re-translocation between tissues to enhance their bioavailability. Soil microorganisms enhance nutrient content in the rhizosphere through diverse mechanisms such as synthesis, mobilization, transformations and siderophore production which accumulate more minerals in plants. Different sources of micronutrients viz. mineral solutions, chelates and nanoparticles play a pivotal role in the process of biofortification as it regulates the absorption rates and mechanisms in plants. Apart from the quality parameters, biofortification also improved the crop yield to alleviate hidden hunger thus proving to be a sustainable and cost-effective approach. Thus, this review article conveys a message for researchers about the adequate potential of biofortification to increase crop productivity and nourish the crop with additional nutrient content to provide food security and nutritional quality to humans and livestock.
Collapse
Affiliation(s)
- Salwinder Singh Dhaliwal
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Vivek Sharma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | | | - Vibha Verma
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Manmeet Kaur
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Yashbir Singh Shivay
- Department of Agronomy, Indian Agricultural Research Institute (ICAR), New Delhi 110012, India;
| | - Shahida Nisar
- Department of Soil Science, Punjab Agricultural University, Ludhiana 141004, India; (S.S.D.); (V.S.); (V.V.); (M.K.); (S.N.)
| | - Ahmed Gaber
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
- Correspondence: (M.B.); (A.H.)
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic;
| | - Peter Ondrisik
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia;
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (M.B.); (A.H.)
| |
Collapse
|
15
|
De B, Goswami TK. Micronutrient Fortification in Foods and Soy Milk, Plant Based Milk Substitute, as a Candidate Vehicle. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220204091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Background: Food fortification is an effective intervention strategy to combat micronutrient malnutrition, hidden hunger, and improvement of public health and nutritional status. Choice of a cost-effective, widely consumed, compatible, and stable candidate vehicle is essential for a successful fortification.
Objective:
Objective: This comprehensive review discusses the aspects of food fortification along with the suitability of soy milk, plant based milk substitute as a candidate vehicle for fortification.
Methods:
Methods: Literature mining was done in food research journals, Pubmed, Scopus for collection of adopted fortification strategies and preferred vehicles for fortification.
Results:
Results: Soy milk is a popular health beverage, globally consumed and preferred amongst lacto-vegetarians and especially those with bovine milk allergy and lactose intolerance. This plant-based milk alternative is enriched in polyunsaturated fatty acids, phytoestrogens, and isoflavones along with different macro-and micronutrients. As a candidate vehicle, soy milk offers the advantage of incorporating a wide range of fortificants, is widely consumed, stable, and is compatible with fortificants.
Conclusion:
Conclusion: Successful implementation of the fortification strategy and its global scale-up need to overcome different scientific and technological hurdles, socio-economic, ethical, and political barriers as well as legislative issues. Public-private, multi-stake holder and global partnerships, boosting of small-scale food industries, and developing tie-ups with large scale industries, promoting public awareness about the need of fortification are other necessary requisites.
Collapse
Affiliation(s)
- Baishakhi De
- Agricultural and Food Engineering Department, IIT Kharagpur- 721302, India
| | - Tridib Kumar Goswami
- Prof Tridib Kumar Goswami, Department of Agriculture and Food Engineering, IIT Kharagpur- 721302, India
| |
Collapse
|
16
|
Varyvoda Y, Cederstrom T, Borberg J, Taren D. Enabling Food Safety Entrepreneurship: Exploratory Case Studies From Nepal, Senegal, and Ethiopia. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.742908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Today, formal and informal enterprises are increasingly contributing to the safety and nutritional ramifications of their food business activities. Enabling entrepreneurship in a sustainable manner means making profits, striving to prevent ingress of harmful substances, and increasing the efficiency of using local natural resources and thus mitigating food hazardous footprints. Using examples from Nepal, Senegal and Ethiopia, this review provides information on microbial and chemical contamination and food adulteration that lead to having unsafe food in the market and on factors that are limiting growing food businesses. Four examples for how to accelerate food safety entrepreneurship are presented that include safely diversifying markets with animal sourced foods, sustainably using neglected and underutilized animal sources, expanding, and integrating innovative technologies with traditional practice and using digital technology to improving monitoring and safety along the food supply chain.
Collapse
|