1
|
Chen H, Zhan XQ, Hong ZL, Ni W, Zhu CC, Leng YP, Chen CC, Guo RT, Ma N, Tsai FC. Hydrogel-Based Sensor for the Detection of Iron Ions and Excessive Alerting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26714-26722. [PMID: 39632379 DOI: 10.1021/acs.langmuir.4c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The excessive content of heavy metal ions in water has attracted increasing worldwide attention due to the potential harm to human health and ecological systems. Therefore, it is particularly significant to research and develop a sensitive and straightforward water quality monitoring method. Here, a dual-network designed hydrogel poly(acrylic acid-co-N-methylolacrylamide)/poly(3,4-ethylenedioxythiophene): polystyrenesulfonate, P(AA-co-N-MA)/PEDOT: PSS, was constructed and used for Fe3+ detection. Compared with previous reports, the P(AA-co-N-MA)/PEDOT: PSS hydrogel has a much more sensitive and convenient detection of immune iron ions (Fe3+), is applied to monitor a trace of over-the-standard (the lower limit of detection is 0.52 ppm corresponding to 0.06 S/m for human health monitor, and the threshold for water quality monitoring is 0.16 S/m). The relationship between Fe3+ content and the conductivity of the hydrogel allows it to integrate with other electron devices to provide an early warning function for Fe3+ in the human body, which would be of great significance to human health monitoring.
Collapse
Affiliation(s)
- Han Chen
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xue-Qing Zhan
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhi-Ling Hong
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Wang Ni
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chang-Chang Zhu
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yong-Ping Leng
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062 Wuhan, China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062 Wuhan, China
| | - Ning Ma
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062 Wuhan, China
| | - Fang-Chang Tsai
- Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Williams A, Aguilar MR, Pattiya Arachchillage KGG, Chandra S, Rangan S, Ghosal Gupta S, Artes Vivancos JM. Biosensors for Public Health and Environmental Monitoring: The Case for Sustainable Biosensing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:10296-10312. [PMID: 39027730 PMCID: PMC11253101 DOI: 10.1021/acssuschemeng.3c06112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
Climate change is a profound crisis that affects every aspect of life, including public health. Changes in environmental conditions can promote the spread of pathogens and the development of new mutants and strains. Early detection is essential in managing and controlling this spread and improving overall health outcomes. This perspective article introduces basic biosensing concepts and various biosensors, including electrochemical, optical, mass-based, nano biosensors, and single-molecule biosensors, as important sustainability and public health preventive tools. The discussion also includes how the sustainability of a biosensor is crucial to minimizing environmental impacts and ensuring the long-term availability of vital technologies and resources for healthcare, environmental monitoring, and beyond. One promising avenue for pathogen screening could be the electrical detection of biomolecules at the single-molecule level, and some recent developments based on single-molecule bioelectronics using the Scanning Tunneling Microscopy-assisted break junctions (STM-BJ) technique are shown here. Using this technique, biomolecules can be detected with high sensitivity, eliminating the need for amplification and cell culture steps, thereby enhancing speed and efficiency. Furthermore, the STM-BJ technique demonstrates exceptional specificity, accurately detects single-base mismatches, and exhibits a detection limit essentially at the level of individual biomolecules. Finally, a case is made here for sustainable biosensors, how they can help, the paradigm shift needed to achieve them, and some potential applications.
Collapse
Affiliation(s)
- Ajoke Williams
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Mauricio R. Aguilar
- Departament
de Química Inorgànica i Orgànica, Diagonal 645, 08028 Barcelona, Spain
- Institut
de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | - Subrata Chandra
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Srijith Rangan
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Sonakshi Ghosal Gupta
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Juan M. Artes Vivancos
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
3
|
Zheng H, Tai L, Xu C, Wang W, Ma Q, Sun W. Microfluidic-based cardiovascular systems for advanced study of atherosclerosis. J Mater Chem B 2024. [PMID: 38948949 DOI: 10.1039/d4tb00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Atherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS. Here a brief review of the advances of microfluidic-based cardiovascular systems for AS research is presented. The critical pathogenetic mechanisms of AS investigated by microfluidic-based cardiovascular systems are categorized and reviewed, with a detailed summary of accurate diagnostic methods for detecting biomarkers using microfluidics represented. Furthermore, the review covers the evaluation and screening of AS drugs assisted by microfluidic systems, along with the fabrication of novel drug delivery carriers. Finally, the challenges and future prospects for advancing microfluidic-based cardiovascular systems in AS research are discussed and proposed, particularly regarding new opportunities in multi-disciplinary fundamental research and therapeutic applications for a broader range of disease treatments.
Collapse
Affiliation(s)
- Huiyuan Zheng
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Lei Tai
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Chengbin Xu
- Pharmacy Department, Shandong Qingdao Hospital of Integrated Traditional and Western Medicine, Qingdao 266002, China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
4
|
Atay E, Altan A. Nanomaterial interfaces designed with different biorecognition elements for biosensing of key foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:3151-3184. [PMID: 37222549 DOI: 10.1111/1541-4337.13179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Foodborne diseases caused by pathogen bacteria are a serious problem toward the safety of human life in a worldwide. Conventional methods for pathogen bacteria detection have several handicaps, including trained personnel requirement, low sensitivity, laborious enrichment steps, low selectivity, and long-term experiments. There is a need for precise and rapid identification and detection of foodborne pathogens. Biosensors are a remarkable alternative for the detection of foodborne bacteria compared to conventional methods. In recent years, there are different strategies for the designing of specific and sensitive biosensors. Researchers activated to develop enhanced biosensors with different transducer and recognition elements. Thus, the aim of this study was to provide a topical and detailed review on aptamer, nanofiber, and metal organic framework-based biosensors for the detection of food pathogens. First, the conventional methods, type of biosensors, common transducer, and recognition element were systematically explained. Then, novel signal amplification materials and nanomaterials were introduced. Last, current shortcomings were emphasized, and future alternatives were discussed.
Collapse
Affiliation(s)
- Elif Atay
- Department of Food Engineering, Mersin University, Mersin, Turkey
| | - Aylin Altan
- Department of Food Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
5
|
Wang Y, Rong Y, Ma T, Li L, Li X, Zhu P, Zhou S, Yu J, Zhang Y. Photoelectrochemical sensors based on paper and their emerging applications in point-of-care testing. Biosens Bioelectron 2023; 236:115400. [PMID: 37271095 DOI: 10.1016/j.bios.2023.115400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/14/2023] [Indexed: 06/06/2023]
Abstract
Point-of-care testing (POCT) technology is urgently required owing to the prevalence of the Internet of Things and portable electronics. In light of the attractive properties of low background and high sensitivity caused by the complete separation of excitation source and detection signal, the paper-based photoelectrochemical (PEC) sensors, featured with fast in analysis, disposable and environmental-friendly have become one of the most promising strategies in POCT. Therefore, in this review, the latest advances and principal issues in the design and fabrication of portable paper-based PEC sensors for POCT are systematically discussed. Primarily, the flexible electronic devices that can be constructed by paper and the reasons why they can be used in PEC sensors are expounded. Afterwards, the photosensitive materials involved in paper-based PEC sensor and the signal amplification strategies are emphatically introduced. Subsequently, the application of paper-based PEC sensors in medical diagnosis, environmental monitoring and food safety are further discussed. Finally, the main opportunities and challenges of paper-based PEC sensing platforms for POCT are briefly summarized. It provides a distinct perspective for researchers to construct paper-based PEC sensors with portable and cost-effective, hoping to enlighten the fast development of POCT soon after, as well as benefit human society.
Collapse
Affiliation(s)
- Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yumeng Rong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shuang Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
6
|
Elkalla E, Khizar S, Tarhini M, Lebaz N, Zine N, Jaffrezic-Renault N, Errachid A, Elaissari A. Core-shell micro/nanocapsules: from encapsulation to applications. J Microencapsul 2023; 40:125-156. [PMID: 36749629 DOI: 10.1080/02652048.2023.2178538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Encapsulation is the way to wrap or coat one substance as a core inside another tiny substance known as a shell at micro and nano scale for protecting the active ingredients from the exterior environment. A lot of active substances, such as flavours, enzymes, drugs, pesticides, vitamins, in addition to catalysts being effectively encapsulated within capsules consisting of different natural as well as synthetic polymers comprising poly(methacrylate), poly(ethylene glycol), cellulose, poly(lactide), poly(styrene), gelatine, poly(lactide-co-glycolide)s, and acacia. The developed capsules release the enclosed substance conveniently and in time through numerous mechanisms, reliant on the ultimate use of final products. Such technology is important for several fields counting food, pharmaceutical, cosmetics, agriculture, and textile industries. The present review focuses on the most important and high-efficiency methods for manufacturing micro/nanocapsules and their several applications in our life.
Collapse
Affiliation(s)
- Eslam Elkalla
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Mohamad Tarhini
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | - Noureddine Lebaz
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, LAGEPP UMR-5007, Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, France
| | | |
Collapse
|
7
|
Ma Y, Liu C, Cao S, Chen T, Chen G. Microfluidics for diagnosis and treatment of cardiovascular disease. J Mater Chem B 2023; 11:546-559. [PMID: 36542463 DOI: 10.1039/d2tb02287g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD), a type of circulatory system disease related to the lesions of the cardiovascular system, has become one of the main diseases that endanger human health. Currently, the clinical diagnosis of most CVDs relies on a combination of imaging technology and blood biochemical test. However, the existing technologies for diagnosis of CVDs still have limitations in terms of specificity, detection range, and cost. In order to break through the current bottleneck, microfluidic with the advantages of low cost, simple instruments and easy integration, has been developed to play an important role in the early prevention, diagnosis and treatment of CVDs. Here, we have reviewed the recent various applications of microfluidic in the clinical diagnosis and treatment of CVDs, including microfluidic devices for detecting CVD markers, the cardiovascular models based on microfluidic, and the microfluidic used for CVDs drug screening and delivery. In addition, we have briefly looked forward to the prospects and challenges of microfluidics in diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Yonggeng Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Siyu Cao
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Guifang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
8
|
Prospective analytical role of sensors for environmental screening and monitoring. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Kuswandi B, Hidayat MA, Noviana E. Paper-Based Electrochemical Biosensors for Food Safety Analysis. BIOSENSORS 2022; 12:1088. [PMID: 36551055 PMCID: PMC9775995 DOI: 10.3390/bios12121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, foodborne pathogens and other food contaminants are among the major contributors to human illnesses and even deaths worldwide. There is a growing need for improvements in food safety globally. However, it is a challenge to detect and identify these harmful analytes in a rapid, sensitive, portable, and user-friendly manner. Recently, researchers have paid attention to the development of paper-based electrochemical biosensors due to their features and promising potential for food safety analysis. The use of paper in electrochemical biosensors offers several advantages such as device miniaturization, low sample consumption, inexpensive mass production, capillary force-driven fluid flow, and capability to store reagents within the pores of the paper substrate. Various paper-based electrochemical biosensors have been developed to enable the detection of foodborne pathogens and other contaminants that pose health hazards to humans. In this review, we discussed several aspects of the biosensors including different device designs (e.g., 2D and 3D devices), fabrication techniques, and electrode modification approaches that are often optimized to generate measurable signals for sensitive detection of analytes. The utilization of different nanomaterials for the modification of electrode surface to improve the detection of analytes via enzyme-, antigen/antibody-, DNA-, aptamer-, and cell-based bioassays is also described. Next, we discussed the current applications of the sensors to detect food contaminants such as foodborne pathogens, pesticides, veterinary drug residues, allergens, and heavy metals. Most of the electrochemical paper analytical devices (e-PADs) reviewed are small and portable, and therefore are suitable for field applications. Lastly, e-PADs are an excellent platform for food safety analysis owing to their user-friendliness, low cost, sensitivity, and a high potential for customization to meet certain analytical needs.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Mochammad Amrun Hidayat
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
10
|
Sajjadinezhad SM, Tanner K, Harvey PD. Metal-porphyrinic framework nanotechnologies in modern agricultural management. J Mater Chem B 2022; 10:9054-9080. [PMID: 36321474 DOI: 10.1039/d2tb01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.
Collapse
Affiliation(s)
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| |
Collapse
|
11
|
Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydr Polym 2022; 291:119539. [DOI: 10.1016/j.carbpol.2022.119539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 12/18/2022]
|
12
|
Noori MT, Thatikayala D, Pant D, Min B. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. BIORESOURCE TECHNOLOGY 2022; 347:126589. [PMID: 34929327 DOI: 10.1016/j.biortech.2021.126589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Implicit interaction of electroactive microbes with solid electrodes is an interesting phenomenon in nature, which supported development of bioelectrochemical systems (BESs), especially the microbial fuel cell (MFCs) for valorization of low-value waste streams into bioelectricity. Intriguingly, the metabolism of interacted microbes with electrode is affected by the microenvironment at electrodes, which influences the current response. For instance, when heavy metal ions (HMIs) are imposed in the medium, the current production decreases due to their intrinsic toxic effect. This event provides an immense opportunity to utilize MFC as a sensor to selectively detect HMIs in the environment, which has been explored vastly in recent decade. In this review, we have concisely discussed the microbial interaction with electrodes and mechanism of detection of HMIs using an MFC. Recent advancement in sensing elements and their application is elaborated with a future perspective section for follow-up research and development in this field.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Dayakar Thatikayala
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
13
|
Shi H, Jiang S, Liu B, Liu Z, Reis NM. Modern microfluidic approaches for determination of ions. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Campuzano S, Pedrero M, Yáñez‐Sedeño P, Pingarrón JM. Contemporary electrochemical sensing and affinity biosensing to assist traces metal ions determination in clinical samples. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Susana Campuzano
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - María Pedrero
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - Paloma Yáñez‐Sedeño
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| | - José M. Pingarrón
- Analytical Chemistry Department Faculty of Chemistry Complutense University of Madrid Madrid Spain
| |
Collapse
|
15
|
Costa-Rama E, Fernández-Abedul MT. Paper-Based Screen-Printed Electrodes: A New Generation of Low-Cost Electroanalytical Platforms. BIOSENSORS 2021; 11:51. [PMID: 33669316 PMCID: PMC7920281 DOI: 10.3390/bios11020051] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Screen-printed technology has helped considerably to the development of portable electrochemical sensors since it provides miniaturized but robust and user-friendly electrodes. Moreover, this technology allows to obtain very versatile transducers, not only regarding their design, but also their ease of modification. Therefore, in the last decades, the use of screen-printed electrodes (SPEs) has exponentially increased, with ceramic as the main substrate. However, with the growing interest in the use of cheap and widely available materials as the basis of analytical devices, paper or other low-cost flat materials have become common substrates for SPEs. Thus, in this revision, a comprehensive overview on paper-based SPEs used for analytical proposes is provided. A great variety of designs is reported, together with several examples to illustrate the main applications.
Collapse
|
16
|
Jin H, Sun Z, Sun Y, Gui R. Dual-signal ratiometric platforms: Construction principles and electrochemical biosensing applications at the live cell and small animal levels. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Shen F, Zhang C, Cai Z, Wang J, Zhang X, Machuki JO, Shi H, Gao F. Carbon Nanohorns/Pt Nanoparticles/DNA Nanoplatform for Intracellular Zn 2+ Imaging and Enhanced Cooperative Phototherapy of Cancer Cells. Anal Chem 2020; 92:16158-16169. [PMID: 33217231 DOI: 10.1021/acs.analchem.0c03880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Superfluous zinc ion (Zn2+) in living cells has been identified as a potential tumor biomarker for early cancer diagnosis and cancer progression monitoring. In this paper, we developed a novel carbon nanohorns/Pt nanoparticles/DNA (CNHs/Pt NPs/DNA) nanoplatform based on the clamped hybridization chain reaction (c-HCR) process for intracellular Zn2+ imaging and enhanced cooperative phototherapy of cancer cells. Cross-shaped DNAzyme (c-DNAzyme), hairpin DNA1, hairpin DNA2, and aptamer DNA were adsorbed onto the surfaces of CNHs/Pt NPs, and the fluorescence of carboxytetramethyl-rhodamine was also quenched. After entering the living cells, the c-DNAzyme was cleaved to output trigger DNA in the existence of intracellular Zn2+ and initiate the c-HCR process for fluorescence amplification. Compared with the single HCR process triggered by a single DNAzyme, the c-HCR process could further improve the amplification efficiency and sensitivity. In addition, such a nanoprobe possesses a catalysis-enhanced photodynamic effect by Pt NP generation of oxygen in a tumor microenvironment and increases the photothermal effect by loading of Pt NPs on CNHs, indicating that this is a promising biological method for cancer diagnosis and cancer cell therapy.
Collapse
Affiliation(s)
- Fuzhi Shen
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Zhiheng Cai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Jiwei Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen 52062, Germany
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Hengliang Shi
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China.,Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
18
|
Stortini AM, Baldo MA, Moro G, Polo F, Moretto LM. Bio- and Biomimetic Receptors for Electrochemical Sensing of Heavy Metal Ions. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6800. [PMID: 33260737 PMCID: PMC7731017 DOI: 10.3390/s20236800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Heavy metals ions (HMI), if not properly handled, used and disposed, are a hazard for the ecosystem and pose serious risks for human health. They are counted among the most common environmental pollutants, mainly originating from anthropogenic sources, such as agricultural, industrial and/or domestic effluents, atmospheric emissions, etc. To face this issue, it is necessary not only to determine the origin, distribution and the concentration of HMI but also to rapidly (possibly in real-time) monitor their concentration levels in situ. Therefore, portable, low-cost and high performing analytical tools are urgently needed. Even though in the last decades many analytical tools and methodologies have been designed to this aim, there are still several open challenges. Compared with the traditional analytical techniques, such as atomic absorption/emission spectroscopy, inductively coupled plasma mass spectrometry and/or high-performance liquid chromatography coupled with electrochemical or UV-VIS detectors, bio- and biomimetic electrochemical sensors provide high sensitivity, selectivity and rapid responses within portable and user-friendly devices. In this review, the advances in HMI sensing in the last five years (2016-2020) are addressed. Key examples of bio and biomimetic electrochemical, impedimetric and electrochemiluminescence-based sensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, Zn2+ and Tl+ are described and discussed.
Collapse
Affiliation(s)
| | | | | | | | - Ligia Maria Moretto
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; (A.M.S.); (M.A.B.); (G.M.); (F.P.)
| |
Collapse
|
19
|
Zhang Y, Chen X. Nanotechnology and nanomaterial-based no-wash electrochemical biosensors: from design to application. NANOSCALE 2019; 11:19105-19118. [PMID: 31549117 DOI: 10.1039/c9nr05696c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanotechnology and nanomaterial based electrochemical biosensors (ECBs) have achieved great development in many fields, such as clinical diagnosis, food analysis, and environmental monitoring. Nowadays, the single-handed pursuit of sensitivity and accuracy cannot meet the demands of detection in many in situ and point-of-care (POC) circumstances. More and more attention has been focused on simplifying the operation procedure and reducing detection time, and thus no-wash assay has become one of the most effective ways for the continuous development of ECBs. However, there are many challenges to realize no-wash detection in the real analysis, such as redox interferences, multiple impurities, non-conducting protein macromolecules, etc. Furthermore, the complex detection circumstance in different application fields makes the realization of no-wash ECBs more complicated and difficult. Thanks to the updated nanotechnology and nanomaterials, in-depth analysis of the obstacles in the detection process and various methods for fabricating no-wash ECBs, most issues have been largely resolved. In this review, we have systematically analyzed the nanomaterial based design strategy of the state-of-the-art no-wash ECBs in the past few years. Following that, we summarized the challenges in the detection process of no-wash ECBs and their applications in different fields. Finally, based on the summary and analysis in this review, we also evaluated and discussed future prospects from the design to the application of ECBs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. and Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| |
Collapse
|
20
|
Li L, Zhang Y, Ge S, Zhang L, Cui K, Zhao P, Yan M, Yu J. Triggerable H2O2–Cleavable Switch of Paper-Based Biochips Endows Precision of Chemometer/Ratiometric Electrochemical Quantification of Analyte in High-Efficiency Point-of-Care Testing. Anal Chem 2019; 91:10273-10281. [DOI: 10.1021/acs.analchem.9b02459] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
21
|
Yao Y, Zhao D, Li N, Shen F, Machuki JO, Yang D, Li J, Tang D, Yu Y, Tian J, Dong H, Gao F. Multifunctional Fe 3O 4@Polydopamine@DNA-Fueled Molecular Machine for Magnetically Targeted Intracellular Zn 2+ Imaging and Fluorescence/MRI Guided Photodynamic-Photothermal Therapy. Anal Chem 2019; 91:7850-7857. [PMID: 31117411 DOI: 10.1021/acs.analchem.9b01591] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
For the precise treatment of tumors, it is necessary to develop a theranostic nanoplatform that has both diagnostic and therapeutic functions. In this article, we designed a new theranostic probe for fluorescence imaging of Zn2+ and fluorescence/MRI guided magnetically targeted photodynamic-photothermal therapy. The fluorescence imaging of Zn2+ was based on an endogenous ATP-driven DNA nanomachine that could perform repetitive stand displacement reaction. It modifies all units on a single PDA/Fe3O4 nanoparticle containing a hairpin-locked initiated strand activated by a target molecule in cells, a two-stranded fuel DNA triggered by ATP, and a two-stranded DNA track responding to an initiated strand and fuel DNA. After entering the cell, the intracellular target Zn2+ initiates the nanomachine via an autocatalytic cleavage reaction, and the machine programmatically and gradually runs on the assembled DNA track via fuel DNA driving and the intramolecular toehold-mediated stand displacement reaction. The Fe3O4 core first exhibits magnetic targeting, increasing the ability of nanoparticles to enter tumor cells at the tumor site. The Fe3O4 could also be employed as a powerful magnetic resonance imaging (MRI) contrast agent and guided therapy. Using 808 nm laser and 635 nm laser irradiation together at the tumor site, the PDA nanoshell produced an excellent photothermal effect and the TMPyP4 molecules entering the cell generated reactive oxygen species, followed by cell damage. A series of reliable experiments suggested that the Fe3O4@PDA@DNA nanoprobe showed superior fluorescence specificity, MRI, a remarkable photothermal/photodynamic therapy effect, and favorable biocompatibility. This theranostic nanoplatform offered a split-new insight into tumor fluorescence and MRI diagnosis as well as effective tumor therapy.
Collapse
Affiliation(s)
- Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Dan Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Fuzhi Shen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Jingjing Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| | - Jiangwei Tian
- School of Traditional Chinese Pharmacy , China Pharmaceutical University , 211198 , Nanjing , China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology , University of Science & Technology Beijing , 30 Xueyuan Road , Beijing 100083 , China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 , Xuzhou , China
| |
Collapse
|
22
|
Zhang J, Yang Z, Liu Q, Liang H. Electrochemical biotoxicity detection on a microfluidic paper-based analytical device via cellular respiratory inhibition. Talanta 2019; 202:384-391. [PMID: 31171199 DOI: 10.1016/j.talanta.2019.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 11/24/2022]
Abstract
A novel microfluidic paper-based analytical device (μPAD) was developed with benzoquinone (BQ)-mediated E. coli respiration method to measure the biotoxicities of pollutants. Functional units including sample injection, fluid-cell separation, all-carbon electrode-enabled electrochemical detection, were integrated on a piece of chromatography paper. The three-electrode, working electrode, counter electrode and reference electrode, were simultaneously screen-printed on the μPAD with conductive carbon ink. The satisfying electrochemical performance of the paper-based carbon three-electrode was confirmed by cyclic voltammetry detecting K3 [Fe(CN)6]. The process of cell toxication was considered that toxicants inhibited cell respiration and diminished the electrons on E. coli respiratory chain. It was quantitatively reflected by measuring oxidation current of hydroquinone (HQ) as a reduced state of the redox mediator BQ after the incubation of cells with pollutants. The current detection time, BQ concentration and E. coli incubation time were carefully optimized to establish the systematic optimized operations of BQ-mediated E. coli respiration method. Using the fabricated μPAD the half inhibitory concentration (IC50) were Cu2+ solution 13.5 μg mL-1, Cu2+-soil 21.4 mg kg-1, penicillin sodium-soil 85.1 mg kg-1, and IC30 of Pb2+ solution was 60.0 μg mL-1. Detection of pesticide residues in vegetable juices were accomplished in a similar way. The proposed method is fascinating on three points; 1) The generality in the biotoxicity detection depends on toxicants inducing cellular respiratory inhibition; 2) The portability and affordability make it convenient for practical applications, because of replacing incubators and centrifuges; 3) There is potential applicability in less-developed areas due to its simple operation and low-cost.
Collapse
Affiliation(s)
- Jiongyu Zhang
- Separation Science Institute, The Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhengzheng Yang
- Separation Science Institute, The Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qian Liu
- Separation Science Institute, The Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Heng Liang
- Separation Science Institute, The Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
23
|
Yao Y, Li N, Zhang X, Ong'achwa Machuki J, Yang D, Yu Y, Li J, Tang D, Tian J, Gao F. DNA-Templated Silver Nanocluster/Porphyrin/MnO 2 Platform for Label-Free Intracellular Zn 2+ Imaging and Fluorescence-/Magnetic Resonance Imaging-Guided Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13991-14003. [PMID: 30901195 DOI: 10.1021/acsami.9b01530] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Developing a theranostic platform that integrates diagnosis and treatment in one single nanostructure is necessary for efficient tumor treatment. Here, we presented a novel theranostic nanoprobe for nonlabeled fluorescence imaging of Zn2+ and 635 nm red light-triggered photodynamic therapy (PDT) by a multifunctional DNA-templated silver nanocluster/porphyrin/MnO2 nanoplatform. MnO2 nanosheets adsorbed hairpin DNA-silver nanoclusters (AgNCs) and porphyrin (P) by facile physisorption, which accelerate the transfection of nanoprobes and P into tumor cells. After entering the cells, the biodegradation of MnO2 nanosheets by glutathione and acidic hydrogen peroxide released AgNCs for label-free Zn2+ fluorescence imaging by the hairpin DNA-fueled dynamic self-assembly of three-way DNA junction architectures, and the released Mn2+ could act as an effective magnetic resonance imaging (MRI) contrast agent. In addition, MnO2 was decomposed in the acidic H2O2-ample environment and produced O2 to overbear hypoxia-related PDT resistance, highly efficient PDT was obtained by excess singlet oxygen (1O2) release of P-AgNCs-MnO2 nanoprobes under light irradiation compared with free P. In vitro and in vivo studies confirmed that P-AgNCs-MnO2 exhibited high fluorescence specificity, excellent PDT effect, and good biocompatibility and could be used as a contrast agent for MRI. This theranostic platform provided a new avenue for the fluorescence and MRI diagnosis of tumors and efficient tumor treatment.
Collapse
Affiliation(s)
- Yao Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Xing Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Jingjing Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| | - Jiangwei Tian
- School of Traditional Chinese Pharmacy , China Pharmaceutical University , 211198 Nanjing , China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy , Xuzhou Medical University , 221004 Xuzhou , China
| |
Collapse
|
24
|
Shu Y, Zheng N, Zheng AQ, Guo TT, Yu YL, Wang JH. Intracellular Zinc Quantification by Fluorescence Imaging with a FRET System. Anal Chem 2019; 91:4157-4163. [DOI: 10.1021/acs.analchem.9b00018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Shu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Na Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - An-Qi Zheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ting-Ting Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
25
|
Auto-cleaning paper-based electrochemiluminescence biosensor coupled with binary catalysis of cubic Cu2O-Au and polyethyleneimine for quantification of Ni2+ and Hg2+. Biosens Bioelectron 2019; 126:339-345. [DOI: 10.1016/j.bios.2018.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/20/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
|
26
|
Justino CIL, Duarte AC, Rocha-Santos TAP. Recent Progress in Biosensors for Environmental Monitoring: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2918. [PMID: 29244756 PMCID: PMC5750672 DOI: 10.3390/s17122918] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 01/10/2023]
Abstract
The environmental monitoring has been one of the priorities at the European and global scale due to the close relationship between the environmental pollution and the human health/socioeconomic development. In this field, the biosensors have been widely employed as cost-effective, fast, in situ, and real-time analytical techniques. The need of portable, rapid, and smart biosensing devices explains the recent development of biosensors with new transduction materials, obtained from nanotechnology, and for multiplexed pollutant detection, involving multidisciplinary experts. This review article provides an update on recent progress in biosensors for the monitoring of air, water, and soil pollutants in real conditions such as pesticides, potentially toxic elements, and small organic molecules including toxins and endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Celine I. L. Justino
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (A.C.D.); (T.A.P.R.-S.)
- ISEIT/Viseu, Instituto Piaget, Estrada do Alto do Gaio, Galifonge, Lordosa, 3515-776 Viseu, Portugal
| | - Armando C. Duarte
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (A.C.D.); (T.A.P.R.-S.)
| | - Teresa A. P. Rocha-Santos
- Department of Chemistry & CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (A.C.D.); (T.A.P.R.-S.)
| |
Collapse
|