1
|
Zhu M, Xia K, Wang H, Li S, Zhang M, Wang H, Liang X, Chen K, Zhang Y. Growth of 1D Carbon Nanotube@Perovskite Core-Shell van der Waals Heterostructures through Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401681. [PMID: 38923771 DOI: 10.1002/smll.202401681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Perovskite is an emerging material with immense potential in the field of optoelectronics. 1D perovskite nanowires are crucial building blocks for the development of optoelectronic devices. However, producing perovskite nanowires with high quality and controlled alignment is challenging. In this study, the direct epitaxial growth of perovskite on oriented carbon nanotube (CNT) templates is presented through a chemical vapor deposition method. The deposition process of lead iodide and methylammonium iodide is systematically investigated, and a layer plus island growth mechanism is proposed to interpret the experimental observations. The aligned long CNTs serve as 1D templates and allow the growth of CNT@perovskite core-shell heterostructure with a high aspect ratio to withstand large deformation. The obtained 1D perovskite materials can be easily manipulated and transferred, enabling the facile preparation of microscale flexible devices. For proof of concept, a photodetector based on an individual CNT@methylammonium lead iodide heterostructure is fabricated. This work provides a new approach to prepare 1D hetero-nanostructure and may inspire the design of novel flexible nanophotodetectors.
Collapse
Affiliation(s)
- Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kailun Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingchao Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huimin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Future Technology, School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
3
|
Zhou K, Tang L, Zhu C, Tang J, Su H, Luo L, Chen L, Zeng D. Recent Advances in Structure Design and Application of Metal Halide Perovskite-Based Gas Sensor. ACS Sens 2024; 9:4425-4449. [PMID: 39185676 DOI: 10.1021/acssensors.4c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Metal halide perovskites (MHPs) are emerging gas-sensing materials and have attracted considerable attention in gas sensors due to their unique bandgap structure and tunable optoelectronic properties. The past decade has witnessed significant developments in the gas-sensing field; however, their intrinsic structural instability and ambiguous gas-sensing mechanisms hamper their practical applications. Herein, we summarize the recent advances in MHP-based gas sensors. The physicochemical properties of MHPs are discussed at first. The structure design, including dimension design and engineering design, is overviewed as well as their fabrication methods, and we put forward our insights into the gas-sensing mechanism of MHPs. It is believed that enhanced understanding of gas-sensing mechanisms of MHPs are helpful for their application as gas-sensing materials, and structure design can enhance their stability, sensing sensitivity, and selectivity to target gases as gas sensors. Subsequently, the latest developments in MHP-based gas sensors are summarized according to their different application scenarios. Finally, we conclude with the current status and challenges in this field and propose future perspectives.
Collapse
Affiliation(s)
- Kechen Zhou
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lu Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Chaoqi Zhu
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Jiahong Tang
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Huiyu Su
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Lingfei Luo
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Liyan Chen
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| | - Dawen Zeng
- State Key Laboratory of Materials Processing and Die Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), No. 1037, Luoyu Road, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Ma X, Zhang X, Gao M, Wang Y, Li G. Green Preparation of S, N Co-Doped Low-Dimensional C Nanoribbon/C Dot Composites and Their Optoelectronic Response Properties in the Visible and NIR Regions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4167. [PMID: 39274557 PMCID: PMC11395812 DOI: 10.3390/ma17174167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
The green production of nanocomposites holds great potential for the development of new materials. Graphene is an important class of carbon-based materials. Despite its high carrier mobility, it has low light absorption and is a zero-bandgap material. In order to tune the bandgap and improve the light absorption, S, N co-doped low-dimensional C/C nanocomposites with polymer and graphene oxide nanoribbons (the graphene oxide nanoribbons were prepared by open zipping of carbon nanotubes in a previous study) were synthesized by one-pot carbonization through dimensional-interface and phase-interface tailoring of nanocomposites in this paper. The resulting C/C nanocomposites were coated on untreated A4 printing paper and the optoelectronic properties were investigated. The results showed that the S, N co-doped C/C nanoribbon/carbon dot hybrid exhibited enhanced photocurrent signals of the typical 650, 808, 980, and 1064 nm light sources and rapid interfacial charge transfer compared to the N-doped counterpart. These results can be attributed to the introduction of lone electron pairs of S, N elements, resulting in more transition energy and the defect passivation of carbon materials. In addition, the nanocomposite also exhibited some electrical switching response to the applied strain. The photophysical and doping mechanisms are discussed. This study provides a facile and green chemical approach to prepare hybrid materials with external stimuli response and multifunctionality. It provides some valuable information for the design of C/C functional nanocomposites through dimensional-interface and phase-interface tailoring and the interdisciplinary applications.
Collapse
Affiliation(s)
- Xingfa Ma
- School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China
| | - Xintao Zhang
- School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China
| | - Mingjun Gao
- School of Environmental and Material Engineering, Center of Advanced Functional Materials, Yantai University, Yantai 264005, China
| | - You Wang
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| | - Guang Li
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Xu Z, Pan X, Lu H, Lu Q, Liang Y, He Z, Zhu Y, Yu Y, Wu W, Han X, Pan C. Surface Energy-Assisted Patterning of Vapor Deposited All-Inorganic Perovskite Arrays for Wearable Optoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402635. [PMID: 38639419 PMCID: PMC11220711 DOI: 10.1002/advs.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 04/20/2024]
Abstract
Solution-based methods for fabricating all-inorganic perovskite film arrays often suffer from limited control over nucleation and crystallization, resulting in poor homogeneity and coverage. To improve film quality, advanced vapor deposition techniques are employed for continuous film. Here, the vapor deposition strategy to the all-inorganic perovskite films array, enabling area-selective deposition of perovskite through substrate modulation is expanded. It can yield a high-quality perovskite film array with different pixel shapes, various perovskite compositions, and a high resolution of 423 dpi. The resulting photodetector arrays exhibit remarkable optoelectronic performance with an on/off ratio of 13 887 and responsivity of 47.5 A W-1. The device also displays long-term stability in a damp condition for up to 12 h. Moreover, a pulse monitoring sensor based on the perovskite films array demonstrates stable monitoring for pulse signals after being worn for 12 h and with a low illumination of 0.055 mW cm-2, highlighting the potential application in wearable optoelectronic devices.
Collapse
Affiliation(s)
- Zhangsheng Xu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiaojun Pan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Hui Lu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiuchun Lu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Yegang Liang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Zeping He
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yizhi Zhu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Yang Yu
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
| | - Wenqiang Wu
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
| | - Xun Han
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong Kong999077P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- Institute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060P. R. China
- Institute of Atomic ManufacturingBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
6
|
Abbas K, Ji P, Ullah N, Shafique S, Zhang Z, Ameer MF, Qin S, Yang S. Graphene photodetectors integrated with silicon and perovskite quantum dots. MICROSYSTEMS & NANOENGINEERING 2024; 10:81. [PMID: 38911343 PMCID: PMC11190230 DOI: 10.1038/s41378-024-00722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024]
Abstract
Photodetectors (PDs) play a crucial role in imaging, sensing, communication systems, etc. Graphene (Gr), a leading two-dimensional material, has demonstrated significant potential for photodetection in recent years. However, its relatively weak interaction with light poses challenges for practical applications. The integration of silicon (Si) and perovskite quantum dots (PQDs) has opened new avenues for Gr in the realm of next-generation optoelectronics. This review provides a comprehensive investigation of Gr/Si Schottky junction PDs and Gr/PQD hybrid PDs as well as their heterostructures. The operating principles, design, fabrication, optimization strategies, and typical applications of these devices are studied and summarized. Through these discussions, we aim to illuminate the current challenges and offer insights into future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Kashif Abbas
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Peirui Ji
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Naveed Ullah
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Shareen Shafique
- Department of Microelectronic Science and Engineering, Laboratory of Clean Energy Storage and Conversion, School of Physical Science and Technology, Ningbo Collaborative Innovation Center of Nonlinear Calamity System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211 China
| | - Ze Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Muhammad Faizan Ameer
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Shenghan Qin
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Shuming Yang
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, 710049 China
| |
Collapse
|
7
|
Xu J, Wang Q, Shen M, Yang Y, Liu H, Yuan X, Zhang Y, Liu K, Cai S, Huang Y, Ren X. Demonstration of a 3D-Assembled Dual-Mode Photodetector Based on Tubular Graphene/III-V Semiconductors Heterostructure and Coplanar Three Electrodes. ACS NANO 2024; 18:14978-14988. [PMID: 38805401 DOI: 10.1021/acsnano.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
3D assembly technology is a cutting-edge methodology for constructing high-performance and multifunctional photodetectors since some attractive photodetection features such as light trapping effect, omnidirectional ability, and high spatial resolution can be introduced. However, there has not been any report of 3D-assembled multimode photodetectors owing to the lack of design and fabrication guideline of electrodes serving for 3D heterostructures. In this study, a 3D-assembled dual-mode photodetector (3DdmPD) was realized successfully via the clever electrical contact between the rolled-up tubular graphene/GaAs/InGaAs heterostructure and planar metal electrode. Arbitrary switching of three coplanar electrodes makes the as-fabricated tubular 3D photodetector work at the unbiased photodiode mode, which is suitable for energy conservation high-speed photodetection, or the biased photoconductive mode, which favors extremely weak light photodetection, fully showing the advantages of multifunctional detection. In more detail, the Ilight/Idark ratio reached as high as 2 × 104, and a responsivity of 42.3 mA/W, a detectivity of 1.5 × 1010 Jones, as well as a rising/falling time (τr/τf) of 360/370 μs were achieved under the self-driven photodiode mode. Excitingly, 3DdmPD shows omnidirectional photodetection ability at the same time. When 3DdmPD works at the photoconductive mode with 5 V bias, its responsivity is extremely high as 7.9 × 104 A/W and corresponding detectivity is increased to 1.0 × 1011 Jones. Benefiting from the totally independent coplanar electrodes, 3DdmPD is much more easily integrated as arrays that are expected to offer the function of high-speed omnidirectional image-sensing with ultralow power consumption than the planar counterparts which share communal bottom electrodes. We believe that our work can contribute to the progress of 3D-assembled optoelectronic devices.
Collapse
Affiliation(s)
- Jiyu Xu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Mingyang Shen
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yubo Yang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xueguang Yuan
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yangan Zhang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Kai Liu
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shiwei Cai
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yongqing Huang
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Xiaomin Ren
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
8
|
Liu X, Geng X, Dun G, Wang Z, Du J, Xie D, Yang Y, Ren T. Single Crystal Perovskite/Graphene Self-Driven Photodetector with Fast Response Speed. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2599. [PMID: 38893863 PMCID: PMC11173920 DOI: 10.3390/ma17112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 μs by virtue of its high-quality interface, which greatly enhances electron-hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianling Ren
- The Beijing National Research Center for Information Science and Technology (BNRist), School of Integrated Circuits, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Shen X, Wu Y, Dang C, Li P, Guo P. Direct chemical-vapor-deposition growth of alloyed perovskite microcrystals for tunable emissions. NANOTECHNOLOGY 2024; 35:185704. [PMID: 38271736 DOI: 10.1088/1361-6528/ad22af] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
Tunable composition of perovskite micro/nanostructures are perfect candidate for the designing of multifunctional optoelectronic circuits. Especially, integrated polychromatic luminescence based on the perovskite materials along a single substrate or chip is essential to the integrated photonic devices and multicolor displays. Here, we reported a synthesis of composition tunable CsPbI3(1-x)Br3x(X = 0.65-0.9) perovskite microstructures on a single substrate via a magnetic-pulling CVD method. The PL emissions can be changed gradually from green (558 nm, 2.23 eV) to red (610 nm, 2.03 eV) under a focused 375 nm laser illumination. Furthermore, these composition-graded alloyed perovskite microcrystals show stable emissions after six months in air, which may find applications in multicolor display and broad band light sources in the future.
Collapse
Affiliation(s)
- Xia Shen
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Yu Wu
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Chanjuan Dang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- School of Physics and Electronic Science, Shanxi Datong University, Datong 037009, People's Republic of China
| | - Pu Li
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Pengfei Guo
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
10
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Li Y, Gui P, Wei S, Sun Y, Yang L, Hu Y, Chen Z, Wang S, Zeng W, Ren X, Huang Z. Template-Assisted Synthesis of 2D Perovskite Grating Single Crystal Films at Low Temperatures for UV Polarization-Sensitive Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2305207. [PMID: 37963824 DOI: 10.1002/smll.202305207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Indexed: 11/16/2023]
Abstract
2D perovskites have attracted tremendous attention due to their superior optoelectronic properties and potential applications in optoelectronic devices. Especially, the larger bandgap of 2D perovskite means that they are suitable for UV photodetection. However, the layered structure of 2D perovskites hinders the interlayer carrier transport, which limits the improvement of device performance. Therefore, nanoscale structures are normally used to enhance the light absorption ability, which is an effective strategy to improve the photocurrent in 2D perovskite-based photodetectors. Herein, a template-assisted low-temperature method is proposed to fabricate 2D perovskite ((C6 H5 C2 H4 NH3 )2 PbBr4 , (PEA)2 PbBr4 ) grating single crystal films (GSCFs). The crystallinity of the (PEA)2 PbBr4 GSCFs is significantly improved due to the slow evaporation of the precursor solution under low temperatures. Based on this high crystalline quality and extremely ordered microstructures, the metal-semiconductor-metal photodetectors are assembled. Finite-different time-domain (FDTD) simulation and experiment indicate that the GSCF-based photodetectors exhibit significantly improved performance in comparison with the plane devices. The optimized 2D perovskite photodetectors are sensitive to UV light and demonstrate a responsivity and detectivity of 28.6 mA W-1 and 2.4 × 1011 Jones, respectively. Interestingly, the photocurrent of this photodetector varies as the angle of the incident polarized light, resulting in a high polarization ratio of 1.12.
Collapse
Affiliation(s)
- Yanhui Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Pengbin Gui
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Shengyang Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Yanming Sun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Liangpan Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Yali Hu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Zhiliang Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Siliang Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Wei Zeng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Xingang Ren
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| | - Zhixiang Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, No. 111 Jiulong Road, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
12
|
Lu H, Wu W, He Z, Han X, Pan C. Recent progress in construction methods and applications of perovskite photodetector arrays. NANOSCALE HORIZONS 2023; 8:1014-1033. [PMID: 37337833 DOI: 10.1039/d3nh00119a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Metal halide perovskites are considered promising materials for next-generation optoelectronic devices due to their excellent optoelectronic performances and simple solution preparation process. Precise micro/nano-scale patterning techniques enable perovskite materials to be used for array integration of photodetectors. In this review, the device types of perovskite-based photodetectors are introduced and the structural characteristics and corresponding device performances are analyzed. Then, the typical construction methods suitable for the fabrication of perovskite photodetector arrays are highlighted, including surface treatment technology, template-assisted construction, inkjet printing technology, and modified photolithography. Furthermore, the current development trends and their applications in image sensing of perovskite photodetector arrays are summarized. Finally, major challenges are presented to guide the development of perovskite photodetector arrays.
Collapse
Affiliation(s)
- Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zeping He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311200, China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| |
Collapse
|
13
|
Hu L, Deng J, Xie Y, Qian F, Dong Y, Xu C. In Situ Growth of Graphene on Polyimide for High-Responsivity Flexible PbS-Graphene Photodetectors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1339. [PMID: 37110924 PMCID: PMC10147023 DOI: 10.3390/nano13081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Graphene is an ideal material for flexible optoelectronic devices due to its excellent electrical and optical properties. However, the extremely high growth temperature of graphene has greatly limited the direct fabrication of graphene-based devices on flexible substrates. Here, we have realized in situ growth of graphene on a flexible polyimide substrate. Based on the multi-temperature-zone chemical vapor deposition cooperated with bonding a Cu-foil catalyst onto the substrate, the growth temperature of graphene was controlled at only 300 °C, enabling the structural stability of polyimide during growth. Thus, large-area high-quality monolayer graphene film was successfully in situ grown on polyimide. Furthermore, a PbS-graphene flexible photodetector was fabricated using the graphene. The responsivity of the device reached 105 A/W with 792 nm laser illumination. The in-situ growth ensures good contact between graphene and substrate; therefore, the device performance can remain stable after multiple bending. Our results provide a highly reliable and mass-producible path for graphene-based flexible devices.
Collapse
Affiliation(s)
- Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Jun Deng
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Fengsong Qian
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Yibo Dong
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| |
Collapse
|
14
|
Lu Q, Zhang Y, Yang G, Xiong M, Wu W, Xu Z, Lu H, Liang Y, He Z, Yu Y, Mo X, Han X, Pan C. Large-Scale, Uniform-Patterned CsCu 2 I 3 Films for Flexible Solar-Blind Photodetectors Array with Ultraweak Light Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300364. [PMID: 36987976 DOI: 10.1002/smll.202300364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Cesium copper halide perovskite is one of the promising materials for solar-blind light detection. However, most of the cesium copper halide perovskite-based photodetectors (PDs) are focused on ultraviolet A detection and realized on the rigid substrate in the single device configuration. Here, a flexible solar-blind PDs array (10 × 10 pixels) based on the CsCu2 I3 film patterns for ultraweak light sensing and light distribution imaging is reported. Large-scale CsCu2 I3 film arrays are synthesized with various shapes and uniform dimensions through a simple vacuum-heating-assisted solution method. Benefiting from excellent air stability and superior resistance to the photodegrading of the CsCu2 I3 film, the array device exhibits long-term stable photoswitching behavior for 8 h and ultralow light detection capability to resolve the light intensity of 6.1 nW cm-2 with a high responsivity of 62 A W-1 , and the array device can acquire clear images of "G", "X", and "U" showing the input light distribution. Moreover, the flame detection and warning system based on a curved solar-blind PDs array is demonstrated, which can be used for multi-flame monitoring and locating. These results can encourage potential applications of the CsCu2 I3 film-based PDs array in the field of optical communication and environment monitoring.
Collapse
Affiliation(s)
- Qiuchun Lu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanlin Yang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Meiling Xiong
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wenqiang Wu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Lu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yegang Liang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zeping He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Yu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Xiaoming Mo
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xun Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Caofeng Pan
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
15
|
Nguyen DB, Ha VP, Vuong VD, Chien YH, Le TV, Chu CY. Simulation and Verification of the Direct Current Electric Field on Fabricating High Porosity f-MWCNTs Thin Films by Electrophoretic Deposition Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3883-3894. [PMID: 36898055 DOI: 10.1021/acs.langmuir.2c03116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrophoretic deposition (EPD) is the potential process in high porosity thin films' fabrication or complex surface coating for perovskite photovoltaics. Here, the electrostatic simulation is introduced to optimize the EPD cell design for the cathodic EPD process based on functionalized multiwalled carbon nanotubes (f-MWCNTs). The similarity between the thin film structure and the electric field simulation is evaluated by scanning electron microscopy (SEM) and atomic force microscopy (AFM) results. The thin-film surface at the edge has a higher roughness (Ra) compared to the center position (16.48 > 10.26 nm). The f-MWCNTs at the edge position tend to be twisted and bent due to the torque of the electric field. The Raman results show that f-MWCNTs with low defect density are more easily to be positively charged and deposited on the ITO surface. The distribution of oxygen and aluminum atoms in the thin film reveals that the aluminum atoms tend to have adsorption/electrostatic attraction to the interlayer defect positions of f-MWCNTs without individually depositing onto the cathode. Finally, this study can reduce the cost and time for the scale-up process by optimizing the input parameters for the complete cathodic electrophoretic deposition process through electric field inspection.
Collapse
Affiliation(s)
- Duc-Binh Nguyen
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan
- Institute of Green Products, Feng Chia University, Taichung City, 40724, Taiwan
| | - Vinh-Phuc Ha
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 740500, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 740500, Vietnam
| | - Vinh-Dat Vuong
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 740500, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 740500, Vietnam
| | - Yi-Hsin Chien
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 40724, Taiwan
| | - Thang Van Le
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, 740500, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 740500, Vietnam
| | - Chen-Yeon Chu
- Institute of Green Products, Feng Chia University, Taichung City, 40724, Taiwan
| |
Collapse
|
16
|
Zhao T, Guo J, Li T, Wang Z, Peng M, Zhong F, Chen Y, Yu Y, Xu T, Xie R, Gao P, Wang X, Hu W. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem Soc Rev 2023; 52:1650-1671. [PMID: 36744507 DOI: 10.1039/d2cs00657j] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The fabrication of wafer-scale two-dimensional (2D) materials is a prerequisite and important step for their industrial applications. Chemical vapor deposition (CVD) is the most promising approach to produce high-quality films in a scalable way. Recent breakthroughs in the epitaxy of wafer-scale single-crystalline graphene, hexagonal boron nitride, and transition-metal dichalcogenides highlight the pivotal roles of substrate engineering by lattice orientation, surface steps, and energy considerations. This review focuses on the existing strategies and underlying mechanisms, and discusses future directions in epitaxial substrate engineering to deliver wafer-scale 2D materials for integrated electronics and photonics.
Collapse
Affiliation(s)
- Tiange Zhao
- School of Materials, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China. .,State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Jiaxiang Guo
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Taotao Li
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Meng Peng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Fang Zhong
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Yue Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Yiye Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Tengfei Xu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Runzhang Xie
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| | - Pingqi Gao
- School of Materials, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xinran Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,School of Integrated Circuits, Nanjing University, Suzhou, China.,Suzhou Laboratory, Suzhou, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, 500 Yutian Road, Shanghai 200083, China.
| |
Collapse
|
17
|
Pang J, Peng S, Hou C, Zhao H, Fan Y, Ye C, Zhang N, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Liu H, Cuniberti G. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sens 2023; 8:482-514. [PMID: 36656873 DOI: 10.1021/acssensors.2c02790] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene remains of great interest in biomedical applications because of biocompatibility. Diseases relating to human senses interfere with life satisfaction and happiness. Therefore, the restoration by artificial organs or sensory devices may bring a bright future by the recovery of senses in patients. In this review, we update the most recent progress in graphene based sensors for mimicking human senses such as artificial retina for image sensors, artificial eardrums, gas sensors, chemical sensors, and tactile sensors. The brain-like processors are discussed based on conventional transistors as well as memristor related neuromorphic computing. The brain-machine interface is introduced for providing a single pathway. Besides, the artificial muscles based on graphene are summarized in the means of actuators in order to react to the physical world. Future opportunities remain for elevating the performances of human-like sensors and their clinical applications.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center and Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing 100088, People's Republic of China
| | - Yingju Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking and People's Republic of China School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, No. 3501 Daxue Road, Jinan 250353, People's Republic of China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education) and School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, D-01171, Germany.,College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland.,Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany.,Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.,State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
18
|
Aminzare M, Jiang J, Mandl GA, Mahshid S, Capobianco JA, Dorval Courchesne NM. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. NANOSCALE 2023; 15:2997-3031. [PMID: 36722934 DOI: 10.1039/d2nr05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Jennifer Jiang
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Macdonald Engineering Building, Room 355, Montréal, QC, H3A 0C3, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|
19
|
Fu C, Li ZY, Wang J, Zhang X, Liang FX, Lin DH, Shi XF, Fang QL, Luo LB. A Simple-Structured Perovskite Wavelength Sensor for Full-Color Imaging Application. NANO LETTERS 2023; 23:533-540. [PMID: 36595350 DOI: 10.1021/acs.nanolett.2c03932] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, simple-structured wavelength sensors were developed by depositing two back-to-back Au/MAPbI3/Au photodetectors on an MAPbI3 single crystal. This sensor could quantitatively distinguish wavelengths. Further device analysis showed that both photodetectors possess entirely disparate optoelectronic properties. Consequently, the as-developed wavelength sensor could accurately distinguish incident-light wavelengths ranging from 265 to 860 nm with a resolution of less than 1.5 nm based on the relation between the photocurrent ratios of both photodetectors and the incident light wavelengths. Notably, a high resolution and wide detection range are among the optimum reported values for such sensors and enable full-color imaging. Furthermore, technology computer-aided design (TCAD) simulations showed that a mechanism involved in distinguishing wavelengths is attributed to the wavelength-dependent photon generation rate in MAPbI3 single crystals. The high-performance MAPbI3 wavelength sensor can potentially drive the research progress of perovskites in wavelength recognition and full-color imaging.
Collapse
Affiliation(s)
- Can Fu
- School of Microelectronics, Hefei University of Technology, Hefei230009, China
| | - Zhi-Yuan Li
- School of Microelectronics, Hefei University of Technology, Hefei230009, China
| | - Jiang Wang
- School of Microelectronics, Hefei University of Technology, Hefei230009, China
| | - Xiang Zhang
- School of Microelectronics, Hefei University of Technology, Hefei230009, China
| | - Feng-Xia Liang
- School of Microelectronics, Hefei University of Technology, Hefei230009, China
| | - Di-Hua Lin
- School of Physics, Hefei University of Technology, Hefei230009, China
| | - Xiao-Feng Shi
- School of Computer Science and Information Engineering, Hefei University of Technology, Hefei230009, China
- School of Computer and Information Engineering, Fuyang Normal University, Fuyang236037, China
| | - Qun-Ling Fang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei230009, China
| | - Lin-Bao Luo
- School of Microelectronics, Hefei University of Technology, Hefei230009, China
| |
Collapse
|
20
|
Alipour S, Hassani M, Hosseini SMH, Mousavi-Khoshdel SM. Facile preparation of covalently functionalized graphene with 2,4-dinitrophenylhydrazine and investigation of its characteristics. RSC Adv 2022; 13:558-569. [PMID: 36605623 PMCID: PMC9772862 DOI: 10.1039/d2ra06343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
This article reports a fast and easy method for simultaneously in situ reducing and functionalizing graphene oxide. 2,4-Dinitrophenylhydrazine hydrate salt molecules are reduced by graphene oxide by reacting with oxide groups on the surface and removing these groups, and 2,4-dinitrophenylhydrazone groups are replaced with oxide groups. The synthesized materials have been investigated using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and UV absorption. Also, the morphology has been examined with a scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) analysis. The result of the photocurrent response and electrochemical behavior of the samples through cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS) have been analyzed to investigate the effect of physical and chemical changes compared to graphene.
Collapse
Affiliation(s)
- S Alipour
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - M Hassani
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - S M H Hosseini
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| | - S M Mousavi-Khoshdel
- Department of Chemistry, Iran University of Science and Technology (IUST) Narmak Tehran Iran +982177240480 +982177240480
| |
Collapse
|
21
|
Gao Y, Zhao C, Pu K, He M, Cai W, Tang MC, Kang F, Yip HL, Wei G. Low-voltage-modulated perovskite/organic dual-band photodetectors for visible and near-infrared imaging. Sci Bull (Beijing) 2022; 67:1982-1990. [PMID: 36546208 DOI: 10.1016/j.scib.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023]
Abstract
Visible and near-infrared (NIR) light dual-band photodetectors (PDs) have potential applications in signal detection, bioimaging, optical communications and safety monitoring. Herein, we report an ultrafast perovskite/organic heterojunction dual-mode PD with a voltage-modulated photoresponse range in visible and NIR spectra. The PD, comprising a perovskite layer to absorb visible light (500-810 nm) and an organic bulk heterojunction layer for NIR light absorption (810-950 nm), exhibited a switchable spectral response in the visible or NIR bands. The voltage-modulated visible and NIR photoresponses of the PD were attributable to controlled charge photogeneration in perovskite and organic blend thin films under different bias polarities. The device exhibited peak responsivities of 93.5 and 102.2 mA/W in the visible and NIR bands, respectively; a high detectivity of 4.3 × 109 Jones (at forward bias of 0.7 V and incident 625 nm light) and 1.6 × 1012 Jones (at reverse bias of -1.5 V and incident 900 nm light); a fast microsecond response time; and a wide dynamic range (>120 dB) both in the visible mode and NIR mode. Also, this voltage-modulated dual-band PD shows promising applications in visible light and NIR imaging, which is proven by demonstrating a PD array with 25 pixels (5 × 5).
Collapse
Affiliation(s)
- Yu Gao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Cong Zhao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Kai Pu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Miao He
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Wanqing Cai
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Man-Chung Tang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Feiyu Kang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China; Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518000, China.
| |
Collapse
|
22
|
Dang S, Zhou J, Ye H, Peng F, Wei Y, Li W, Wang X, He Y. Protocol for fabricating a photonic structure consisting of ZnO/Ag/ZnO film perforated with 2D periodic apertures based on photolithography technology. STAR Protoc 2022; 3:101242. [PMID: 35310071 PMCID: PMC8931432 DOI: 10.1016/j.xpro.2022.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A ZnO/Ag/ZnO film with 2D periodic apertures can have a high visible transmittance and low emittances in atmospheric windows for visible-infrared compatible camouflage and a high transmittance in 5-8 μm for heat dissipation by radiation. This following protocol details the fabrication process of such a photonic structure based on photolithography technology. Also described are the related challenges and troubleshooting steps. For complete details on the use and execution of this protocol, please refer to Dang and Ye (2021).
Collapse
Affiliation(s)
- Saichao Dang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei 230027, People’s Republic of China
| | - Jiayu Zhou
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei 230027, People’s Republic of China
| | - Hong Ye
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China (USTC), Hefei 230027, People’s Republic of China
| | - Fangfang Peng
- USTC Center for Micro and Nanoscale Research and Fabrication, Hefei 230027, People’s Republic of China
| | - Yu Wei
- USTC Center for Micro and Nanoscale Research and Fabrication, Hefei 230027, People’s Republic of China
| | - Wenjuan Li
- USTC Center for Micro and Nanoscale Research and Fabrication, Hefei 230027, People’s Republic of China
| | - Xiuxia Wang
- USTC Center for Micro and Nanoscale Research and Fabrication, Hefei 230027, People’s Republic of China
| | - Yizhao He
- USTC Center for Micro and Nanoscale Research and Fabrication, Hefei 230027, People’s Republic of China
| |
Collapse
|
23
|
Liu Y, Tao J, Yang W, Zhang Y, Li J, Xie H, Bao R, Gao W, Pan C. Biodegradable, Breathable Leaf Vein-Based Tactile Sensors with Tunable Sensitivity and Sensing Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106906. [PMID: 35199486 DOI: 10.1002/smll.202106906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/19/2021] [Indexed: 05/15/2023]
Abstract
Resistive pressure sensors have been widely studied for application in flexible wearable devices due to their outstanding pressure-sensitive characteristics. In addition to the outstanding electrical performance, environmental friendliness, breathability, and wearable comfortability also deserve more attention. Here, a biodegradable, breathable multilayer pressure sensor based piezoresistive effect is presented. This pressure sensor is designed with all biodegradable materials, which show excellent biodegradability and breathability with a three-dimensional porous hierarchical structure. Moreover, due to the multilayer structure, the contact area of the pressure sensitive layers is greatly increased and the loading pressure can be distributed to each layer, so the pressure sensor shows excellent pressure-sensitive characteristics over a wide pressure sensing range (0.03-11.60 kPa) with a high sensitivity (6.33 kPa-1 ). Furthermore, the sensor is used as a human health monitoring equipment to monitor the human physiological signals and main joint movements, as well as be developed to detect different levels of pressure and further integrated into arrays for pressure imaging and a flexible musical keyboard. Considering the simple manufacturing process, the low cost, and the excellent performance, leaf vein-based pressure sensors provide a good concept for environmentally friendly wearable devices.
Collapse
Affiliation(s)
- Yue Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Juan Tao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenkai Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Jing Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Huilin Xie
- Sinoma Synthetic Crystals Co, Ltd, Beijing, 100018, P. R. China
| | - Rongrong Bao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| | - Wenchao Gao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Department of Civil Engineering, Monash University, Clayton, 3800, Australia
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
24
|
Guo L, Liu X, Gao L, Wang X, Zhao L, Zhang W, Wang S, Pan C, Yang Z. Ferro-Pyro-Phototronic Effect in Monocrystalline 2D Ferroelectric Perovskite for High-Sensitive, Self-Powered, and Stable Ultraviolet Photodetector. ACS NANO 2022; 16:1280-1290. [PMID: 34995467 DOI: 10.1021/acsnano.1c09119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2D hybrid perovskite ferroelectrics have drawn great attention in the field of photodetection, because the spontaneous polarization-induced built-in electric field can separate electron-hole pairs, and makes self-powered photodetection possible. However, most of the 2D hybrid perovskite-based photodetectors focused on the detection of visible light, and only a few reports realized the self-powered and sensitive ultraviolet (UV) detection using wide bandgap hybrid perovskites. Here, 2D ferroelectric PMA2PbCl4 monocrystalline microbelt (MMB)-based PDs are demonstrated. By using the ferro-pyro-phototronic effect, the self-powered Ag/Bi/2D PMA2PbCl4 MMB/Bi/Ag PDs show a high photoresponsivity up to 9 A/W under 320 nm laser illumination, which is much higher than those of previously reported self-powered UV PDs. Compared with responsivity induced by the photovoltaic effect, the responsivity induced by the ferro-pyro-phototronic effect is 128 times larger. The self-powered PD also shows fast response and recovery speed, with the rise time and fall time of 162 and 226 μs, respectively. More importantly, the 2D PMA2PbCl4 MMB-based PDs with Bi/Ag electrode exhibit significant stability when subjected to high humidity, continuous laser illumination, and thermal conditions. Our findings would shed light on the ferro-pyro-phototronic-effect-based devices, and provide a good method for high-performance UV detection.
Collapse
Affiliation(s)
- Linjuan Guo
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Xiu Liu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Linjie Gao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Xinzhan Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Lei Zhao
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Wei Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Shufang Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Zheng Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| |
Collapse
|
25
|
Zheng Z, Liu K, Chen X, Qiao B, Ma H, Liu D, Liu L, Shen D. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition. NANOTECHNOLOGY 2021; 32:475201. [PMID: 34371489 DOI: 10.1088/1361-6528/ac1bda] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/08/2021] [Indexed: 05/24/2023]
Abstract
Self-supporting ZnO nano-networks have been demonstrated by a substrate-free chemical vapor deposition process for the application as flexible ultraviolet (UV) photodetector. The device shows a responsivity of ∼300 mA W-1over a wide wavelength range from 254 to 365 nm and a high UV/visible rejection ratio of more than 104. More interestingly, a short 90%-10% decay time of <0.12 s can be observed in the air atmosphere, and the current can fully recover to its original dark value within 1 s after switching off the light. The quick response speed should be associated with the wire-wire junction barriers and the adsorption/desorption process of oxygen molecules on the oxygen vacancies near the surface of the ZnO. In addition, the photocurrent, the dark current and the response speed of the ZnO nano-networks flexible UV photodetector nearly stay the same under different bending conditions, suggesting the excellent photoelectric stability and repeatability. Such a simple and cheap way for fabricating self-supporting ZnO-based devices has broad application prospects in the fields of flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Zhiyao Zheng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kewei Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing Chen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Baoshi Qiao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hongyu Ma
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Deming Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Lei Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dezhen Shen
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
26
|
Wu W, Zhou M, Li D, Li S, Yang Z, Huo Z, Wu Y, Tan Y, Han X, Pan C, Pan A. A novel visible light sensing and recording system enabled by integration of photodetector and electrochromic devices. NANOSCALE 2021; 13:9177-9184. [PMID: 33988216 DOI: 10.1039/d1nr01805a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The integration of multiple electronic or optoelectronic devices is an effective strategy to use their unique functions to realize a specific goal. A state-of-the-art photodetector (PD) array can realize real-time image sensing, but the image information will disappear immediately with the removal of the light stimuli. Here, we design a visible light sensing and recording system by the integration of a perovskite PD array with a tungsten trioxide-based electrochromic device (ECD) array (10 × 10 pixels). The system can convert the received visible light signals into electrical signals to change the storable color of the corresponding pixels in the ECD array, thus realizing optical information recording in the form of the color display. As a conceptual demonstration, the system achieves the recording of the "H"-shaped visible light pattern projected to the active area of the PD array. Besides, after removing the illumination stimuli, the recording of the light pattern continues in the absence of the power supply owing to the "color memory effect". The recorded length can be regulated through the periods of illumination stimulation. The proof-of-concept system may have potential applications in image sensors, electronic eyes, and intelligent electronics.
Collapse
Affiliation(s)
- Wenqiang Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China. and CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Mengmeng Zhou
- ARC Research Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Shengman Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Zheng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Zhihao Huo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Yanqing Wu
- Institute of Microelectronics and Key Laboratory of Microelectronic Devices and Circuits (MOE) and Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| | - Yongwen Tan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| | - Xun Han
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, and College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
27
|
Affiliation(s)
- Rongrong Bao
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Center on Nanoenergy Research School of Physical Science and Technology Guangxi University Nanning Guangxi 530004 P. R. China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 100083 P. R. China
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332-0245 USA
| |
Collapse
|
28
|
Li Y, Shi Z, Liang W, Ma J, Chen X, Wu D, Tian Y, Li X, Shan C, Fang X. Recent advances toward environment-friendly photodetectors based on lead-free metal halide perovskites and perovskite derivatives. MATERIALS HORIZONS 2021; 8:1367-1389. [PMID: 34846447 DOI: 10.1039/d0mh01567a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, metal-halide perovskites have emerged as promising materials for photodetector (PD) applications owing to their superior optoelectronic properties, such as ambipolar charge transport characteristics, high carrier mobility, and so on. In the past few years, rapid progress in lead-based perovskite PDs has been witnessed. However, the critical environmental instability and lead-toxicity seriously hinder their further applications and commercialization. Therefore, searching for environmentally stable and lead-free halide perovskites (LFHPs) to address the above hurdles is certainly a worthwhile subject. In this review, we present a comprehensive overview of currently explored LFHPs with an emphasis on their crystal structures, optoelectronic properties, synthesis and modification methods, as well as the PD applications. LFHPs are classified into four categories according to the replacement strategies of Pb2+, including AB(ii)X3, A3B(iii)2X9, A2B(i)B(iii)'X6, and newly-emerging perovskite derivatives. Then, we give a demonstration of the preliminary achievements and limitations in environment-friendly PDs based on such LFHPs and perovskite derivatives, and also discuss their applications in biological synapses, imaging, and X-ray detection. With the perspective of their properties and current challenges, we provide an outlook for future directions in this rapidly evolving field to achieve high-quality LFHPs and perovskite derivatives for a broader range of fundamental research and practical applications.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Z, Wang S, Liu X, Chen Y, Su C, Tang Z, Li Y, Xing G. Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. SMALL METHODS 2021; 5:e2000937. [PMID: 34927847 DOI: 10.1002/smtd.202000937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Indexed: 05/24/2023]
Abstract
The past decade has witnessed the great success achieved by metal halide perovskites (MHPs) in photovoltaic and related fields. However, challenges still remain in further improving their performance, as well as, settling the stability issue for future commercialization. Recently, MHP/2D material heterostructures that combining MHPs with the low-cost and solution-processable 2D materials have demonstrated unprecedented improvement in both performance and stability due to the distinctive features at hetero-interface. The diverse fabrication techniques of MHPs and 2D materials allow them to be assembled as heterostructures with different configurations in a variety of ways. Moreover, the large families of MHPs and 2D materials provide the opportunity for the rational design and modification on compositions and functionalities of MHP/2D materials heterostructures. Herein, a comprehensive review of MHP/2D material heterostructures from syntheses to applications is presented. First, various fabrication techniques for MHP/2D material heterostructures are introduced by classifying them into solid-state methods and solution-processed methods. Then the applications of MHP/2D heterostructures in various fields including photodetectors, solar cells, and photocatalysis are summarized in detail. Finally, current challenges for the development of MHP/2D material heterostructures are highlighted, and future opportunities for the advancements in this research field are also provided.
Collapse
Affiliation(s)
- Zhipeng Zhang
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Sisi Wang
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center of Excellence for Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Ying Li
- International Collaborative Laboratory of 2D materials for Optoelectronic Science & Technology (ICL-2D MOST), Shenzhen University, Shenzhen, 518060, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| |
Collapse
|
30
|
Wu W, Han X, Li J, Wang X, Zhang Y, Huo Z, Chen Q, Sun X, Xu Z, Tan Y, Pan C, Pan A. Ultrathin and Conformable Lead Halide Perovskite Photodetector Arrays for Potential Application in Retina-Like Vision Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006006. [PMID: 33475208 DOI: 10.1002/adma.202006006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2020] [Indexed: 05/28/2023]
Abstract
Solution-processed lead halide perovskites are considered one of the promising materials for flexible optoelectronics. However, the array integration of ultrathin flexible perovskite photodetectors (PDs) remains a significant challenge limited by the incompatibility of perovskite materials with manufacturing techniques involving polar liquids. Here, an ultrathin (2.4 µm) and conformable perovskite-based PD array (10 × 10 pixels) with ultralight weight (3.12 g m-2 ) and excellent flexibility, is reported. Patterned all-inorganic CsPbBr3 perovskite films with precise pixel position, controllable morphology, and homogenous dimension, are synthesized by a vacuum-assisted drop-casting patterning process as the active layer. The use of waterproof parylene-C film as substrate and encapsulation layer effectively protects the perovskite films against penetration of polar liquids during the peeling-off process. Benefitting from the encapsulation and ultrathin property, the device exhibits long-term stability in the ambient environment, and robust mechanical stability under bending or 50% compressive strain. More importantly, the ultrathin flexible PD arrays conforming to hemispherical support realize imaging of light distribution, indicating the potential applications in retina-like vision sensing.
Collapse
Affiliation(s)
- Wenqiang Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xun Han
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jing Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xiandi Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yufei Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhihao Huo
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Qiushuo Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Xidi Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Zhangsheng Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yongwen Tan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
31
|
Peng D, Liu X, Pan C. Epitaxial lift-off for controllable single-crystalline perovskites. Sci Bull (Beijing) 2021; 66:6-8. [PMID: 36654314 DOI: 10.1016/j.scib.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dengfeng Peng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Caofeng Pan
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|