1
|
Zhao K, Chen P, Wang D, Zhou R, Ma G, Liu Y. A Multiform Heterogeneity Framework for Alzheimer's Disease Based on Multimodal Neuroimaging. Biol Psychiatry 2024:S0006-3223(24)01817-1. [PMID: 39725298 DOI: 10.1016/j.biopsych.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Understanding the heterogeneity of Alzheimer's disease (AD) is crucial for advancing precision medicine specifically tailored to this disorder. Recent research has deepened our understanding of AD heterogeneity, yet translating these insights from bench to bedside via neuroimaging heterogeneity frameworks presents significant challenges. In this review, we systematically revisit prior studies and summarize the existing methodology of data-driven neuroimaging studies for AD heterogeneity. We organized the present methodology into (i) a subtyping cluster strategy for AD patients, and we also subdivided it into subtyping analysis based on cross-sectional multimodal neuroimaging profiles, and the identification of long-term disease progression from short-term datasets; (ii) a stratified strategy that integrates neuroimaging measures with biomarkers; (iii) individual-specific abnormal patterns based on the Normative model. We then evaluated the characteristics of these studies along two dimensions: (i) the understanding of pathology and (ii) clinical application. We systematically address the limitations, challenges, and future directions of research into AD heterogeneity. Our goal is to enhance the neuroimaging heterogeneity framework for AD, facilitating its transition from bench to bedside.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Rongshen Zhou
- The School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Tixier F, Rodriguez D, Jones J, Martin L, Yassall A, Selvaraj B, Islam M, Ostendorf A, Hester ME, Ho ML. Radiomic detection of abnormal brain regions in tuberous sclerosis complex. Med Phys 2024; 51:9103-9114. [PMID: 39312593 DOI: 10.1002/mp.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Radiomics refers to the extraction of quantitative information from medical images and is most commonly utilized in oncology to provide ancillary information for solid tumor diagnosis, prognosis, and treatment response. The traditional radiomic pipeline involves segmentation of volumes of interest with comparison to normal brain. In other neurologic disorders, such as epilepsy, lesion delineation may be difficult or impossible due to poor anatomic definition, small size, and multifocal or diffuse distribution. Tuberous sclerosis complex (TSC) is a rare genetic disease in which brain magnetic resonance imaging (MRI) demonstrates multifocal abnormalities with variable imaging and epileptogenic features. PURPOSE The purpose of this study was to develop a radiomic workflow for identification of abnormal brain regions in TSC, using a whole-brain atlas-based approach with generation of heatmaps based on signal deviation from normal controls. METHODS This was a retrospective pilot study utilizing high-resolution whole-brain 3D FLAIR MRI datasets from retrospective enrollment of tuberous sclerosis complex (TSC) patients and normal controls. Subjects underwent MRI including high-resolution 3D FLAIR sequences. Preprocessing included skull stripping, coregistration, and intensity normalization. Using the Brainnetome and Harvard-Oxford atlases, brain regions were parcellated into 318 discrete regions. Expert neuroradiologists spatially labeled all tubers in TSC patients using ITK-SNAP. The pyradiomics toolbox was used to extract 88 radiomic features based on IBSI guidelines, comparing tuber-affected and non-tuber-affected parenchyma in TSC patients, as well as normal brain tissue in control patients. For model training and validation, regions with tubers from 20 TSC patients and 30 normal control subjects were randomly divided into two training sets (80%) and two validation sets (20%). Additional model testing was performed on a separate group of 20 healthy controls. LASSO (least absolute shrinkage and selection operator) was used to perform variable selection and regularization to identify regions containing tubers. Relevant radiomic features selected by LASSO were combined to produce a radiomic score ω, defined as the sum of squared differences from average control group values. Region-specific ω scores were converted to heat maps and spatially coregistered with brain MRI to reflect overall radiomic deviation from normal. RESULTS The proposed radiomic workflow allows for quantification of deviation from normal in 318 regions of the brain with the use of a summative radiomic score ω. This score can be used to generate spatially registered heatmaps to identify brain regions with radiomic abnormalities. The pilot study of TSC showed radiomic scores ω that were statistically different in regions containing tubers from regions without tubers/normal brain (p < 0.0001). Our model exhibits an AUC of 0.81 (95% confidence interval: 0.78-0.84) on the testing set, and the best threshold obtained on the training set, when applied to the testing set, allows us to identify regions with tubers with a specificity of 0.91 and a sensitivity of 0.60. CONCLUSION We describe a whole-brain atlas-based radiomic approach to identify abnormal brain regions in TSC patients. This approach may be helpful for identifying specific regions of interest based on relatively greater signal deviation, particularly in clinical scenarios with numerous or poorly defined anatomic lesions.
Collapse
Affiliation(s)
- Florent Tixier
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Diana Rodriguez
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jeremy Jones
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lisa Martin
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Anthony Yassall
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bhavani Selvaraj
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Monica Islam
- Department of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Adam Ostendorf
- Department of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark E Hester
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Columbus, Ohio, USA
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, Ohio, USA
| | - Mai-Lan Ho
- Department of Radiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
3
|
Yin TT, Cao MH, Yu JC, Shi TY, Mao XH, Wei XY, Jia ZZ. T1-Weighted Imaging-Based Hippocampal Radiomics in the Diagnosis of Alzheimer's Disease. Acad Radiol 2024; 31:5183-5192. [PMID: 38902110 DOI: 10.1016/j.acra.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
RATIONALE AND OBJECTIVES To investigate the potential of T1-weighted imaging (T1WI)-based hippocampal radiomics as imaging markers for the diagnosis of Alzheimer's disease (AD) and their efficacy in discriminating between mild cognitive impairment (MCI) and dementia in AD. METHODS A total of 126 AD patients underwent T1WI-based magnetic resonance imaging (MRI) examinations, along with 108 age-sex-matched healthy controls (HC). This was a retrospective, single-center study conducted from November 2021 to February 2023. AD patients were categorized into two groups based on disease progression and cognitive function: AD-MCI and dementia (AD-D). T1WI-based radiomics features of the bilateral hippocampi were extracted. To diagnose AD and differentiate between AD-MCI and AD-D, predictive models were developed using random forest (RF), logistic regression (LR), and support vector machine (SVM). We compared radiomics features between the AD and HC groups, as well as within the subgroups of AD-MCI and AD-D. Area under the curve (AUC), accuracy, sensitivity, and specificity were all used to assess model performance. Furthermore, correlations between radiomics features and Mini-Mental State Examination (MMSE) scores, tau protein phosphorylated at threonine 181 (P-tau-181), and amyloid β peptide1-42 (Aβ1-42) were analyzed. RESULTS The RF model demonstrated superior performance in distinguishing AD from HC (AUC=0.961, accuracy=90.8%, sensitivity=90.7%, specificity=90.9%) and in identifying AD-MCI and AD-D (AUC=0.875, accuracy=80.7%, sensitivity=87.2%, specificity=73.2%) compared to the other models. Additionally, radiomics features were correlated with MMSE scores, P-tau-181, and Aβ1-42 levels in AD. CONCLUSION T1WI-based hippocampal radiomics features are valuable for diagnosing AD and identifying AD-MCI and AD-D.
Collapse
Affiliation(s)
- Ting Ting Yin
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.)
| | - Mao Hong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (M.H.C.)
| | - Jun Cheng Yu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.)
| | - Ting Yan Shi
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.)
| | - Xiao Han Mao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.)
| | - Xin Yue Wei
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.)
| | - Zhong Zheng Jia
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China (T.T.Y., J.C.Y., T.Y.S., X.H.M., X.Y.W., Z.Z.J.).
| |
Collapse
|
4
|
Chen Y, Qi Y, Hu Y, Qiu X, Qiu T, Li S, Liu M, Jia Q, Sun B, Liu C, Li T, Le W. Integrated cerebellar radiomic-network model for predicting mild cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39535490 DOI: 10.1002/alz.14361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Pathological and neuroimaging alterations in the cerebellum of Alzheimer's disease (AD) patients have been documented. However, the role of cerebellum-derived radiomic and structural connectome modeling in the prediction of AD progression remains unclear. METHODS Radiomic features were extracted from magnetic resonance imaging (MRI) in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset (n = 1319) and an in-house dataset (n = 308). Integrated machine learning models were developed to predict the conversion risk of normal cognition (NC) to mild cognitive impairment (MCI) over a 6-year follow-up. RESULTS The cerebellar models outperformed hippocampal models in distinguishing MCI from NC and in predicting transitions from NC to MCI across both cohorts. Key predictors included textural features in the right III and left I and II lobules, and network properties in Vermis I and II, which were associated with cognitive decline in AD. DISCUSSION Cerebellum-derived radiomic-network modeling shows promise as a tool for early identification and prediction of disease progression during the preclinical stage of AD. HIGHLIGHTS Altered cerebellar radiomic features and topological networks were identified in the subjects with mild cognitive impairment (MCI). The cerebellar radiomic-network integrated models outperformed hippocampal models in distinguishing MCI from normal cognition. The cerebellar radiomic model effectively predicts MCI risk and can stratify individuals into distinct risk categories. Specific cerebellar radiomic features are associated with cognitive impairment across various stages of amyloid beta and tau pathology.
Collapse
Affiliation(s)
- Yini Chen
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiwei Qi
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiying Hu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xinhui Qiu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Tao Qiu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meichen Liu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qiqi Jia
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Bo Sun
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianbai Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weidong Le
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
5
|
Zhang D, Zong F, Mei Y, Zhao K, Qiu D, Xiong Z, Li X, Tang H, Zhang P, Zhang M, Zhang Y, Yu X, Wang Z, Liu Y, Sui B, Wang Y. Morphological similarity and white matter structural mapping of new daily persistent headache: a structural connectivity and tract-specific study. J Headache Pain 2024; 25:191. [PMID: 39497095 PMCID: PMC11533401 DOI: 10.1186/s10194-024-01899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND New daily persistent headache (NDPH) is a rare primary headache disorder characterized by daily and persistent sudden onset headaches. Specific abnormalities in gray matter and white matter structure are associated with pain, but have not been well studied in NDPH. The objective of this work is to explore the fiber tracts and structural connectivity, which can help reveal unique gray and white matter structural abnormalities in NDPH. METHODS The regional radiomics similarity networks were calculated from T1 weighted (T1w) MRI to depict the gray matter structure. The fiber connectivity matrices weighted by diffusion metrics like fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were built, meanwhile the fiber tracts were segmented by anatomically-guided superficial fiber segmentation (Anat-SFSeg) method to explore the white matter structure from diffusion MRI. The considerable different neuroimaging features between NDPH and healthy controls (HC) were extracted from the connectivity and tract-based analyses. Finally, decision tree regression was used to predict the clinical scores (i.e. pain intensity) from the above neuroimaging features. RESULTS T1w and diffusion MRI data were available in 51 participants after quality control: 22 patients with NDPH and 29 HCs. Significantly decreased morphological similarity was found between the right superior frontal gyrus and right hippocampus. The superficial white matter (SWM) showed significantly decreased FA in fiber tracts including the right superficial-frontal, left superficial-occipital, bilateral superficial-occipital-temporal (Sup-OT) and right superficial-temporal, meanwhile significant increased RD was found in the left Sup-OT. For the fiber connectivity, NDPH showed significantly decreased FA in the bilateral basal ganglion and temporal lobe, increased MD in the right frontal lobe, and increased RD in the right frontal lobe and left temporal-occipital lobe. Clinical scores could be predicted dominantly by the above significantly different neuroimaging features through decision tree regression. CONCLUSIONS Our research indicates the structural abnormalities of SWM and the neural pathways projected between regions like right hippocampus and left caudate nucleus, along with morphological similarity changes between the right superior frontal gyrus and right hippocampus, constitute the pathological features of NDPH. The decision tree regression demonstrates correlations between these structural changes and clinical scores.
Collapse
Affiliation(s)
- Di Zhang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Fangrong Zong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China.
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China.
| | - Yanliang Mei
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Dong Qiu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhonghua Xiong
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xiaoshuang Li
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hefei Tang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Peng Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Mantian Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yaqing Zhang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xueying Yu
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Zhe Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Xigang District, Dalian, Liaoning, 116011, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, No.10 Xitucheng Road, Haidian District, Beijing, 100876, China
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Hainan Lingshui Li'an International Education Innovation Pilot Zone, Lingshui, Hainan, 572426, China
| | - Binbin Sui
- Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
6
|
Jiang J, Zhao K, Li W, Zheng P, Jiang S, Ren Q, Duan Y, Yu H, Kang X, Li J, Hu K, Jiang T, Zhao M, Wang L, Yang S, Zhang H, Liu Y, Wang A, Liu Y, Xu J. Multiomics Reveals Biological Mechanisms Linking Macroscale Structural Covariance Network Dysfunction With Neuropsychiatric Symptoms Across the Alzheimer's Disease Continuum. Biol Psychiatry 2024:S0006-3223(24)01666-4. [PMID: 39419461 DOI: 10.1016/j.biopsych.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The highly heterogeneity of neuropsychiatric symptoms (NPSs) hinder further exploration of their role in neurobiological mechanisms and Alzheimer's disease (AD). We aimed to delineate NPS patterns based on brain macroscale connectomics to understand the biological mechanisms of NPSs on the AD continuum. METHODS We constructed Regional Radiomics Similarity Networks (R2SN) for 550 participants (AD with NPSs [AD-NPS, n=376], AD without NPSs [AD-nNPS, n=111], and normal controls [n=63]) from CIBL study. We identified R2SN connections associated with NPSs, and then cluster distinct subtypes of AD-NPS. An independent dataset (n=189) and internal validation were performed to assess the robustness of the NPS subtypes. Subsequent multiomics analysis were performed to assess the distinct clinical phenotype and biological mechanisms in each NPS subtype. RESULTS AD-NPS patients were clustered into severe (n=187), moderate (n=87), and mild NPS (n=102) subtypes, each exhibiting distinct brain network dysfunction patterns. A high level of consistency in clustering NPS was internally and externally validated. Severe and moderate NPSs showed significant cognitive impairment, increased plasma p-Tau181 levels, extensive decreased brain volume and cortical thickness, and accelerated cognitive decline. Gene set enrichment analysis (GSEA) revealed enrichment of differentially expressed genes in ion transport and synaptic transmission with variations for each NPS subtype. Genome-wide association studies (GWAS) analysis defined the specific gene loci for each subtype of AD-NPS (i.e, logical memory), aligning with clinical manifestations and progression patterns. CONCLUSIONS This study identified and validated three distinct NPS subtypes, underscoring the role of NPSs in neurobiological mechanisms and progression of the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Peiyang Zheng
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huiying Yu
- School of Information Science and Engineering, Shandong Normal University, Jinan, 251100, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100876, China
| | - Junjie Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Ke Hu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100876, China
| | - Tianlin Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Huiying Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing 100070, China.
| |
Collapse
|
7
|
Zhao K, Wang D, Wang D, Chen P, Wei Y, Tu L, Chen Y, Tang Y, Yao H, Zhou B, Lu J, Wang P, Liao Z, Chen Y, Han Y, Zhang X, Liu Y. Macroscale connectome topographical structure reveals the biomechanisms of brain dysfunction in Alzheimer's disease. SCIENCE ADVANCES 2024; 10:eado8837. [PMID: 39392880 DOI: 10.1126/sciadv.ado8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
The intricate spatial configurations of brain networks offer essential insights into understanding the specific patterns of brain abnormalities and the underlying biological mechanisms associated with Alzheimer's disease (AD), normal aging, and other neurodegenerative disorders. This study investigated alterations in the topographical structure of the brain related to aging and neurodegenerative diseases by analyzing brain gradients derived from structural MRI data across multiple cohorts (n = 7323). The analysis identified distinct gradient patterns in AD, aging, and other neurodegenerative conditions. Gene enrichment analysis indicated that inorganic ion transmembrane transport was the most significant term in normal aging, while chemical synaptic transmission is a common enrichment term across various neurodegenerative diseases. Moreover, the findings show that each disorder exhibits unique dysfunctional neurophysiological characteristics. These insights are pivotal for elucidating the distinct biological mechanisms underlying AD, thereby enhancing our understanding of its unique clinical phenotypes in contrast to normal aging and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
- Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Jinan, China
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Jinan, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Center, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Liyun Tu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yuqi Chen
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Center, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Song Z, Li H, Zhang Y, Zhu C, Jiang M, Song L, Wang Y, Ouyang M, Hu F, Zheng Q. s 2MRI-ADNet: an interpretable deep learning framework integrating Euclidean-graph representations of Alzheimer's disease solely from structural MRI. MAGMA (NEW YORK, N.Y.) 2024; 37:845-857. [PMID: 38869733 DOI: 10.1007/s10334-024-01178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVE To establish a multi-dimensional representation solely on structural MRI (sMRI) for early diagnosis of AD. METHODS A total of 3377 participants' sMRI from four independent databases were retrospectively identified to construct an interpretable deep learning model that integrated multi-dimensional representations of AD solely on sMRI (called s2MRI-ADNet) by a dual-channel learning strategy of gray matter volume (GMV) from Euclidean space and the regional radiomics similarity network (R2SN) from graph space. Specifically, the GMV feature map learning channel (called GMV-Channel) was to take into consideration spatial information of both long-range spatial relations and detailed localization information, while the node feature and connectivity strength learning channel (called NFCS-Channel) was to characterize the graph-structured R2SN network by a separable learning strategy. RESULTS The s2MRI-ADNet achieved a superior classification accuracy of 92.1% and 91.4% under intra-database and inter-database cross-validation. The GMV-Channel and NFCS-Channel captured complementary group-discriminative brain regions, revealing a complementary interpretation of the multi-dimensional representation of brain structure in Euclidean and graph spaces respectively. Besides, the generalizable and reproducible interpretation of the multi-dimensional representation in capturing complementary group-discriminative brain regions revealed a significant correlation between the four independent databases (p < 0.05). Significant associations (p < 0.05) between attention scores and brain abnormality, between classification scores and clinical measure of cognitive ability, CSF biomarker, metabolism, and genetic risk score also provided solid neurobiological interpretation. CONCLUSION The s2MRI-ADNet solely on sMRI could leverage the complementary multi-dimensional representations of AD in Euclidean and graph spaces, and achieved superior performance in the early diagnosis of AD, facilitating its potential in both clinical translation and popularization.
Collapse
Affiliation(s)
- Zhiwei Song
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Honglun Li
- Department of Radiology, Yantai Yuhuangding Hospital Affiliated with Qingdao University Medical College, Yantai, 264099, China
| | - Yiyu Zhang
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Chuanzhen Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Minbo Jiang
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
| | - Limei Song
- School of Medical Imaging, Weifang Medical University, Weifang, 261000, China
| | - Yi Wang
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fang Hu
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
9
|
Sun Y, Wang P, Zhao K, Chen P, Qu Y, Li Z, Zhong S, Zhou B, Lu J, Zhang X, Wang D, Han Y, Yao H, Liu Y. Structure-function coupling reveals the brain hierarchical structure dysfunction in Alzheimer's disease: A multicenter study. Alzheimers Dement 2024; 20:6305-6315. [PMID: 39072981 PMCID: PMC11497717 DOI: 10.1002/alz.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative condition characterized by cognitive decline. To date, the specific dysfunction in the brain's hierarchical structure in AD remains unclear. METHODS We introduced the structural decoupling index (SDI), based on a multi-site data set comprising functional and diffusion-weighted magnetic resonance imaging data from 793 subjects, to assess their brain hierarchy. RESULTS Compared to normal controls (NCs), individuals with AD exhibited increased SDI within the posterior superior temporal sulcus, insular gyrus, precuneus, hippocampus, amygdala, postcentral gyrus, and cingulate gyrus; meanwhile, the patients with AD demonstrated decreased SDI in the frontal lobe. The SDI in those regions also showed a significant correlation with cognitive ability. Moreover, the SDI was a robust AD neuroimaging biomarker capable of accurately distinguishing diagnostic status (area under the curve [AUC] = 0.86). DISCUSSION Our findings revealed the dysfunction of the brain's hierarchical structure in AD. Furthermore, the SDI could serve as a promising neuroimaging biomarker for AD. HIGHLIGHTS This study utilized multi-center, multi-modal data from East Asian populations. We found an increased spatial gradient of the structure decoupling index (SDI) from sensory-motor to higher-order cognitive regions. Changes in SDI are associated with energy metabolism and mitochondria. SDI can identify Alzheimer's disease (AD) and further uncover the disease mechanisms of AD.
Collapse
Affiliation(s)
- Yibao Sun
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pan Wang
- Department of NeurologyTianjin Huanhu HospitalTianjinChina
| | - Kun Zhao
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Pindong Chen
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences & Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijingChina
| | - Yida Qu
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences & Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijingChina
| | - Zhuangzhuang Li
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Suyu Zhong
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
| | - Bo Zhou
- Department of Neurologythe Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Jie Lu
- Department of RadiologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xi Zhang
- Department of Neurologythe Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Dawei Wang
- Department of RadiologySchool of Public HealthQilu Hospital of Shandong University & Department of Epidemiology and Health StatisticsJinanChina
| | - Ying Han
- School of Biomedical EngineeringHainan UniversityHaikouChina
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Hongxiang Yao
- Department of Radiologythe Second Medical CentreNational Clinical Research Centre for Geriatric DiseasesChinese PLA General HospitalBeijingChina
| | - Yong Liu
- Center for Artificial Intelligence in Medical ImagingSchool of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijingChina
- School of Artificial IntelligenceUniversity of Chinese Academy of Sciences & Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijingChina
| |
Collapse
|
10
|
Kang X, Wang D, Lin J, Yao H, Zhao K, Song C, Chen P, Qu Y, Yang H, Zhang Z, Zhou B, Han T, Liao Z, Chen Y, Lu J, Yu C, Wang P, Zhang X, Li M, Zhang X, Jiang T, Zhou Y, Liu B, Han Y, Liu Y. Convergent Neuroimaging and Molecular Signatures in Mild Cognitive Impairment and Alzheimer's Disease: A Data-Driven Meta-Analysis with N = 3,118. Neurosci Bull 2024; 40:1274-1286. [PMID: 38824231 PMCID: PMC11365916 DOI: 10.1007/s12264-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/24/2023] [Indexed: 06/03/2024] Open
Abstract
The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.
Collapse
Affiliation(s)
- Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Jiaji Lin
- Department of Neurology, the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hongxiang Yao
- Department of Radiology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100191, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, 250063, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yida Qu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Yang
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Zengqiang Zhang
- Branch of Chinese, PLA General Hospital, Sanya, 572013, China
| | - Bo Zhou
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300070, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xi Zhang
- Department of Neurology, the Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, 300222, China
| | - Bing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- State Key Lab of Cognition Neuroscience & Learning, Beijing Normal University, Beijing, 100875, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China.
| | - Yong Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100191, China.
| |
Collapse
|
11
|
Li T, Li B, Zhong J, Xu X, Wang T, Liu F. A prediction model of dementia conversion for mild cognitive impairment by combining plasma pTau181 and structural imaging features. CNS Neurosci Ther 2024; 30:e70051. [PMID: 39294845 PMCID: PMC11410557 DOI: 10.1111/cns.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
AIMS The early stages of Alzheimer's disease (AD) are no longer insurmountable. Therefore, identifying at-risk individuals is of great importance for precise treatment. We developed a model to predict cognitive deterioration in patients with mild cognitive impairment (MCI). METHODS Based on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we constructed models in a derivation cohort of 761 participants with MCI (138 of whom developed dementia at the 36th month) and verified them in a validation cohort of 353 cognitively normal controls (54 developed MCI and 19 developed dementia at the 36th month). In addition, 1303 participants with available AD cerebrospinal fluid core biomarkers were selected to clarify the ability of the model to predict AD core features. We assessed 32 parameters as candidate predictors, including clinical information, blood biomarkers, and structural imaging features, and used multivariable logistic regression analysis to develop our prediction model. RESULTS Six independent variables of MCI deterioration were identified: apolipoprotein E ε4 allele status, lower Mini-Mental State Examination scores, higher levels of plasma pTau181, smaller volumes of the left hippocampus and right amygdala, and a thinner right inferior temporal cortex. We established an easy-to-use risk heat map and risk score based on these risk factors. The area under the curve (AUC) for both internal and external validations was close to 0.850. Furthermore, the AUC was above 0.800 in identifying participants with high brain amyloid-β loads. Calibration plots demonstrated good agreement between the predicted probability and actual observations in the internal and external validations. CONCLUSION We developed and validated an accurate prediction model for dementia conversion in patients with MCI. Simultaneously, the model predicts AD-specific pathological changes. We hope that this model will contribute to more precise clinical treatment and better healthcare resource allocation.
Collapse
Affiliation(s)
- Tao‐Ran Li
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Bai‐Le Li
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Beijing Children's Hospital, Beijing Pediatric Research InstituteCapital Medical University, National Center for Children's HealthBeijingChina
| | - Jin Zhong
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Xin‐Ran Xu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tai‐Shan Wang
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Department of NeurologyYangzhou Friendship HospitalYangzhouChina
| | - Feng‐Qi Liu
- Department of NeurologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
- Department of HematologyThe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | | |
Collapse
|
12
|
Jiaxuan Peng, Zheng G, Hu M, Zhang Z, Yuan Z, Xu Y, Shao Y, Zhang Y, Sun X, Han L, Gu X, Zhenyu Shu. White matter structure and derived network properties are used to predict the progression from mild cognitive impairment of older adults to Alzheimer's disease. BMC Geriatr 2024; 24:691. [PMID: 39160467 PMCID: PMC11331623 DOI: 10.1186/s12877-024-05293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVE To identify white matter fiber injury and network changes that may lead to mild cognitive impairment (MCI) progression, then a joint model was constructed based on neuropsychological scales to predict high-risk individuals for Alzheimer's disease (AD) progression among older adults with MCI. METHODS A total of 173 MCI patients were included from the Alzheimer's Disease Neuroimaging Initiative(ADNI) database and randomly divided into training and testing cohorts. Forty-five progressed to AD during a 4-year follow-up period. Diffusion tensor imaging (DTI) techniques extracted relevant DTI quantitative features for each patient. In addition, brain networks were constructed based on white matter fiber bundles to extract network property features. Ensemble dimensionality reduction was applied to reduce both DTI quantitative features and network features from the training cohort, and machine learning algorithms were added to construct white matter signature. In addition, 52 patients from the National Alzheimer's Coordinating Center (NACC) database were used for external validation of white matter signature. A joint model was subsequently generated by combining with scale scores, and its performance was evaluated using data from the testing cohort. RESULTS Based on multivariate logistic regression, clinical dementia rating and Alzheimer's disease assessment scales (CDRS and ADAS, respectively) were selected as independent predictive factors. A joint model was constructed in combination with the white matter signature. The AUC, sensitivity, and specificity in the training cohort were 0.938, 0.937, and 0.91, respectively, and the AUC, sensitivity, and specificity in the test cohort were 0.905, 0.923, and 0.872, respectively. The Delong test showed a statistically significant difference between the joint model and CDRS or ADAS scores (P < 0.05), yet no significant difference between the joint model and the white matter signature (P = 0.341). CONCLUSION The present results demonstrate that a joint model combining neuropsychological scales can be constructed by using machine learning and DTI technology to identify MCI patients who are at high-risk of progressing to AD.
Collapse
Affiliation(s)
- Jiaxuan Peng
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Guangying Zheng
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Mengmeng Hu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Zihan Zhang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhongyu Yuan
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyun Xu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yuan Shao
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yang Zhang
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xiaojun Sun
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Lu Han
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiaokai Gu
- Zhejiang University of Technology, Zhejiang Province, Hangzhou, China
| | - Zhenyu Shu
- Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Dounavi M, Mak E, Operto G, Muniz‐Terrera G, Bridgeman K, Koychev I, Malhotra P, Naci L, Lawlor B, Su L, Falcon C, Ritchie K, Ritchie CW, Gispert JD, O'Brien JT. Texture-based morphometry in relation to apolipoprotein ε4 genotype, ageing and sex in a midlife population. Hum Brain Mapp 2024; 45:e26798. [PMID: 39081128 PMCID: PMC11289425 DOI: 10.1002/hbm.26798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/06/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024] Open
Abstract
Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle-aged apolipoprotein ε4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non-carriers of the ε4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross-sectional study, we investigated textural properties of T1-weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT-Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel-based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non-carriers. Textural maps were generated and were subsequently harmonised using voxel-wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non-carriers at midlife and have established associations of textural features with ageing and sex.
Collapse
Affiliation(s)
- Maria‐Eleni Dounavi
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Elijah Mak
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
| | - Gregory Operto
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - Graciela Muniz‐Terrera
- Centre for Dementia PreventionUniversity of EdinburghEdinburghUK
- Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Katie Bridgeman
- Centre for Dementia PreventionUniversity of EdinburghEdinburghUK
| | | | - Paresh Malhotra
- Division of Brain ScienceImperial College Healthcare NHS TrustUK
| | - Lorina Naci
- Institute of Neuroscience, Trinity College Dublin, University of DublinIreland
| | - Brian Lawlor
- Institute of Neuroscience, Trinity College Dublin, University of DublinIreland
| | - Li Su
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
- Department of NeuroscienceUniversity of SheffieldSheffieldUK
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - Karen Ritchie
- INSERM and University of MontpellierMontpellierFrance
| | - Craig W. Ritchie
- Centre for Dementia PreventionUniversity of EdinburghEdinburghUK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall FoundationBarcelonaSpain
| | - John T. O'Brien
- Department of PsychiatrySchool of Clinical Medicine, University of CambridgeCambridgeUK
| |
Collapse
|
14
|
Das SR, Ilesanmi A, Wolk DA, Gee JC. Beyond Macrostructure: Is There a Role for Radiomics Analysis in Neuroimaging ? Magn Reson Med Sci 2024; 23:367-376. [PMID: 38880615 PMCID: PMC11234947 DOI: 10.2463/mrms.rev.2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The most commonly used neuroimaging biomarkers of brain structure, particularly in neurodegenerative diseases, have traditionally been summary measurements from ROIs derived from structural MRI, such as volume and thickness. Advances in MR acquisition techniques, including high-field imaging, and emergence of learning-based methods have opened up opportunities to interrogate brain structure in finer detail, allowing investigators to move beyond macrostructural measurements. On the one hand, superior signal contrast has the potential to make appearance-based metrics that directly analyze intensity patterns, such as texture analysis and radiomics features, more reliable. Quantitative MRI, particularly at high-field, can also provide a richer set of measures with greater interpretability. On the other hand, use of neural networks-based techniques has the potential to exploit subtle patterns in images that can now be mined with advanced imaging. Finally, there are opportunities for integration of multimodal data at different spatial scales that is enabled by developments in many of the above techniques-for example, by combining digital histopathology with high-resolution ex-vivo and in-vivo MRI. Some of these approaches are at early stages of development and present their own set of challenges. Nonetheless, they hold promise to drive the next generation of validation and biomarker studies. This article will survey recent developments in this area, with a particular focus on Alzheimer's disease and related disorders. However, most of the discussion is equally relevant to imaging of other neurological disorders, and even to other organ systems of interest. It is not meant to be an exhaustive review of the available literature, but rather presented as a summary of recent trends through the discussion of a collection of representative studies with an eye towards what the future may hold.
Collapse
Affiliation(s)
- Sandhitsu R. Das
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ademola Ilesanmi
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David A. Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - James C. Gee
- Penn Image Computing and Science Laboratory (PICSL), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Liu Y, Wang M, Yu X, Han Y, Jiang J, Yan Z. An effective and robust lattice Boltzmann model guided by atlas for hippocampal subregions segmentation. Med Phys 2024; 51:4105-4120. [PMID: 38373278 DOI: 10.1002/mp.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Given the varying vulnerability of the rostral and caudal regions of the hippocampus to neuropathology in the Alzheimer's disease (AD) continuum, accurately assessing structural changes in these subregions is crucial for early AD detection. The development of reliable and robust automatic segmentation methods for hippocampal subregions (HS) is of utmost importance. OBJECTIVE Our aim is to propose and validate a HS segmentation model that is both training-free and highly generalizable. This method should exhibit comparable accuracy and efficiency to state-of-the-art techniques. The segmented HS can serve as a biomarker for studying the progression of AD. METHODS We utilized the functional magnetic resonance imaging of the Brain's Integrated Registration and Segmentation Tool (FIRST) to segment the entire hippocampus. By intersecting the segmentation results with the Brainnetome (BN) atlas, we obtained coarse segmentation of the four HS regions. This coarse segmentation was then employed as a shape prior term in the lattice Boltzmann (LB) model, as well as for initializing contours. Additionally, image gradients and local gray levels were integrated into the external force terms of the LB model to refine the coarse segmentation results. We assessed the segmentation accuracy of the model using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and evaluated the potential of the segmentation results as AD biomarkers on both the ADNI and Xuanwu datasets. RESULTS The median Dice similarity coefficients (DSC) for the left caudal, right caudal, left rostral, and right rostral hippocampus were 0.87, 0.88, 0.88, and 0.89, respectively. The proportion of segmentation results with a DSC exceeding 0.8 was 77%, 78%, 77%, and 94% for the respective regions. In terms of volume, the correlation coefficients between the segmentation results of the four HS regions and the gold standard were 0.95, 0.93, 0.96, and 0.96, respectively. Regarding asymmetry, the correlation coefficient between the segmentation result's right caudal minus left caudal and the corresponding gold standard was 0.91, while for right rostral minus left rostral, it was 0.93. Over time, we observed a decline in the volumes of the four HS regions and the total hippocampal volume of mild cognitive impairment (MCI) converters. Analysis of inter-group differences revealed that, except for the right rostral region in the ADNI dataset, the p-values for the four HS regions in the normal controls (NC), MCI, and AD groups from both datasets were all below 0.05. The right caudal hippocampal volume demonstrated correlation coefficients of 0.47 and 0.43 with the mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA), respectively. Similarly, the left rostral hippocampal volume showed correlation coefficients of 0.50 and 0.58 with MMSE and MoCA, respectively. CONCLUSIONS Our framework allows for direct application to different brain magnetic resonance (MR) datasets without the need for training. It eliminates the requirement for complex image preprocessing steps while achieving segmentation accuracy comparable to deep learning (DL) methods even with small sample sizes. Compared to traditional active contour models (ACM) and atlas-based methods, our approach exhibits significant speed advantages. The segmented HS regions hold promise as potential biomarkers for studying the progression of AD.
Collapse
Affiliation(s)
- Yingqian Liu
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
- School of Electrical Engineering, Shandong University of Aeronautics, Binzhou, China
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhuangzhi Yan
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Wang XM, Zhang XJ. Role of radiomics in staging liver fibrosis: a meta-analysis. BMC Med Imaging 2024; 24:87. [PMID: 38609843 PMCID: PMC11010385 DOI: 10.1186/s12880-024-01272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 04/10/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Fibrosis has important pathoetiological and prognostic roles in chronic liver disease. This study evaluates the role of radiomics in staging liver fibrosis. METHOD After literature search in electronic databases (Embase, Ovid, Science Direct, Springer, and Web of Science), studies were selected by following precise eligibility criteria. The quality of included studies was assessed, and meta-analyses were performed to achieve pooled estimates of area under receiver-operator curve (AUROC), accuracy, sensitivity, and specificity of radiomics in staging liver fibrosis compared to histopathology. RESULTS Fifteen studies (3718 patients; age 47 years [95% confidence interval (CI): 42, 53]; 69% [95% CI: 65, 73] males) were included. AUROC values of radiomics for detecting significant fibrosis (F2-4), advanced fibrosis (F3-4), and cirrhosis (F4) were 0.91 [95%CI: 0.89, 0.94], 0.92 [95%CI: 0.90, 0.95], and 0.94 [95%CI: 0.93, 0.96] in training cohorts and 0.89 [95%CI: 0.83, 0.91], 0.89 [95%CI: 0.83, 0.94], and 0.93 [95%CI: 0.91, 0.95] in validation cohorts, respectively. For diagnosing significant fibrosis, advanced fibrosis, and cirrhosis the sensitivity of radiomics was 84.0% [95%CI: 76.1, 91.9], 86.9% [95%CI: 76.8, 97.0], and 92.7% [95%CI: 89.7, 95.7] in training cohorts, and 75.6% [95%CI: 67.7, 83.5], 80.0% [95%CI: 70.7, 89.3], and 92.0% [95%CI: 87.8, 96.1] in validation cohorts, respectively. Respective specificity was 88.6% [95% CI: 83.0, 94.2], 88.4% [95% CI: 81.9, 94.8], and 91.1% [95% CI: 86.8, 95.5] in training cohorts, and 86.8% [95% CI: 83.3, 90.3], 94.0% [95% CI: 89.5, 98.4], and 88.3% [95% CI: 84.4, 92.2] in validation cohorts. Limitations included use of several methods for feature selection and classification, less availability of studies evaluating a particular radiological modality, lack of a direct comparison between radiology and radiomics, and lack of external validation. CONCLUSION Although radiomics offers good diagnostic accuracy in detecting liver fibrosis, its role in clinical practice is not as clear at present due to comparability and validation constraints.
Collapse
Affiliation(s)
- Xiao-Min Wang
- School of Medical Imaging, Tianjin Medical University, No.1, Guangdong Road, Hexi District, Tianjin, 300203, China.
| | - Xiao-Jing Zhang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
17
|
Chen Z, Bi S, Shan Y, Cui B, Yang H, Qi Z, Zhao Z, Han Y, Yan S, Lu J. Multiparametric hippocampal signatures for early diagnosis of Alzheimer's disease using 18F-FDG PET/MRI Radiomics. CNS Neurosci Ther 2024; 30:e14539. [PMID: 38031997 PMCID: PMC11017421 DOI: 10.1111/cns.14539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
PURPOSE This study aimed to explore the utility of hippocampal radiomics using multiparametric simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) for early diagnosis of Alzheimer's disease (AD). METHODS A total of 53 healthy control (HC) participants, 55 patients with amnestic mild cognitive impairment (aMCI), and 51 patients with AD were included in this study. All participants accepted simultaneous PET/MRI scans, including 18F-fluorodeoxyglucose (18F-FDG) PET, 3D arterial spin labeling (ASL), and high-resolution T1-weighted imaging (3D T1WI). Radiomics features were extracted from the hippocampus region on those three modal images. Logistic regression models were trained to classify AD and HC, AD and aMCI, aMCI and HC respectively. The diagnostic performance and radiomics score (Rad-Score) of logistic regression models were evaluated from 5-fold cross-validation. RESULTS The hippocampal radiomics features demonstrated favorable diagnostic performance, with the multimodal classifier outperforming the single-modal classifier in the binary classification of HC, aMCI, and AD. Using the multimodal classifier, we achieved an area under the receiver operating characteristic curve (AUC) of 0.98 and accuracy of 96.7% for classifying AD from HC, and an AUC of 0.86 and accuracy of 80.6% for classifying aMCI from HC. The value of Rad-Score differed significantly between the AD and HC (p < 0.001), aMCI and HC (p < 0.001) groups. Decision curve analysis showed superior clinical benefits of multimodal classifiers compared to neuropsychological tests. CONCLUSION Multiparametric hippocampal radiomics using PET/MRI aids in the identification of early AD, and may provide a potential biomarker for clinical applications.
Collapse
Affiliation(s)
- Zhigeng Chen
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Sheng Bi
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Yi Shan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Hongwei Yang
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Zhigang Qi
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Zhilian Zhao
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Ying Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Shaozhen Yan
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain InformaticsBeijingChina
- Key Laboratory of Neurodegenerative DiseasesMinistry of EducationBeijingChina
| |
Collapse
|
18
|
Fang M, Huang H, Yang J, Zhang S, Wu Y, Huang CC. Changes in microstructural similarity of hippocampal subfield circuits in pathological cognitive aging. Brain Struct Funct 2024; 229:311-321. [PMID: 38147082 DOI: 10.1007/s00429-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 12/27/2023]
Abstract
The hippocampal networks support multiple cognitive functions and may have biological roles and functions in pathological cognitive aging (PCA) and its associated diseases, which have not been explored. In the current study, a total of 116 older adults with 39 normal controls (NC) (mean age: 52.3 ± 13.64 years; 16 females), 39 mild cognitive impairment (MCI) (mean age: 68.15 ± 9.28 years, 14 females), and 38 dementia (mean age: 73.82 ± 8.06 years, 8 females) were included. The within-hippocampal subfields and the cortico-hippocampal circuits were assessed via a micro-structural similarity network approach using T1w/T2w ratio and regional gray matter tissue probability maps, respectively. An analysis of covariance was conducted to identify between-group differences in structural similarities among hippocampal subfields. The partial correlation analyses were performed to associate changes in micro-structural similarities with cognitive performance in the three groups, controlling the effect of age, sex, education, and cerebral small-vessel disease. Compared with the NC, an altered T1w/T2w ratio similarity between left CA3 and left subiculum was observed in the mild cognitive impairment (MCI) and dementia. The left CA3 was the most impaired region correlated with deteriorated cognitive performance. Using these regions as seeds for GM similarity comparisons between hippocampal subfields and cortical regions, group differences were observed primarily between the left subiculum and several cortical regions. By utilizing T1w/T2w ratio as a proxy measure for myelin content, our data suggest that the imbalanced synaptic weights within hippocampal CA3 provide a substrate to explain the abnormal firing characteristics of hippocampal neurons in PCA. Furthermore, our work depicts specific brain structural characteristics of normal and pathological cognitive aging and suggests a potential mechanism for cognitive aging heterogeneity.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanghuang Huang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Shuying Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Yujie Wu
- Changning Mental Health Center, Shanghai, China
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Changning Mental Health Center, Shanghai, China.
| |
Collapse
|
19
|
Xia H, Luan X, Bao Z, Zhu Q, Wen C, Wang M, Song W. A multi-cohort study of the hippocampal radiomics model and its associated biological changes in Alzheimer's Disease. Transl Psychiatry 2024; 14:111. [PMID: 38395947 PMCID: PMC10891125 DOI: 10.1038/s41398-024-02836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
There have been no previous reports of hippocampal radiomics features associated with biological functions in Alzheimer's Disease (AD). This study aims to develop and validate a hippocampal radiomics model from structural magnetic resonance imaging (MRI) data for identifying patients with AD, and to explore the mechanism underlying the developed radiomics model using peripheral blood gene expression. In this retrospective multi-study, a radiomics model was developed based on the radiomics discovery group (n = 420) and validated in other cohorts. The biological functions underlying the model were identified in the radiogenomic analysis group using paired MRI and peripheral blood transcriptome analyses (n = 266). Mediation analysis and external validation were applied to further validate the key module and hub genes. A 12 radiomics features-based prediction model was constructed and this model showed highly robust predictive power for identifying AD patients in the validation and other three cohorts. Using radiogenomics mapping, myeloid leukocyte and neutrophil activation were enriched, and six hub genes were identified from the key module, which showed the highest correlation with the radiomics model. The correlation between hub genes and cognitive ability was confirmed using the external validation set of the AddneuroMed dataset. Mediation analysis revealed that the hippocampal radiomics model mediated the association between blood gene expression and cognitive ability. The hippocampal radiomics model can accurately identify patients with AD, while the predictive radiomics model may be driven by neutrophil-related biological pathways.
Collapse
Affiliation(s)
- Huwei Xia
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Xiaoqian Luan
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengkai Bao
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qinxin Zhu
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Caiyun Wen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihong Song
- Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
20
|
Feng L, Wang G, Song Q, Feng X, Su J, Ji G, Li M. Proteomics revealed an association between ribosome-associated proteins and amyloid beta deposition in Alzheimer's disease. Metab Brain Dis 2024; 39:263-282. [PMID: 38019374 DOI: 10.1007/s11011-023-01330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Most scholars believe that amyloid-beta (Aβ) has the potential to induce apoptosis, stimulate an inflammatory cascade, promote oxidative stress and exacerbate the pathological progression of Alzheimer's disease (AD). Therefore, it is crucial to investigate the deposition of Aβ in AD. At approximately 6 months of age, APP/PS1 double transgenic mice gradually exhibit the development of plaques, as well as spatial and learning impairment. Notably, the hippocampus is specifically affected in the course of AD. Herein, 6-month-old APP/PS1 double transgenic mice were utilized, and the differentially expressed (DE) proteins in the hippocampus were identified and analyzed using 4D label-free quantitative proteomics technology and parallel reaction monitoring (PRM). Compared to wild-type mice, 29 proteins were upregulated and 25 proteins were downregulated in the AD group. Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the DE proteins were mainly involved in 'ribosomal large subunit biogenesis'. Molecular function (MF) analysis results were primarily associated with '5.8S rRNA binding' and 'structural constituent of ribosome'. In terms of cellular components (CC), the DE proteins were mainly found in 'polysomal ribosome', 'cytosolic large ribosomal subunit', 'cytosolic ribosome', and 'large ribosomal subunit', among others. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the results were mainly enriched in the 'Ribosome signaling pathway'. The key target proteins identified were ribosomal protein (Rp)l18, Rpl17, Rpl19, Rpl24, Rpl35, and Rpl6. The PRM verification results were consistent with the findings of the 4D label-free quantitative proteomics analysis. Overall, these findings suggest that Rpl18, Rpl17, Rpl19, Rpl24, Rpl35, and Rpl6 may have potential therapeutic value for the treatment of AD by targeting Aβ.
Collapse
Affiliation(s)
- Lina Feng
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Guojun Wang
- Department of Neurosurgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Qile Song
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Xiaotong Feng
- Department of Neurology, the Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Jing Su
- Department of Geriatric Cardiovascular, The Affiliated Taian City Central Hospital of Qingdao University, Longtan Road, Taian, 271000, Shandong, China.
| | - Guangcheng Ji
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Boshuo Road, Changchun, 130117, Jilin, China.
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
21
|
Meng M, Zhang CY, Li YM, Yao YJ, Zhou FQ, Li YX, Zhang NNN, Tian DC, Zhang XH, Duan YY, Liu YO. Independent and reproducible hippocampal radiomics biomarkers for multisite multiple sclerosis and neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2024; 81:105146. [PMID: 38007962 DOI: 10.1016/j.msard.2023.105146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
OBJECTIVE To investigate the abnormal radiomics features of the hippocampus in patients with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) and to explore the clinical implications of these features. METHODS 752 participants were recruited in this retrospective multicenter study (7 centers), which included 236 MS, 236 NMOSD, and 280 normal controls (NC). Radiomics features of each side of the hippocampus were extracted, including intensity, shape, texture, and wavelet features (N = 431). To identify the variations in these features, two-sample t-tests were performed between the NMOSD vs. NC, MS vs. NC, and NMOSD vs. MS groups at each site. The statistical results from each site were then integrated through meta-analysis. To investigate the clinical significance of the hippocampal radiomics features, we conducted further analysis to examine the correlations between these features and clinical measures such as Expanded Disability Status Scale (EDSS), Brief Visuospatial Memory Test (BVMT), California Verbal Learning Test (CVLT), and Paced Auditory Serial Addition Task (PASAT). RESULTS Compared with NC, patients with MS exhibited significant differences in 78 radiomics features (P < 0.05/862), with the majority of these being texture features. Patients with NMOSD showed significant differences in 137 radiomics features (P < 0.05/862), most of which were intensity features. The difference between MS and NMOSD patients was observed in 47 radiomics features (P < 0.05/862), mainly texture features. In patients with MS and NMOSD, the most significant features related to the EDSS were intensity and textural features, and the most significant features related to the PASAT were intensity features. Meanwhile, both disease groups observed a weak correlation between radiomics data and BVMT. CONCLUSION Variations in the microstructure of the hippocampus can be detected through radiomics, offering a new approach to investigating the abnormal pattern of the hippocampus in MS and NMOSD.
Collapse
Affiliation(s)
- Ming Meng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Cheng-Yi Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Mei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Jun Yao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fu-Qing Zhou
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yu-Xin Li
- Radiology department, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning-Nan-Nan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - De-Cai Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing-Hu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun-Yun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Ya-Ou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Lei B, Zhu Y, Liang E, Yang P, Chen S, Hu H, Xie H, Wei Z, Hao F, Song X, Wang T, Xiao X, Wang S, Han H. Federated Domain Adaptation via Transformer for Multi-Site Alzheimer's Disease Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3651-3664. [PMID: 37527297 DOI: 10.1109/tmi.2023.3300725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In multi-site studies of Alzheimer's disease (AD), the difference of data in multi-site datasets leads to the degraded performance of models in the target sites. The traditional domain adaptation method requires sharing data from both source and target domains, which will lead to data privacy issue. To solve it, federated learning is adopted as it can allow models to be trained with multi-site data in a privacy-protected manner. In this paper, we propose a multi-site federated domain adaptation framework via Transformer (FedDAvT), which not only protects data privacy, but also eliminates data heterogeneity. The Transformer network is used as the backbone network to extract the correlation between the multi-template region of interest features, which can capture the brain abundant information. The self-attention maps in the source and target domains are aligned by applying mean squared error for subdomain adaptation. Finally, we evaluate our method on the multi-site databases based on three AD datasets. The experimental results show that the proposed FedDAvT is quite effective, achieving accuracy rates of 88.75%, 69.51%, and 69.88% on the AD vs. NC, MCI vs. NC, and AD vs. MCI two-way classification tasks, respectively.
Collapse
|
23
|
Zhao K, Chen P, Alexander-Bloch A, Wei Y, Dyrba M, Yang F, Kang X, Wang D, Fan D, Ye S, Tang Y, Yao H, Zhou B, Lu J, Yu C, Wang P, Liao Z, Chen Y, Huang L, Zhang X, Han Y, Li S, Liu Y. A neuroimaging biomarker for Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN): a cross-sectional study. EClinicalMedicine 2023; 65:102276. [PMID: 37954904 PMCID: PMC10632687 DOI: 10.1016/j.eclinm.2023.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately enhancing the quality of life for affected individuals and reducing the burden on healthcare systems. Methods Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional- and network-based measures under an ensemble machine learning model based on structural MRI data. We systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD. Findings IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative diseases, including Frontotemporal dementia (FTD), Parkinson's disease (PD), Vascular dementia (VaD) and Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52 [95% CI: 4.42∼9.62], p < 1 × 10-16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aβ (HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10-14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10-15) based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = -0.70, p < 1 × 10-16) in capturing longitudinal changes in individuals with conversion to AD than CSF Aβ (beta = -0.26, p = 4.40 × 10-9) and CSF Tau (beta = 0.12, p = 1.02 × 10-5). Interpretation Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for application in future clinical practice and treatment trials. Funding Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China, Beijing Natural Science Funds, the Fundamental Research Funds for the CentralUniversity, and the Startup Funds for Talents at Beijing Normal University.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| | - Aaron Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Yongbin Wei
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Martin Dyrba
- German Centre for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Fan Yang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Shan Ye
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yi Tang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongxiang Yao
- Department of Radiology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Pan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhengluan Liao
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yan Chen
- Department of Psychiatry, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Longjian Huang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xi Zhang
- Department of Neurology, The Second Medical Centre, National Clinical Research Centre for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- National Clinical Research Centre for Geriatric Disorders, Beijing, China
- Centre of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences & Brainnetome Centre, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Shahidi R, Baradaran M, Asgarzadeh A, Bagherieh S, Tajabadi Z, Farhadi A, Korani SS, Khalafi M, Shobeiri P, Sadeghsalehi H, Shafieioun A, Yazdanifar MA, Singhal A, Sotoudeh H. Diagnostic performance of MRI radiomics for classification of Alzheimer's disease, mild cognitive impairment, and normal subjects: a systematic review and meta-analysis. Aging Clin Exp Res 2023; 35:2333-2348. [PMID: 37801265 DOI: 10.1007/s40520-023-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely intervention and management. Radiomics involves extracting quantitative features from medical images and analyzing them using advanced computational algorithms. These characteristics have the potential to serve as biomarkers for disease classification, treatment response prediction, and patient stratification. Of note, Magnetic resonance imaging (MRI) radiomics showed a promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. METHODS AND MATERIALS A comprehensive search of the current literature was conducted using relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from inception to August 5, 2023. Original studies discussing the diagnostic performance of MRI radiomics for the classification of AD, MCI, and normal subjects were included. Method quality was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and the Radiomics Quality Score (RQS) tools. RESULTS We identified 13 studies that met the inclusion criteria, involving a total of 5448 participants. The overall quality of the included studies was moderate to high. The pooled sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 0.92 (95% CI [0.85; 0.96]) and 0.91 (95% CI [0.85; 0.95]), respectively. The pooled sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 0.74 (95% CI [0.60; 0.85]) and 0.79 (95% CI [0.70; 0.86]), respectively. Also, the pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 0.73 (95% CI [0.64; 0.80]) and 0.79 (95% CI [0.64; 0.90]), respectively. CONCLUSION MRI radiomics has promising diagnostic performance in differentiating AD, MCI, and normal subjects. It can potentially serve as a non-invasive and reliable tool for early diagnosis and classification of AD and MCI.
Collapse
Affiliation(s)
- Ramin Shahidi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mansoureh Baradaran
- Department of Radiology, Imam Ali Hospital, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sara Bagherieh
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Tajabadi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Farhadi
- Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Mohammad Khalafi
- Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University Of Medical Sciences, Tehran, Iran
| | - Arezoo Shafieioun
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Aparna Singhal
- Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, Alabama, USA
| | - Houman Sotoudeh
- Neuroradiology Section, Department of Radiology, The University of Alabama at Birmingham, Alabama, USA.
- O'Neal Comprehensive Cancer Center, UAB, The University of Alabama at Birmingham, JTN 333, 619 19th St S, Birmingham, AL, 35294, USA.
| |
Collapse
|
25
|
Zhang Y, Li X, Ji Y, Ding H, Suo X, He X, Xie Y, Liang M, Zhang S, Yu C, Qin W. MRAβ: A multimodal MRI-derived amyloid-β biomarker for Alzheimer's disease. Hum Brain Mapp 2023; 44:5139-5152. [PMID: 37578386 PMCID: PMC10502620 DOI: 10.1002/hbm.26452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/30/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Florbetapir 18 F (AV45), a highly sensitive and specific positron emission tomographic (PET) molecular biomarker binding to the amyloid-β of Alzheimer's disease (AD), is constrained by radiation and cost. We sought to combat it by combining multimodal magnetic resonance imaging (MRI) images and a collaborative generative adversarial networks model (CollaGAN) to develop a multimodal MRI-derived Amyloid-β (MRAβ) biomarker. We collected multimodal MRI and PET AV45 data of 380 qualified participants from the ADNI dataset and 64 subjects from OASIS3 dataset. A five-fold cross-validation CollaGAN were applied to generate MRAβ. In the ADNI dataset, we found MRAβ could characterize the subject-level AV45 spatial variations in both AD and mild cognitive impairment (MCI). Voxel-wise two-sample t-tests demonstrated amyloid-β depositions identified by MRAβ in AD and MCI were significantly higher than healthy controls (HCs) in widespread cortices (p < .05, corrected) and were much similar to those by AV45 (r > .92, p < .001). Moreover, a 3D ResNet classifier demonstrated that MRAβ was comparable to AV45 in discriminating AD from HC in both the ADNI and OASIS3 datasets, and in discriminate MCI from HC in ADNI. Finally, we found MRAβ could mimic cortical hyper-AV45 in HCs who later converted to MCI (r = .79, p < .001) and was comparable to AV45 in discriminating them from stable HC (p > .05). In summary, our work illustrates that MRAβ synthesized by multimodal MRI could mimic the cerebral amyloid-β depositions like AV45 and lends credence to the feasibility of advancing MRI toward molecular-explainable biomarkers.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xi Li
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
- Department of RadiologyFirst Clinical Medical College and First Hospital of Shanxi Medical UniversityTaiyuanShanxi ProvinceChina
| | - Yi Ji
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hao Ding
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
- School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Xinjun Suo
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Xiaoxi He
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yingying Xie
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Meng Liang
- School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Shijie Zhang
- Department of PharmacologyTianjin Medical UniversityTianjinChina
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
- School of Medical ImagingTianjin Medical UniversityTianjinChina
| | - Wen Qin
- Department of Radiology and Tianjin Key Lab of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
26
|
Yin F, Yan X, Gao R, Ren Z, Yu T, Zhao Z, Zhang G. Radiomics features from 3D-MPRAGE imaging can differentiate temporal-plus epilepsy from temporal lobe epilepsy. Epileptic Disord 2023; 25:681-689. [PMID: 37349866 DOI: 10.1002/epd2.20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVE This study aimed to differentiate temporal-plus epilepsy (TPE) from temporal lobe epilepsy (TLE) using extraction of radiomics features from three-dimensional magnetization-prepared rapid acquisition gradient echo (3D-MPRAGE) imaging data. METHODS Data from patients with TLE or TPE who underwent epilepsy surgery between January 2019 and January 2021 were retrospectively analyzed. Thirty-three regions of interest in the affected hemisphere of each patient were defined on 3D-MPRAGE images. A total of 3531 image features were extracted from each patient. Four feature selection methods and 10 machine learning algorithms were used to build 40 differentiation models. Model performance was evaluated using receiver operating characteristic analysis. RESULTS Eighty-two patients were included for analysis, 47 with TLE and 35 with TPE. The model combining logistic regression and the relief selection method had the best performance (area under the receiver operating characteristic curve, .779; accuracy, .875; sensitivity, .800; specificity, .929; positive predictive value, .889; negative predictive value, .867). SIGNIFICANCE Radiomics analysis can differentiate TPE from TLE. The logistic regression classifier trained with radiomics features extracted from 3D-MPRAGE images had the highest accuracy and best performance.
Collapse
Affiliation(s)
- Fangzhao Yin
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Tianjin Huanhu Hospital, Tianjin, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhuoling Zhao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Bevilacqua R, Barbarossa F, Fantechi L, Fornarelli D, Paci E, Bolognini S, Giammarchi C, Lattanzio F, Paciaroni L, Riccardi GR, Pelliccioni G, Biscetti L, Maranesi E. Radiomics and Artificial Intelligence for the Diagnosis and Monitoring of Alzheimer's Disease: A Systematic Review of Studies in the Field. J Clin Med 2023; 12:5432. [PMID: 37629474 PMCID: PMC10455452 DOI: 10.3390/jcm12165432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
The use of radiomics and artificial intelligence applied for the diagnosis and monitoring of Alzheimer's disease has developed in recent years. However, this approach is not yet completely applicable in clinical practice. The aim of this paper is to provide a systematic analysis of the studies that have included the use of radiomics from different imaging techniques and artificial intelligence for the diagnosis and monitoring of Alzheimer's disease in order to improve the clinical outcomes and quality of life of older patients. A systematic review of the literature was conducted in February 2023, analyzing manuscripts and articles of the last 5 years from the PubMed, Scopus and Embase databases. All studies concerning discrimination among Alzheimer's disease, Mild Cognitive Impairment and healthy older people performing radiomics analysis through machine and deep learning were included. A total of 15 papers were included. The results showed a very good performance of this approach in the differentiating Alzheimer's disease patients-both at the dementia and pre-dementia phases of the disease-from healthy older people. In summary, radiomics and AI can be valuable tools for diagnosing and monitoring the progression of Alzheimer's disease, potentially leading to earlier and more accurate diagnosis and treatment. However, the results reported by this review should be read with great caution, keeping in mind that imaging alone is not enough to identify dementia due to Alzheimer's.
Collapse
Affiliation(s)
- Roberta Bevilacqua
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Federico Barbarossa
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Lorenzo Fantechi
- Unit of Nuclear Medicine, IRCCS INRCA, 60127 Ancona, Italy; (L.F.); (D.F.)
| | - Daniela Fornarelli
- Unit of Nuclear Medicine, IRCCS INRCA, 60127 Ancona, Italy; (L.F.); (D.F.)
| | - Enrico Paci
- Unit of Radiology, IRCCS INRCA, 60127 Ancona, Italy;
| | - Silvia Bolognini
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Cinzia Giammarchi
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Fabrizia Lattanzio
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| | - Lucia Paciaroni
- Unit of Neurology, IRCCS INRCA, 60127 Ancona, Italy; (L.P.); (G.P.)
| | | | | | | | - Elvira Maranesi
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy; (R.B.); (F.B.); (S.B.); (C.G.); (F.L.); (E.M.)
| |
Collapse
|
28
|
Zhang Y, Li H, Zheng Q. A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer's disease: deep learning analysis in 3238 participants worldwide. Eur Radiol 2023; 33:5385-5397. [PMID: 36892643 DOI: 10.1007/s00330-023-09519-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 03/10/2023]
Abstract
OBJECTIVES Hippocampal characterization is one of the most significant hallmarks of Alzheimer's disease (AD); rather, the single-level feature is insufficient. A comprehensive hippocampal characterization is pivotal for developing a well-performing biomarker for AD. To verify whether a comprehensive characterization of hippocampal features of gray matter volume, segmentation probability, and radiomics features could better distinguish AD from normal control (NC), and to investigate whether the classification decision score could serve as a robust and individualized brain signature. METHODS A total of 3238 participants' structural MRI from four independent databases were employed to conduct a 3D residual attention network (3DRA-Net) to classify NC, mild cognitive impairment (MCI), and AD. The generalization was validated under inter-database cross-validation. The neurobiological basis of the classification decision score as a neuroimaging biomarker was systematically investigated by association with clinical profiles, as well as longitudinal trajectory analysis to reveal AD progression. All image analyses were performed only upon the single modality of T1-weighted MRI. RESULTS Our study exhibited an outstanding performance (ACC = 91.6%, AUC = 0.95) of the comprehensive characterization of hippocampal features in distinguishing AD (n = 282) from NC (n = 603) in Alzheimer's Disease Neuroimaging Initiative cohort, and ACC = 89.2% and AUC = 0.93 under external validation. More importantly, the constructed score was significantly correlated with clinical profiles (p < 0.05), and dynamically altered over the AD longitudinal progression, provided compelling evidence of a solid neurobiological basis. CONCLUSIONS This systemic study highlights the potential of the comprehensive characterization of hippocampal features to provide an individualized, generalizable, and biologically plausible neuroimaging biomarker for early detection of AD. KEY POINTS • The comprehensive characterization of hippocampal features exhibited ACC = 91.6% (AUC = 0.95) in classifying AD from NC under intra-database cross-validation, and ACC = 89.2% (AUC = 0.93) in external validation. • The constructed classification score was significantly associated with clinical profiles, and dynamically altered over the AD longitudinal progression, which highlighted its potential of being an individualized, generalizable, and biologically plausible neuroimaging biomarker for early detection of AD.
Collapse
Affiliation(s)
- Yiyu Zhang
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China
| | - Hongming Li
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai City, 264005, Shandong Province, China.
| |
Collapse
|
29
|
Wearn A, Raket LL, Collins DL, Spreng RN. Longitudinal changes in hippocampal texture from healthy aging to Alzheimer's disease. Brain Commun 2023; 5:fcad195. [PMID: 37465755 PMCID: PMC10351670 DOI: 10.1093/braincomms/fcad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Early detection of Alzheimer's disease is essential to develop preventive treatment strategies. Detectible change in brain volume emerges relatively late in the pathogenic progression of disease, but microstructural changes caused by early neuropathology may cause subtle changes in the MR signal, quantifiable using texture analysis. Texture analysis quantifies spatial patterns in an image, such as smoothness, randomness and heterogeneity. We investigated whether the MRI texture of the hippocampus, an early site of Alzheimer's disease pathology, is sensitive to changes in brain microstructure before the onset of cognitive impairment. We also explored the longitudinal trajectories of hippocampal texture across the Alzheimer's continuum in relation to hippocampal volume and other biomarkers. Finally, we assessed the ability of texture to predict future cognitive decline, over and above hippocampal volume. Data were acquired from the Alzheimer's Disease Neuroimaging Initiative. Texture was calculated for bilateral hippocampi on 3T T1-weighted MRI scans. Two hundred and ninety-three texture features were reduced to five principal components that described 88% of total variance within cognitively unimpaired participants. We assessed cross-sectional differences in these texture components and hippocampal volume between four diagnostic groups: cognitively unimpaired amyloid-β- (n = 406); cognitively unimpaired amyloid-β+ (n = 213); mild cognitive impairment amyloid-β+ (n = 347); and Alzheimer's disease dementia amyloid-β+ (n = 202). To assess longitudinal texture change across the Alzheimer's continuum, we used a multivariate mixed-effects spline model to calculate a 'disease time' for all timepoints based on amyloid PET and cognitive scores. This was used as a scale on which to compare the trajectories of biomarkers, including volume and texture of the hippocampus. The trajectories were modelled in a subset of the data: cognitively unimpaired amyloid-β- (n = 345); cognitively unimpaired amyloid-β+ (n = 173); mild cognitive impairment amyloid-β+ (n = 301); and Alzheimer's disease dementia amyloid-β+ (n = 161). We identified a difference in texture component 4 at the earliest stage of Alzheimer's disease, between cognitively unimpaired amyloid-β- and cognitively unimpaired amyloid-β+ older adults (Cohen's d = 0.23, Padj = 0.014). Differences in additional texture components and hippocampal volume emerged later in the disease continuum alongside the onset of cognitive impairment (d = 0.30-1.22, Padj < 0.002). Longitudinal modelling of the texture trajectories revealed that, while most elements of texture developed over the course of the disease, noise reduced sensitivity for tracking individual textural change over time. Critically, however, texture provided additional information than was provided by volume alone to more accurately predict future cognitive change (d = 0.32-0.63, Padj < 0.0001). Our results support the use of texture as a measure of brain health, sensitive to Alzheimer's disease pathology, at a time when therapeutic intervention may be most effective.
Collapse
Affiliation(s)
- Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
| | - Lars Lau Raket
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund SE-221 00, Sweden
- Novo Nordisk A/S, Søborg 2860, Denmark
| | - D Louis Collins
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada H3A 2B4
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada H3A 2B4
- Departments of Psychology and Psychiatry, McGill University, Montreal, QC, Canada H3A 2B4
- Douglas Mental Health University Institute, Verdun, QC, Canada H4H 1R3
| | | |
Collapse
|
30
|
Zhou Y, Wei L, Gao S, Wang J, Hu Z. Characterization of diffusion magnetic resonance imaging revealing relationships between white matter disconnection and behavioral disturbances in mild cognitive impairment: a systematic review. Front Neurosci 2023; 17:1209378. [PMID: 37360170 PMCID: PMC10285107 DOI: 10.3389/fnins.2023.1209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
White matter disconnection is the primary cause of cognition and affection abnormality in mild cognitive impairment (MCI). Adequate understanding of behavioral disturbances, such as cognition and affection abnormality in MCI, can help to intervene and slow down the progression of Alzheimer's disease (AD) promptly. Diffusion MRI is a non-invasive and effective technique for studying white matter microstructure. This review searched the relevant papers published from 2010 to 2022. Sixty-nine studies using diffusion MRI for white matter disconnections associated with behavioral disturbances in MCI were screened. Fibers connected to the hippocampus and temporal lobe were associated with cognition decline in MCI. Fibers connected to the thalamus were associated with both cognition and affection abnormality. This review summarized the correspondence between white matter disconnections and behavioral disturbances such as cognition and affection, which provides a theoretical basis for the future diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Yu Zhou
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Lan Wei
- Business School, The University of Sydney, Sydney, NSW, Australia
| | - Song Gao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jun Wang
- School of Information Engineering, Henan University of Science and Technology, Luoyang, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
31
|
Liu X, Li H, Fan Y. Predicting Alzheimer's Disease and Quantifying Asymmetric Degeneration of the Hippocampus Using Deep Learning of Magnetic Resonance Imaging Data. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230830. [PMID: 37790879 PMCID: PMC10544795 DOI: 10.1109/isbi53787.2023.10230830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In order to quantify lateral asymmetric degeneration of the hippocampus for early predicting Alzheimer's disease (AD), we develop a deep learning (DL) model to learn informative features from the hippocampal magnetic resonance imaging (MRI) data for predicting AD conversion in a time-to-event prediction modeling framework. The DL model is trained on unilateral hippocampal data with an autoencoder based regularizer, facilitating quantification of lateral asymmetry in the hippocampal prediction power of AD conversion and identification of the optimal strategy to integrate the bilateral hippocampal MRI data for predicting AD. Experimental results on MRI scans of 1307 subjects (817 for training and 490 for validation) have demonstrated that the left hippocampus can better predict AD than the right hippocampus, and an integration of the bilateral hippocampal data with the instance based DL method improved AD prediction, compared with alternative predictive modeling strategies.
Collapse
Affiliation(s)
- Xi Liu
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
El-Sappagh S, Alonso-Moral JM, Abuhmed T, Ali F, Bugarín-Diz A. Trustworthy artificial intelligence in Alzheimer’s disease: state of the art, opportunities, and challenges. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
33
|
Shi D, Ren Z, Zhang H, Wang G, Guo Q, Wang S, Ding J, Yao X, Li Y, Ren K. Amplitude of low-frequency fluctuation-based regional radiomics similarity network: Biomarker for Parkinson's disease. Heliyon 2023; 9:e14325. [PMID: 36950566 PMCID: PMC10025115 DOI: 10.1016/j.heliyon.2023.e14325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder that is difficult to diagnose. Therefore, reliable biomarkers are needed. We implemented a method constructing a regional radiomics similarity network (R2SN) based on the amplitude of low-frequency fluctuation (ALFF). We classified patients with PD and healthy individuals by using a machine learning approach in accordance with the R2SN connectome. The ALFF-based R2SN exhibited great reproducibility with different brain atlases and datasets. Great classification performances were achieved both in primary (AUC = 0.85 ± 0.02 and accuracy = 0.81 ± 0.03) and independent external validation (AUC = 0.77 and accuracy = 0.70) datasets. The discriminative R2SN edges correlated with the clinical evaluations of patients with PD. The nodes of discriminative R2SN edges were primarily located in the default mode, sensorimotor, executive control, visual and frontoparietal network, cerebellum and striatum. These findings demonstrate that ALFF-based R2SN is a robust potential neuroimaging biomarker for PD and could provide new insights into connectome reorganization in PD.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhendong Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guangsong Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiu Guo
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ding
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Corresponding author. Department of Radiology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
34
|
Du Y, Yu J, Liu M, Qiu Q, Fang Y, Zhao L, Wei W, Wang J, Lin X, Yan F, Li X. The relationship between depressive symptoms and cognitive function in Alzheimer's disease: The mediating effect of amygdala functional connectivity and radiomic features. J Affect Disord 2023; 330:101-109. [PMID: 36863470 DOI: 10.1016/j.jad.2023.02.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Depressive symptoms are common in Alzheimer's disease (AD) and are associated with cognitive function. Amygdala functional connectivity (FC) and radiomic features related to depression and cognition. However, studies have yet to explore the neural mechanisms underlying these associations. METHODS We enrolled eighty-two AD patients with depressive symptoms (ADD) and 85 healthy controls (HCs) in this study. We compared amygdala FC using the seed-based approach between ADD patients and HCs. The least absolute shrinkage and selection operator (LASSO) was used to select amygdala radiomic features. A support vector machine (SVM) model was constructed based on the identified radiomic features to distinguish ADD from HCs. We used mediation analyses to explore the mediating effects of amygdala radiomic features and amygdala FC on cognition. RESULTS We found that ADD patients showed decreased amygdala FC with posterior cingulate cortex, middle frontal gyrus (MFG), and parahippocampal gyrus involved in the default mode network compared to HCs. The area under the receiver operating characteristic curve (AUC) of the amygdala radiomic model was 0.95 for ADD patients and HCs. Notably, the mediation model demonstrated that amygdala FC with the MFG and amygdala-based radiomic features mediated the relationship between depressive symptoms and cognitive function in AD. LIMITATIONS This study is a cross-sectional study and lacks longitudinal data. CONCLUSION Our findings may not only expand existing biological knowledge of the relationship between cognition and depressive symptoms in AD from the perspective of brain function and structure but also may ultimately provide potential targets for personalized treatment strategies.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Yu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Manhua Liu
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiang Lin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
35
|
Li Q, Wang W, Hu Z. Amygdala's T1-weighted image radiomics outperforms volume for differentiation of anxiety disorder and its subtype. Front Psychiatry 2023; 14:1091730. [PMID: 36911127 PMCID: PMC10001895 DOI: 10.3389/fpsyt.2023.1091730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Anxiety disorder is the most common psychiatric disorder among adolescents, with generalized anxiety disorder (GAD) being a common subtype of anxiety disorder. Current studies have revealed abnormal amygdala function in patients with anxiety compared with healthy people. However, the diagnosis of anxiety disorder and its subtypes still lack specific features of amygdala from T1-weighted structural magnetic resonance (MR) imaging. The purpose of our study was to investigate the feasibility of using radiomics approach to distinguish anxiety disorder and its subtype from healthy controls on T1-weighted images of the amygdala, and provide a basis for the clinical diagnosis of anxiety disorder. Methods T1-weighted MR images of 200 patients with anxiety disorder (including 103 GAD patients) as well as 138 healthy controls were obtained in the Healthy Brain Network (HBN) dataset. We extracted 107 radiomics features for the left and right amygdala, respectively, and then performed feature selection using the 10-fold LASSO regression algorithm. For the selected features, we performed group-wise comparisons, and use different machine learning algorithms, including linear kernel support vector machine (SVM), to achieve the classification between the patients and healthy controls. Results For the classification task of anxiety patients vs. healthy controls, 2 and 4 radiomics features were selected from left and right amygdala, respectively, and the area under receiver operating characteristic curve (AUC) of linear kernel SVM in cross-validation experiments was 0.6739±0.0708 for the left amygdala features and 0.6403±0.0519 for the right amygdala features; for classification task for GAD patients vs. healthy controls, 7 and 3 features were selected from left and right amygdala, respectively, and the cross-validation AUCs were 0.6755±0.0615 for the left amygdala features and 0.6966±0.0854 for the right amygdala features. In both classification tasks, the selected amygdala radiomics features had higher discriminatory significance and effect sizes compared with the amygdala volume. Discussion Our study suggest that radiomics features of bilateral amygdala potentially could serve as a basis for the clinical diagnosis of anxiety disorder.
Collapse
Affiliation(s)
- Qingfeng Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhishan Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
36
|
Du Y, Zhang S, Qiu Q, Zhang J, Fang Y, Zhao L, Wei W, Wang J, Wang J, Li X. The effect of hippocampal radiomic features and functional connectivity on the relationship between hippocampal volume and cognitive function in Alzheimer's disease. J Psychiatr Res 2023; 158:382-391. [PMID: 36646036 DOI: 10.1016/j.jpsychires.2023.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Hippocampal volume is associated with cognitive function in Alzheimer's disease (AD). Hippocampal radiomic features and resting-state functional connectivity (rs-FC) are promising biomarkers and correlate with AD pathology. However, few studies have been conducted on how hippocampal biomarkers affect the cognition-structure relationship. Therefore, we aimed to investigate the effects of hippocampal radiomic features and resting-state functional connectivity (rs-FC) on this relationship in AD. We enrolled 70 AD patients and 65 healthy controls (HCs). The FreeSurfer software was used to measure hippocampal volume. We selected hippocampal radiomic features to build a model to distinguish AD patients from HCs and used a seed-based approach to calculate the hippocampal rs-FC. Furthermore, we conducted mediation and moderation analyses to investigate the effect of hippocampal radiomic features and rs-FC on the relationship between hippocampal volume and cognition in AD. The results suggested that hippocampal radiomic features mediated the association between bilateral hippocampal volume and cognition in AD. Additionally, patients with AD showed weaker rs-FC between the bilateral hippocampus and right ventral posterior cingulate cortex and stronger rs-FC between the left hippocampus and left insula than HCs. The rs-FC between the hippocampus and insula moderated the relationship between hippocampal volume and cognition in AD, suggesting that this rs-FC could exacerbate or ameliorate the effects of hippocampal volume on cognition and may be essential in improving cognitive function in AD. Our findings may not only expand existing biological knowledge of the interrelationships among hippocampal biomarkers and cognition but also provide potential targets for treatment strategies for AD.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shaowei Zhang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jianye Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenjing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jinhong Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
37
|
Shi Y, Wang Z, Chen P, Cheng P, Zhao K, Zhang H, Shu H, Gu L, Gao L, Wang Q, Zhang H, Xie C, Liu Y, Zhang Z. Episodic Memory-Related Imaging Features as Valuable Biomarkers for the Diagnosis of Alzheimer's Disease: A Multicenter Study Based on Machine Learning. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:171-180. [PMID: 33712376 DOI: 10.1016/j.bpsc.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Individualized and reliable biomarkers are crucial for diagnosing Alzheimer's disease (AD). However, lack of accessibility and neurobiological correlation are the main obstacles to their clinical application. Machine learning algorithms can effectively identify personalized biomarkers based on the prominent symptoms of AD. METHODS Episodic memory-related magnetic resonance imaging (MRI) features of 143 patients with amnesic mild cognitive impairment (MCI) were identified using a multivariate relevance vector regression algorithm. The support vector machine classification model was constructed using these MRI features and verified in 2 independent datasets (N = 994). The neurobiological basis was also investigated based on cognitive assessments, neuropathologic biomarkers of cerebrospinal fluid, and positron emission tomography images of amyloid-β plaques. RESULTS The combination of gray matter volume and amplitude of low-frequency fluctuation MRI features accurately predicted episodic memory impairment in individual patients with amnesic MCI (r = 0.638) when measured using an episodic memory assessment panel. The MRI features that contributed to episodic memory prediction were primarily distributed across the default mode network and limbic network. The classification model based on these features distinguished patients with AD from normal control subjects with more than 86% accuracy. Furthermore, most identified episodic memory-related regions showed significantly different amyloid-β positron emission tomography measurements among the AD, MCI, and normal control groups. Moreover, the classification outputs significantly correlated with cognitive assessment scores and cerebrospinal fluid pathological biomarkers' levels in the MCI and AD groups. CONCLUSIONS Neuroimaging features can reflect individual episodic memory function and serve as potential diagnostic biomarkers of AD.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Pindong Chen
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Piaoyue Cheng
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Kun Zhao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Lijuan Gao
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Haisan Zhang
- Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Yong Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, China; School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China; Department of Psychology, Xinxiang Medical University, Xinxiang, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
| | | |
Collapse
|
38
|
Liu W, Gauthier S, Jia J. Alzheimer's disease: current status and perspective. Sci Bull (Beijing) 2022; 67:2494-2497. [PMID: 36604022 DOI: 10.1016/j.scib.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China
| | - Serge Gauthier
- Departments of Neurology and Neurosurgery, and Department of Psychiatry, McGill Centre for Studies in Aging, McGill University, Montreal H4H1R3, Canada
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China.
| |
Collapse
|
39
|
Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. Heliyon 2022; 8:e12276. [PMID: 36582679 PMCID: PMC9793282 DOI: 10.1016/j.heliyon.2022.e12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| |
Collapse
|
40
|
Yang Y, Chen Y, Sang F, Zhao S, Wang J, Li X, Chen C, Chen K, Zhang Z. Successful or pathological cognitive aging? Converging into a "frontal preservation, temporal impairment (FPTI)" hypothesis. Sci Bull (Beijing) 2022; 67:2285-2290. [PMID: 36546218 DOI: 10.1016/j.scib.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Yiru Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China.
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China
| | - Shaokun Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine 92697, USA
| | - Kewei Chen
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China; Banner Alzheimer's Institute, Phoenix 85006, USA
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Aging Brain Rejuvenation Initiative (BABRI) Center, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
41
|
Zheng Q, Zhang Y, Li H, Tong X, Ouyang M. How segmentation methods affect hippocampal radiomic feature accuracy in Alzheimer's disease analysis? Eur Radiol 2022; 32:6965-6976. [PMID: 35999372 DOI: 10.1007/s00330-022-09081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer's disease (AD). However, how different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate how different segmentation methods affect HRF accuracy in AD analysis. METHODS A total of 1650 subjects were identified from the Alzheimer's Disease Neuroimaging Initiative database (ADNI). The mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS-cog13) were also adopted. After calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was validated, and the performance of machine learning-based classification of AD vs. normal control (NC) adopting the different HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate the consistency of results. RESULTS Between different segmentations, HRFs showed a high measurement consistency (R > 0.7), a high significant consistency between NC, mild cognitive impairment (MCI), and AD (T-value plot, R > 0.8), and consistent significant correlations between HRFs and MMSE/ADAS-cog13 (p < 0.05). The best NC vs. AD classification was obtained when the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were reproduced from independent EDSD cohort. CONCLUSIONS HRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy. KEY POINTS • The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal segmentation methods. • The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
Collapse
Affiliation(s)
- Qiang Zheng
- School of Computer and Control Engineering, Yantai University, No30, Qingquan Road, Laishan District, Yantai, 264005, Shandong, China.
| | - Yiyu Zhang
- School of Computer and Control Engineering, Yantai University, No30, Qingquan Road, Laishan District, Yantai, 264005, Shandong, China
| | - Honglun Li
- Departments of Medical Oncology and Radiology, Affiliated Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, 264000, China
| | - Xiangrong Tong
- School of Computer and Control Engineering, Yantai University, No30, Qingquan Road, Laishan District, Yantai, 264005, Shandong, China
| | - Minhui Ouyang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
42
|
Wang L, Feng Q, Ge X, Chen F, Yu B, Chen B, Liao Z, Lin B, Lv Y, Ding Z. Textural features reflecting local activity of the hippocampus improve the diagnosis of Alzheimer's disease and amnestic mild cognitive impairment: A radiomics study based on functional magnetic resonance imaging. Front Neurosci 2022; 16:970245. [PMID: 36003964 PMCID: PMC9393721 DOI: 10.3389/fnins.2022.970245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Background Textural features of the hippocampus in structural magnetic resonance imaging (sMRI) images can serve as potential diagnostic biomarkers for Alzheimer's disease (AD), while exhibiting a relatively poor discriminant performance in detecting early AD, such as amnestic mild cognitive impairment (aMCI). In contrast to sMRI, functional magnetic resonance imaging (fMRI) can identify brain functional abnormalities in the early stages of cerebral disorders. However, whether the textural features reflecting local functional activity in the hippocampus can improve the diagnostic performance for AD and aMCI remains unclear. In this study, we combined the textural features of the amplitude of low frequency fluctuation (ALFF) in the slow-5 frequency band and structural images in the hippocampus to investigate their diagnostic performance for AD and aMCI using multimodal radiomics technique. Methods Totally, 84 AD, 50 aMCI, and 44 normal controls (NCs) were included in the current study. After feature extraction and feature selection, the radiomics models incorporating sMRI images, ALFF values and their combinations in the bilateral hippocampus were established for the diagnosis of AD and aMCI. The effectiveness of these models was evaluated by receiver operating characteristic (ROC) analysis. The radiomics models were further validated using the external data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results The results of ROC analysis showed that the radiomics models based on structural images in the hippocampus had a better diagnostic performance for AD compared with the models using ALFF, while the ALFF-based model exhibited better discriminant performance for aMCI than the models with structural images. The radiomics models based on the combinations of structural images and ALFF were found to exhibit the highest accuracy for distinguishing AD from NCs and aMCI from NCs. Conclusion In this study, we found that the textural features reflecting local functional activity could improve the diagnostic performance of traditional structural models for both AD and aMCI. These findings may deepen our understanding of the pathogenesis of AD, contributing to the early diagnosis of AD.
Collapse
Affiliation(s)
- Luoyu Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Feng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuhong Ge
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenyang Chen
- The Fourth School of Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Bing Chen
- Jing Hengyi School of Education, Hangzhou Normal University, Hangzhou, China
| | - Zhengluan Liao
- Center for Rehabilitation Medicine, Department of Geriatric VIP No. 3, Department of Clinical Psychology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Biying Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhongxiang Ding
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Du K, Chen P, Zhao K, Qu Y, Kang X, Liu Y. Impaired time-distance reconfiguration patterns in Alzheimer's disease: a dynamic functional connectivity study with 809 individuals from 7 sites. BMC Bioinformatics 2022; 23:280. [PMID: 35836122 PMCID: PMC9284684 DOI: 10.1186/s12859-022-04776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The dynamic functional connectivity (dFC) has been used successfully to investigate the dysfunction of Alzheimer's disease (AD) patients. The reconfiguration intensity of nodal dFC, which means the degree of alteration between FCs at different time scales, could provide additional information for understanding the reconfiguration of brain connectivity. RESULTS In this paper, we introduced a feature named time distance nodal connectivity diversity (tdNCD), and then evaluated the network reconfiguration intensity in every specific brain region in AD using a large multicenter dataset (N = 809 from 7 independent sites). Our results showed that the dysfunction involved in three subnetworks in AD, including the default mode network (DMN), the subcortical network (SCN), and the cerebellum network (CBN). The nodal tdNCD inside the DMN increased in AD compared to normal controls, and the nodal dynamic FC of the SCN and the CBN decreased in AD. Additionally, the classification analysis showed that the classification performance was better when combined tdNCD and FC to classify AD from normal control (ACC = 81%, SEN = 83.4%, SPE = 80.6%, and F1-score = 79.4%) than that only using FC (ACC = 78.2%, SEN = 76.2%, SPE = 76.5%, and F1-score = 77.5%) with a leave-one-site-out cross-validation. Besides, the performance of the three classes classification was improved from 50% (only using FC) to 53.3% (combined FC and tdNCD) (macro F1-score accuracy from 46.8 to 48.9%). More importantly, the classification model showed significant clinically predictive correlations (two classes classification: R = -0.38, P < 0.001; three classes classification: R = -0.404, P < 0.001). More importantly, several commonly used machine learning models confirmed that the tdNCD would provide additional information for classifying AD from normal controls. CONCLUSIONS The present study demonstrated dynamic reconfiguration of nodal FC abnormities in AD. The tdNCD highlights the potential for further understanding core mechanisms of brain dysfunction in AD. Evaluating the tdNCD FC provides a promising way to understand AD processes better and investigate novel diagnostic brain imaging biomarkers for AD.
Collapse
Affiliation(s)
- Kai Du
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Pindong Chen
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yida Qu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
| |
Collapse
|
44
|
Cui C. Intelligent Analysis of Exercise Health Big Data Based on Deep Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5020150. [PMID: 35800690 PMCID: PMC9256337 DOI: 10.1155/2022/5020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
In this paper, the algorithm of the deep convolutional neural network is used to conduct in-depth research and analysis of sports health big data, and an intelligent analysis system is designed for the practical process. A convolutional neural network is one of the most popular methods of deep learning today. The convolutional neural network has the feature of local perception, which allows a complete image to be divided into several small parts, by learning the characteristic features of each local part and then merging the local information at the high level to get the full representation information. In this paper, we first apply a convolutional neural network for four classifications of brainwave data and analyze the accuracy and recall of the model. The model is then further optimized to improve its accuracy and is compared with other models to confirm its effectiveness. A demonstration platform of emotional fatigue detection with multimodal data feature fusion was established to realize data acquisition, emotional fatigue detection, and emotion feedback functions. The emotional fatigue detection platform was tested to verify that the proposed model can be used for time-series data feature learning. According to the platform requirement analysis and detailed functional design, the development of each functional module of the platform was completed and system testing was conducted. The big data platform constructed in this study can meet the basic needs of health monitoring for data analysis, which is conducive to the formation of a good situation of orderly and effective interaction among multiple subjects, thus improving the information service level of health monitoring and promoting comprehensive health development.
Collapse
Affiliation(s)
- Cui Cui
- Department of Sports, Huanghe Jiaotong University, Jiaozuo, Henan 454950, China
| |
Collapse
|
45
|
Long Z, Li J, Liao H, Deng L, Du Y, Fan J, Li X, Miao J, Qiu S, Long C, Jing B. A Multi-Modal and Multi-Atlas Integrated Framework for Identification of Mild Cognitive Impairment. Brain Sci 2022; 12:751. [PMID: 35741636 PMCID: PMC9221217 DOI: 10.3390/brainsci12060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Multi-modal neuroimaging with appropriate atlas is vital for effectively differentiating mild cognitive impairment (MCI) from healthy controls (HC). METHODS The resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (sMRI) of 69 MCI patients and 61 HC subjects were collected. Then, the gray matter volumes obtained from the sMRI and Hurst exponent (HE) values calculated from rs-fMRI data in the Automated Anatomical Labeling (AAL-90), Brainnetome (BN-246), Harvard-Oxford (HOA-112) and AAL3-170 atlases were extracted, respectively. Next, these characteristics were selected with a minimal redundancy maximal relevance algorithm and a sequential feature collection method in single or multi-modalities, and only the optimal features were retained after this procedure. Lastly, the retained characteristics were served as the input features for the support vector machine (SVM)-based method to classify MCI patients, and the performance was estimated with a leave-one-out cross-validation (LOOCV). RESULTS Our proposed method obtained the best 92.00% accuracy, 94.92% specificity and 89.39% sensitivity with the sMRI in AAL-90 and the fMRI in HOA-112 atlas, which was much better than using the single-modal or single-atlas features. CONCLUSION The results demonstrated that the multi-modal and multi-atlas integrated method could effectively recognize MCI patients, which could be extended into various neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Zhuqing Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jie Li
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Haitao Liao
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Li Deng
- Department of Data Assessment and Examination, Hunan Children’s Hospital, Changsha 410007, China;
| | - Yukeng Du
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Jianghua Fan
- Department of Pediatric Emergency Center, Emergency Generally Department I, Hunan Children’s Hospital, Changsha 410007, China;
| | - Xiaofeng Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha 410006, China;
| | - Jichang Miao
- Department of Medical Devices, Nanfang Hospital, Guangzhou 510515, China;
| | - Shuang Qiu
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Chaojie Long
- Medical Apparatus and Equipment Deployment, Hunan Children’s Hospital, Changsha 410007, China; (Z.L.); (J.L.); (H.L.); (Y.D.); (S.Q.)
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| |
Collapse
|
46
|
Structural and functional connectivity abnormalities of the default mode network in patients with Alzheimer's disease and mild cognitive impairment within two independent datasets. Methods 2022; 205:29-38. [PMID: 35671900 DOI: 10.1016/j.ymeth.2022.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive dementia, and amnestic mild cognitive impairment (aMCI) has been defined as a transitional stage between normal aging and AD. Accumulating evidence has shown that altered functional connectivity (FC) and structural connectivity (SC) in the default mode network (DMN) is the prominent hallmarks of AD. However, the relationship between the changes in SC and FC of the DMN is not yet clear. In the present study, we derived the FC and SC matrices of the DMN with functional magnetic resonance imaging (fMRI) and diffusion-weighted imaging (DWI) data and further assessed FC and SC abnormalities within a discovery dataset of 120 participants (39 normal controls, 34 patients with aMCI and 47 patients with AD), as well as a replication dataset of 122 participants (43 normal controls, 37 patients with aMCI and 42 patients with AD). Disrupted SC and FC were found among DMN components (e.g., the posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), and hippocampus) in patients in the aMCI and AD groups in the discovery dataset; most of the disrupted connections were also identified in the replication dataset. More importantly, some SC and FC elements were significantly correlated with the cognitive ability of patients with aMCI and AD. In addition, we found structural-functional decoupling between the PCC and the right hippocampus in patients in the aMCI and AD groups. These findings of the alteration of DMN connectivity in neurodegenerative cohorts deepen our understanding of the pathophysiological mechanisms of AD.
Collapse
|
47
|
Classification of Parkinson's disease using a region-of-interest- and resting-state functional magnetic resonance imaging-based radiomics approach. Brain Imaging Behav 2022; 16:2150-2163. [PMID: 35650376 DOI: 10.1007/s11682-022-00685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
To investigate the value of combining amplitude of low-frequency fluctuations-based radiomics and the support vector machine classifier method in distinguishing patients with Parkinson's disease from healthy controls. A total of 123 patients with Parkinson's disease and 90 healthy controls from three centers with functional and structural MRI images were included in this study. We extracted radiomics features using the Brainnetome 246 atlas from the mean amplitude of low-frequency fluctuations maps. Two-sample t-tests and recursive feature elimination combined with support vector machine method were applied for feature selection and dimensionality reduction. We used support vector machine classifier to construct model and identify the discriminative features. The automated anatomical labeling 90 atlas and fivefold cross-validation were used to evaluate the robustness and generalization of the classifier. We found our model obtained a high classification performance with an accuracy of 78.07%, and AUC, sensitivity, and specificity of 0.8597, 78.80%, and 76.08%, respectively. We detected 7 discriminative brain subregions. The fivefold cross-validation and automated anatomical labeling 90 atlas also got high classification accuracy, and we found Brainnetome 246 atlas achieved a higher classification performance than the automated anatomical labeling 90 atlas both with tenfold and fivefold cross-validation. Our findings may help the early diagnosis of Parkinson's disease and provide support for research on Parkinson's disease mechanisms and clinical evaluation.
Collapse
|
48
|
Yuan K, Zhao H, Zhang Y, Gong Y, Liu X, Lu L. Progress of the China brain project. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:213-215. [PMID: 37724191 PMCID: PMC10388803 DOI: 10.1515/mr-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Affiliation(s)
- Kai Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Haoyun Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuxin Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yimiao Gong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiaoxing Liu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China
- Peking-Tsinghua Centre for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
49
|
Zhao K, Zheng Q, Dyrba M, Rittman T, Li A, Che T, Chen P, Sun Y, Kang X, Li Q, Liu B, Liu Y, Li S. Regional Radiomics Similarity Networks Reveal Distinct Subtypes and Abnormality Patterns in Mild Cognitive Impairment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104538. [PMID: 35098696 PMCID: PMC9036024 DOI: 10.1002/advs.202104538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/30/2021] [Indexed: 05/28/2023]
Abstract
Individuals with mild cognitive impairment (MCI) of different subtypes show distinct alterations in network patterns. The first aim of this study is to identify the subtypes of MCI by employing a regional radiomics similarity network (R2SN). The second aim is to characterize the abnormality patterns associated with the clinical manifestations of each subtype. An individual-level R2SN is constructed for N = 605 normal controls (NCs), N = 766 MCI patients, and N = 283 Alzheimer's disease (AD) patients. MCI patients' R2SN profiles are clustered into two subtypes using nonnegative matrix factorization. The patterns of brain alterations, gene expression, and the risk of cognitive decline in each subtype are evaluated. MCI patients are clustered into "similar to the pattern of NCs" (N-CI, N = 252) and "similar to the pattern of AD" (A-CI, N = 514) subgroups. Significant differences are observed between the subtypes with respect to the following: 1) clinical measures; 2) multimodal neuroimaging; 3) the proportion of progression to dementia (61.54% for A-CI and 21.77% for N-CI) within three years; 4) enriched genes for potassium-ion transport and synaptic transmission. Stratification into the two subtypes provides new insight for risk assessment and precise early intervention for MCI patients.
Collapse
Affiliation(s)
- Kun Zhao
- Beijing Advanced Innovation Centre for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijing100876China
| | - Qiang Zheng
- School of Computer and Control EngineeringYantai UniversityYantai264005China
| | - Martin Dyrba
- German Center for Neurodegenerative Diseases (DZNE)Rostock18147Germany
| | - Timothy Rittman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0SZUK
| | - Ang Li
- State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Tongtong Che
- Beijing Advanced Innovation Centre for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
| | - Pindong Chen
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Yuqing Sun
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Xiaopeng Kang
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Qiongling Li
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijing100875China
| | - Bing Liu
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijing100875China
| | - Yong Liu
- School of Artificial IntelligenceBeijing University of Posts and TelecommunicationsBeijing100876China
- Brainnetome Center & National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190China
| | - Shuyu Li
- Beijing Advanced Innovation Centre for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100191China
- State Key Laboratory of Cognition Neuroscience & LearningBeijing Normal UniversityBeijing100875China
| | | |
Collapse
|
50
|
Huang H, Zheng S, Yang Z, Wu Y, Li Y, Qiu J, Cheng Y, Lin P, Lin Y, Guan J, Mikulis DJ, Zhou T, Wu R. Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer's disease based on cerebral gray matter changes. Cereb Cortex 2022; 33:754-763. [PMID: 35301516 PMCID: PMC9890469 DOI: 10.1093/cercor/bhac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.
Collapse
Affiliation(s)
- Huaidong Huang
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | | | - Zhongxian Yang
- Medical Imaging Center, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao'an District, Shenzhen 518000, China
| | - Yi Wu
- Department of Neurology, Shantou Central Hospital and Affiliated Shantou Hospital of Sun Yat-Sen University, No. 114, Waima Road, Jinping District, Shantou 515041, China
| | - Yan Li
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Jinming Qiu
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Yan Cheng
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Panpan Lin
- School of Clinical Medicine, Quanzhou Medical College, No. 2, Anji Road, Luojiang District, Quanzhou 362000, China
| | - Yan Lin
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Jitian Guan
- Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - David John Mikulis
- Division of Neuroradiology, Department of Medical Imaging, University of Toronto, University Health Network, Toronto Western Hospital, 399 Bathurst Street, Toronto, Ontario M5T 2S7, Canada
| | - Teng Zhou
- Department of Computer Science, Shantou University, 243 Daxue Road, Shantou 515063, China
- Renhua Wu, Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| | - Renhua Wu
- Department of Computer Science, Shantou University, 243 Daxue Road, Shantou 515063, China
- Renhua Wu, Department of Medical Imaging, The 2nd Affiliated Hospital, Medical College of Shantou University, No. 69, Dongxia North Road, Jinping District, Shantou 515041, China
| |
Collapse
|