1
|
Konrad A, Alizadeh S, Anvar SH, Fischer J, Manieu J, Behm DG. Static Stretch Training versus Foam Rolling Training Effects on Range of Motion: A Systematic Review and Meta-Analysis. Sports Med 2024; 54:2311-2326. [PMID: 38760635 PMCID: PMC11393112 DOI: 10.1007/s40279-024-02041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Long-term static stretching as well as foam rolling training can increase a joint's range of motion (ROM). However, to date, it is not clear which method is the most effective for increasing ROM. OBJECTIVE The purpose of this systematic review and meta-analysis was to compare the effects of static stretching and foam rolling training on ROM. METHODS The literature search was performed in PubMed, Scopus, and Web of Science to find the eligible studies. Eighty-five studies (72 on static stretching; and 13 on foam rolling) were found to be eligible with 204 effect sizes (ESs). For the main analyses, a random-effect meta-analysis was applied. To assess the difference between static stretching and foam rolling, subgroup analyses with a mixed-effect model were applied. Moderating variables were sex, total intervention duration, and weeks of intervention. RESULTS Static stretch (ES = - 1.006; p < 0.001), as well as foam rolling training (ES = - 0.729; p = 0.001), can increase joint ROM with a moderate magnitude compared with a control condition. However, we did not detect a significant difference between the two conditions in the subgroup analysis (p = 0.228). When the intervention duration was ≤ 4 weeks, however, a significant change in ROM was shown following static stretching (ES = - 1.436; p < 0.001), but not following foam rolling (ES = - 0.229; p = 0.248). Thus, a subgroup analysis indicated a significant favorable effect with static stretching for increasing ROM compared with foam rolling (p < 0.001) over a shorter term (≤ 4 weeks). Other moderator analyses showed no significant difference between static stretch and foam rolling training on ROM. CONCLUSIONS According to the results, both static stretching and foam rolling training can be similarly recommended to increase joint ROM, unless the training is scheduled for ≤ 4 weeks, in which case static stretching demonstrates a significant advantage. More studies are needed with a high-volume foam rolling training approach as well as foam rolling training in exclusively female participants.
Collapse
Affiliation(s)
- Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria.
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- Human Performance Lab, Department of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Josef Fischer
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria
| | - Josefina Manieu
- Institute of Human Movement Science, Sport and Health, Graz University, Mozartgasse 14, 8010, Graz, Austria
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
2
|
Konrad A, Alizadeh S, Daneshjoo A, Anvar SH, Graham A, Zahiri A, Goudini R, Edwards C, Scharf C, Behm DG. Chronic effects of stretching on range of motion with consideration of potential moderating variables: A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:186-194. [PMID: 37301370 PMCID: PMC10980866 DOI: 10.1016/j.jshs.2023.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND It is well known that stretch training can induce prolonged increases in joint range of motion (ROM). However, to date more information is needed regarding which training variables might have greater influence on improvements in flexibility. Thus, the purpose of this meta-analysis was to investigate the effects of stretch training on ROM in healthy participants by considering potential moderating variables, such as stretching technique, intensity, duration, frequency, and muscles stretched, as well as sex-specific, age-specific, and/or trained state-specific adaptations to stretch training. METHODS We searched through PubMed, Scopus, Web of Science, and SportDiscus to find eligible studies and, finally, assessed the results from 77 studies and 186 effect sizes by applying a random-effect meta-analysis. Moreover, by applying a mixed-effect model, we performed the respective subgroup analyses. To find potential relationships between stretch duration or age and effect sizes, we performed a meta-regression. RESULTS We found a significant overall effect, indicating that stretch training can increase ROM with a moderate effect compared to the controls (effect size = -1.002; Z = -12.074; 95% confidence interval: -1.165 to -0.840; p < 0.001; I2 = 74.97). Subgroup analysis showed a significant difference between the stretching techniques (p = 0.01) indicating that proprioceptive neuromuscular facilitation and static stretching produced greater ROM than did ballistic/dynamic stretching. Moreover, there was a significant effect between the sexes (p = 0.04), indicating that females showed higher gains in ROM compared to males. However, further moderating analysis showed no significant relation or difference. CONCLUSION When the goal is to maximize ROM in the long term, proprioceptive neuromuscular facilitation or static stretching, rather than ballistic/dynamic stretching, should be applied. Something to consider in future research as well as sports practice is that neither volume, intensity, nor frequency of stretching were found to play a significant role in ROM yields.
Collapse
Affiliation(s)
- Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, Graz A-8010, Austria; School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Abdolhamid Daneshjoo
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman 76169-13439, Iran
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Andrew Graham
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ali Zahiri
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Reza Goudini
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Chris Edwards
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Carina Scharf
- Institute of Human Movement Science, Sport and Health, Graz University, Graz A-8010, Austria
| | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
3
|
Dos Reis AL, de Oliveira LC, de Oliveira RG. Effects of stretching in a pilates program on musculoskeletal fitness: a randomized clinical trial. BMC Sports Sci Med Rehabil 2024; 16:11. [PMID: 38191589 PMCID: PMC10775508 DOI: 10.1186/s13102-024-00808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
BACKGROUND The scientific literature questions the impact of stretching exercises performed immediately before muscle strengthening exercises on different components of musculoskeletal physical fitness. Pilates is a physical exercise modality that typically uses stretching exercises preceding muscle-strengthening exercises. However, no studies have investigated the effects of stretching in a Pilates program on components of musculoskeletal fitness. The aim of the present study was to verify the effects of stretching in a Pilates exercise program on flexibility, strength, vertical jump height and muscular endurance. METHODS Thirty-two sedentary young women were randomized into two groups: traditional Pilates (TP), who performed flexibility and muscle strengthening exercises (n = 16), and nontraditional Pilates (NTP), who only performed muscle-strengthening exercises (n = 16). Sessions took place 3 times a week for 8 weeks. The following tests were performed pre- and postintervention: 10-RM knee extensors, vertical jump, handgrip, 1-min sit-ups, Sorensen and sit-and-reach. The occurrence of adverse events was recorded throughout the intervention and compared between groups using odds ratio (OR). To compare the results of motor tests between groups, ANCOVA or Mann‒Whitney U test was used for parametric and nonparametric data, respectively. The data were analyzed by intention-to-treat. RESULTS After intervention, the TP was superior to NTP for the sit-and-reach test, with a large effect size (d = 0.87; p = 0.035), with no differences between groups for the other tests. Intragroup comparisons showed significant differences (p < 0.05) for TP and NTP for improvement in 10-RM knee extensors and vertical jump measurements, while only TP showed significant intragroup improvement (p < 0.05) for the sit-and-reach test. A greater chance of experiencing pain or other discomfort as a result of exercise was shown by NTP (OR = 4.20, CI95% 0.69 to 25.26). CONCLUSION Our findings demonstrated that stretching exercises performed at the beginning of sessions in a Pilates program did not impair or enhance the development of strength, vertical jump height and muscular endurance in young women. However, only the Pilates program with stretching improved flexibility and reduced the chances of adverse events such as musculoskeletal pain and other discomfort resulting from the exercise protocol. CLINICALTRIALS GOV: NCT05538520, prospectively registered on September 16, 2022.
Collapse
Affiliation(s)
- Alex Lopes Dos Reis
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, 841, Nova Alcântara, Jacarezinho, PR, CEP: 86400-000, Brazil
| | - Laís Campos de Oliveira
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, 841, Nova Alcântara, Jacarezinho, PR, CEP: 86400-000, Brazil
| | - Raphael Gonçalves de Oliveira
- Postgraduate Program in Human Movement Sciences, Health Sciences Center, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, 841, Nova Alcântara, Jacarezinho, PR, CEP: 86400-000, Brazil.
- Postgraduate Program in Physical Exercise in Health Promotion, Health Sciences Research Center, Universidade Norte do Paraná (UNOPAR), Londrina, PR, Brazil.
| |
Collapse
|
4
|
Cai P, Liu L, Li H. Dynamic and static stretching on hamstring flexibility and stiffness: A systematic review and meta-analysis. Heliyon 2023; 9:e18795. [PMID: 37560703 PMCID: PMC10407730 DOI: 10.1016/j.heliyon.2023.e18795] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Hamstring injuries are one of the most common types of damage in sports. Insufficient flexibility and high stiffness are important reasons for it. Stretching is often used in warm-up activities before exercises to increase flexibility, among which dynamic stretching (DS) and static stretching (SS) are the most widely used. The effects of these two stretching techniques on the flexibility or stiffness of the hamstring still need to be clarified. OBJECTIVE This study aimed to compare the short-term, medium-term, and long-term effects of DS and SS on improving hamstring flexibility and stiffness via a meta-analysis of RCTs. METHODS RCTs were identified from PubMed, Cochrane Library, Web of Science, and PEDro from inception to July 28, 2022. The methodological quality was evaluated using the PEDro scale. The mean difference and 95% confidence interval of the outcome variables before and after stretching were calculated and the extracted data were quantitatively processed using a random or fixed effects model. RESULTS A total of 27 RCTs and 606 participants were included. In terms of improving the ROM of the hamstring, there was no significant difference in the acute (MD, -0.70, 95% CI, -1.54 to 0.14; Z = 1.63, P > 0.05) and sub-acute effects (MD, 1.71, 95% CI, -2.80 to 6.22; Z = 0.74, P > 0.05) between a single bout of SS and DS, while the acute (MD, -5.13, 95% CI, -7.65 to -2.61; Z = 3.99, P < 0.05) and sub-acute effects (MD, -5.30, 95% CI, -6.33 to -4.27; Z = 10.04, P < 0.05) of multiple bouts of SS was superior to DS; There was no significant difference in the medium-term effect between the two stretching techniques (MD, 3.48, 95% CI, -2.57 to 9.53; Z = 1.13, P > 0.05), but the long-term effect of SS was better than DS (MD, - 10.40, 95% CI, -10.97 to -9.83; Z = 35.57, P < 0.05). Regarding the length of the hamstring, the acute (MD, -0.41, 95% CI, -1.09 to 0.26; Z = 1.20, P > 0.05) and sub-acute effects (MD, -0.73, 95% CI, -1.69 to 0.22; Z = 1.51, P > 0.05) of a single bout of DS and SS were similar. Two studies have compared the effects on hamstring stiffness, with one showing similar effects, and the other showed that DS was superior to SS. One study showed no difference in the magnitude of change in improving passive torque. No studies explored the effect of DS and SS on hamstring myofascial length. Only one study demonstrated no significant difference in hamstring thickness. CONCLUSIONS A single bout of DS and SS have similar short-term effects in improving hamstring ROM and length, while multiple bouts of SS can significantly improve hamstring ROM compared to DS. DS and SS showed similar effects on hamstring myofascial length.
Collapse
Affiliation(s)
- Peng Cai
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lewen Liu
- Faculty of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Hai Li
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
5
|
Behm DG, Alizadeh S, Daneshjoo A, Konrad A. Potential Effects of Dynamic Stretching on Injury Incidence of Athletes: A Narrative Review of Risk Factors. Sports Med 2023; 53:1359-1373. [PMID: 37162736 PMCID: PMC10289929 DOI: 10.1007/s40279-023-01847-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 05/11/2023]
Abstract
The use of dynamic stretching as a replacement for static stretching in the warm-up is widespread based on the reports of static stretching-induced performance impairments. While acute and chronic static stretching has been reported to reduce musculotendinous injuries, especially with explosive and change of direction actions, the influence of dynamic stretching on injury incidence lacks a similar volume of literature for acute and chronic responses. It was the objective of this narrative review to examine the acute and training effects of dynamic stretching on injury incidence and possible moderating variables such as dynamic stretching effects on range of motion, strength, balance, proprioception, muscle morphology, and psycho-physiological responses. One study demonstrated no significant difference regarding injury incidence when comparing a dynamic stretching-only group versus a combined dynamic stretching plus static stretching group. The only other study examined functional dynamic stretching training with injured dancers and reported improved ankle joint stability. However, several studies have shown that dynamic activity with some dynamic stretching exercises within a warm-up consistently demonstrates positive effects on injury incidence. Regarding moderating variables, while there is evidence that an acute bout of dynamic stretching can enhance range of motion, the acute and training effects of dynamic stretching on strength, balance, proprioception, and musculotendinous stiffness/compliance are less clear. The acute effects of dynamic stretching on thixotropic effects and psycho-physiological responses could be beneficial for injury reduction. However, the overall conflicting studies and a lack of substantial literature compared with SS effects points to a need for more extensive studies in this area.
Collapse
Affiliation(s)
- David G. Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
| | - Abdolhamid Daneshjoo
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andreas Konrad
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7 Canada
- Institute of Human Movement Science, Sport and Health, Graz University, Graz, Austria
| |
Collapse
|
6
|
Konrad A, Nakamura M, Behm DG. The Effects of Foam Rolling Training on Performance Parameters: A Systematic Review and Meta-Analysis including Controlled and Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11638. [PMID: 36141907 PMCID: PMC9517147 DOI: 10.3390/ijerph191811638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Foam rolling (FR) is a new and popular technique for increasing range of motion. While there are a few studies that demonstrate increased performance measures after an acute bout of FR, the overall evidence indicates trivial performance benefits. As there have been no meta-analyses on the effects of chronic FR on performance, the objective of this systematic meta-analytical review was to quantify the effects of FR training on performance. We searched PubMed, Scopus, the Cochrane library, and Web of Science for FR training studies with a duration greater than two weeks, and found eight relevant studies. We used a random effect meta-analysis that employed a mixed-effect model to identify subgroup analyses. GRADE analysis was used to gauge the quality of the evidence obtained from this meta-analysis. Egger's regression intercept test (intercept 1.79; p = 0.62) and an average PEDro score of 6.25 (±0.89) indicated no or low risk of reporting bias, respectively. GRADE analysis indicated that we can be moderately confident in the effect estimates. The meta-analysis found no significant difference between FR and control conditions (ES = -0.294; p = 0.281; I2 = 73.68). Analyses of the moderating variables showed no significant differences between randomized control vs. controlled trials (Q = 0.183; p = 0.67) and no relationship between ages (R2 = 0.10; p = 0.37), weeks of intervention (R2 = 0.17; p = 0.35), and total load of FR (R2 = 0.24; p = 0.11). In conclusion, there were no significant performance changes with FR training and no specific circumstances leading to performance changes following FR training exceeding two weeks.
Collapse
Affiliation(s)
- Andreas Konrad
- Institute of Human Movement Science, Sport and Health, Graz University, 8010 Graz, Austria
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Masatoshi Nakamura
- Faculty of Rehabilitation Sciences, Nishi Kyushu University, 4490-9 Ozaki, Kanzaki 842-8585, Saga, Japan
| | - David George Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Feland B, Hopkins AC, Behm DG. Acute Hemodynamic Responses to Three Types of Hamstrings Stretching in Senior Athletes. J Sports Sci Med 2021; 20:690-698. [PMID: 35321136 PMCID: PMC8488840 DOI: 10.52082/jssm.2021.690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
Although stretching is recommended for fitness and health, there is little research on the effects of different stretching routines on hemodynamic responses of senior adults. It is not clear whether stretching can be considered an aerobic exercise stimulus or may be contraindicated for the elderly. The purpose of this study was to compare the effect of three stretching techniques; contract/relax proprioceptive neuromuscular facilitation (PNF), passive straight-leg raise (SLR), and static sit-and-reach (SR) on heart rate (HR) and blood pressure (BP) in senior athletes (119 participants: 65.6 ± 7.6 yrs.). Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP) and HR measurements were taken at baseline (after 5-minutes in a supine position), 45 and 90-seconds, during the stretch, and 2-minutes after stretching. Within each stretching group, (SLR, PNF, and SR) DBP, MAP and HR at pre-test and 2-min post-stretch were lower than at 45-s and 90-s during the stretch. SLR induced smaller increases in DBP and MAP than PNF and SR, whereas PNF elicited lower HR responses than SR. In conclusion, trained senior adult athletes experienced small to moderate magnitude increases of hemodynamic responses with SLR, SR and PNF stretching, which recovered to baseline values within 2-min after stretching. Furthermore, the passive SLR induced smaller increases in BP than PNF and SR, while PNF elicited lower HR responses than SR. These increases in hemodynamic responses (HR and BP) were not of a magnitude to be clinically significant, provide an aerobic exercise stimulus or warrant concerns for most senior athletes.
Collapse
Affiliation(s)
- Brent Feland
- Faculty Department of Exercise Sciences, College of Life Sciences, Brigham, University, Provo, Utah, USA
| | - Andy C Hopkins
- Department of Exercise Sciences, Brigham University, Provo, Utah, USA
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's NL, Canada
| |
Collapse
|