1
|
Mineral Paragenesis Precipitating in Salt Flat Pools of Continental Environments Replicated in Microbial Mat Microcosms without Evaporation. MINERALS 2022. [DOI: 10.3390/min12050646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mineral precipitation can be observed in natural environments, such as lagoons, rivers, springs, and soils. The primary precipitation process has long been believed to be abiotic due to evaporation, leading to phase supersaturation. However, biotic interactions of microbial metabolism, organic compounds, and dissolved ions leading to mineral precipitation has been shown in laboratory studies using single-organism culture. The increase in pH inducing calcium carbonate precipitation due to oxygenic photosynthesis by Cyanobacteria and the release of ions due to organic matter decomposition by Firmicutes-inducing magnesium carbonate precipitation are recognized examples. As microbes do not live as pure cultures in natural environments but form complex communities, such pure culture lab studies do not reflect natural conditions. In this study, we grew natural complex microbial communities in microcosm conditions using filtered brine as water column and two types of natural gypsum substrates, and we replenished incubations to avoid evaporation. We monitored microbial communities through optical microscopy and analyzed mineral paragenesis in association with and without microbes, using different analytical techniques, such X-ray diffraction, and optical and field emission scanning electron microscopies. To detect changes throughout the experiment, small amounts of water column brine were extracted for physicochemial determinations. We were able to detect mineral paragenesis, avoiding evaporation, including major phases of chemical sedimentary rocks, such as gypsum, calcium carbonate, and some silicates in association to microbes. In addition, we evidenced that the use of natural substrates positively impacts growth of microbial communities, promoting the development of more biomass. This study can be seen as the first attempt and proof of concept of differentiating biotic and abiotic participation in evaporitic deposits, as they can form mineral paragenesis without evaporation. Future studies with microcosm experiments using microbial mats will be needed to establish mineral precipitation induced by micro-organisms and their extracellular polymeric substances (EPS), specifically to replicate mineral paragenesis sedimented from natural brines.
Collapse
|
2
|
Tanzadeh J, Ghasemi MF, Anvari M, Issazadeh K. Biological removal of crude oil with the use of native bacterial consortia isolated from the shorelines of the Caspian Sea. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1756408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Jina Tanzadeh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Mohammad Faezi Ghasemi
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Masumeh Anvari
- Department of Microbiology, Faculty of Basic Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Khosro Issazadeh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
3
|
Li X, Zhao L, Adam M. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China. MARINE POLLUTION BULLETIN 2016; 105:43-50. [PMID: 26952993 DOI: 10.1016/j.marpolbul.2016.02.073] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
This study aims at constructing an efficient bacterial consortium to biodegrade crude oil spilled in China's Bohai Sea. In this study, TCOB-1 (Ochrobactrum), TCOB-2 (Brevundimonas), TCOB-3 (Brevundimonas), TCOB-4 (Bacillus) and TCOB-5 (Castellaniella) were isolated from Bohai Bay. Through the analysis of hydrocarbon biodegradation, TCOB-4 was found to biodegrade more middle-chain n-alkanes (from C17 to C23) and long-chain n-alkanes (C31-C36). TCOB-5 capable to degrade more n-alkanes including C24-C30 and aromatics. On the basis of complementary advantages, TCOB-4 and TCOB-5 were chosen to construct a consortium which was capable of degrading about 51.87% of crude oil (2% w/v) after 1week of incubation in saline MSM (3% NaCl). It is more efficient compared with single strain. In order to biodegrade crude oil, the construction of bacterial consortia is essential and the principle of complementary advantages could reduce competition between microbes.
Collapse
Affiliation(s)
- Xinfei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Mohamed Adam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Nozhevnikova AN, Botchkova EA, Plakunov VK. Multi-species biofilms in ecology, medicine, and biotechnology. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060107] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Pimda W, Bunnag S. Growth performance and biodegradation of waste motor oil by Nostoc piscinale strain TISTR 8401 in the presence of heavy metals and nutrients as co-contaminants. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Biodegradation of waste motor oil by Nostoc hatei strain TISTR 8405 in water containing heavy metals and nutrients as co-contaminants. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kumar D, Gaur JP. Growth and metal removal potential of a Phormidium bigranulatum-dominated mat following long-term exposure to elevated levels of copper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10279-10285. [PMID: 24793067 DOI: 10.1007/s11356-014-2920-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The present study explores the tolerance and metal removal response of a well-developed 2-week-old Phormidium mat after long-term exposure to Cu(2+)-enriched medium. Cu(2+) enrichment inhibited increase in mat biomass in a concentration-dependent manner. Mat area and the number of entrapped air bubbles decreased as Cu(2+) concentration increased in the medium. Decrease in number of air bubbles obviously reflects the adverse effect of Cu(2+) on photosynthetic performance of the mat. Metal enrichment did not substantially alter the amount of pigments, such as chlorophyll a, chlorophyll b, carotenoids, and phycocyanin, in the mat. Enhancement of Cu(2+) concentration in the medium led to changes in species composition of the test mat; however, Phormidium bigranulatum always remained the dominant organism. Relative share of green algae and some cyanobacterial taxa, namely, Lyngbya sp. and Oscillatoria tenuis, in the mat were increased by Cu(2+) enrichment. The mat successfully removed 80 to 94 % Cu(2+) from the growth medium containing 10 to 100 μM Cu(2+). Extracellular polysaccharides, whose share increased in the mat community after metal addition, seem to have contributed substantially to metal binding by the mat biomass.
Collapse
Affiliation(s)
- Dhananjay Kumar
- Department of Botany, School of Life Sciences, H.N.B. Garhwal University, Srinagar, Garhwal, 246 174, India,
| | | |
Collapse
|
8
|
Lamendella R, Strutt S, Borglin S, Chakraborty R, Tas N, Mason OU, Hultman J, Prestat E, Hazen TC, Jansson JK. Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities. Front Microbiol 2014; 5:130. [PMID: 24772107 PMCID: PMC3982105 DOI: 10.3389/fmicb.2014.00130] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/13/2014] [Indexed: 02/01/2023] Open
Abstract
One of the major environmental concerns of the Deepwater Horizon oil spill in the Gulf of Mexico was the ecological impact of the oil that reached shorelines of the Gulf Coast. Here we investigated the impact of the oil on the microbial composition in beach samples collected in June 2010 along a heavily impacted shoreline near Grand Isle, Louisiana. Successional changes in the microbial community structure due to the oil contamination were determined by deep sequencing of 16S rRNA genes. Metatranscriptomics was used to determine expression of functional genes involved in hydrocarbon degradation processes. In addition, potential hydrocarbon-degrading Bacteria were obtained in culture. The 16S data revealed that highly contaminated samples had higher abundances of Alpha- and Gammaproteobacteria sequences. Successional changes in these classes were observed over time, during which the oil was partially degraded. The metatranscriptome data revealed that PAH, n-alkane, and toluene degradation genes were expressed in the contaminated samples, with high homology to genes from Alteromonadales, Rhodobacterales, and Pseudomonales. Notably, Marinobacter (Gammaproteobacteria) had the highest representation of expressed genes in the samples. A Marinobacter isolated from this beach was shown to have potential for transformation of hydrocarbons in incubation experiments with oil obtained from the Mississippi Canyon Block 252 (MC252) well; collected during the Deepwater Horizon spill. The combined data revealed a response of the beach microbial community to oil contaminants, including prevalence of Bacteria endowed with the functional capacity to degrade oil.
Collapse
Affiliation(s)
- Regina Lamendella
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA ; Biology Department, Juniata College Huntingdon, PA, USA
| | - Steven Strutt
- Biology Department, Juniata College Huntingdon, PA, USA
| | - Sharon Borglin
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA
| | - Romy Chakraborty
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA
| | - Neslihan Tas
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA
| | - Olivia U Mason
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA ; Department of Earth, Ocean and Atmospheric Science, Florida State University Tallahassee, FL, USA
| | - Jenni Hultman
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA ; Department of Food Hygiene and Environmental Health, University of Helsinki Helsinki, Finland
| | - Emmanuel Prestat
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA
| | - Terry C Hazen
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA ; Department of Civil and Environmental Engineering, University of Tennessee Knoxville, TN, USA ; Oak Ridge National Laboratory, Biosciences Division Oak Ridge, TN, USA
| | - Janet K Jansson
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Ecology Department Berkeley, CA, USA ; Department of Energy, Joint Genome Institute Walnut Creek, CA, USA
| |
Collapse
|
9
|
Cravo-Laureau C, Duran R. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics'era. Front Microbiol 2014; 5:39. [PMID: 24575083 PMCID: PMC3921567 DOI: 10.3389/fmicb.2014.00039] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition, we present the main conclusions of our studies in this field.
Collapse
Affiliation(s)
- Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie UMR IPREM 5254, Université de Pau et des Pays de l'Adour Pau, France
| | - Robert Duran
- Equipe Environnement et Microbiologie UMR IPREM 5254, Université de Pau et des Pays de l'Adour Pau, France
| |
Collapse
|
10
|
Villanueva L, Del Campo J, Guerrero R. Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats. FEMS Microbiol Ecol 2010; 74:42-54. [PMID: 20618859 DOI: 10.1111/j.1574-6941.2010.00928.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Photosynthetic microbial mats are sources of microbial diversity and physiological strategies that reflect the physical and metabolic interactions between their resident species. This study focused on the diversity and activity of polyhydroxyalkanoate-producing and -degrading bacteria and their close partnership with cyanobacteria in an estuarine and a hypersaline microbial mat. The aerobic heterotrophic population was characterized on the basis of lipid biomarkers (respiratory quinones, sphingoid bases), polyhydroxyalkanoate determination, biochemical analysis of the isolates, and interaction assays. Most of the polyhydroxyalkanoate-producing isolates obtained from an estuarine mat belonged to the Halomonas and Labrenzia genera, while species of Sphingomonas and Bacillus were more prevalent in the hypersaline mat. Besides, the characterization of heterotrophic bacteria coisolated with filamentous cyanobacteria after selection suggested a specific association between them and diversification of the heterotrophic partner belonging to the Halomonas genus. Preliminary experiments suggested that syntrophic associations between strains of the Pseudoalteromonas and Halomonas genera explain the dynamics of polyhydroxyalkanoate accumulation in some microbial mats. These metabolic interactions and the diversity of the bacteria that participate in them are most likely supported by the strong mutual dependence of the partners.
Collapse
Affiliation(s)
- Laura Villanueva
- Department of Microbiology, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|