1
|
Zhang X, Li F, Ji C, Wu H. Toxicological mechanism of cadmium in the clam Ruditapes philippinarum using combined ionomic, metabolomic and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121286. [PMID: 36791949 DOI: 10.1016/j.envpol.2023.121286] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination in marine environment poses great risks to the organisms due to its potential adverse effects. In the present study, the toxicological effects and mechanisms of Cd at environmentally relevant concentrations (5 and 50 μg/L) on clam Ruditapes philippinarum after 21 days were investigated by combined ionomic, metabolomic, and transcriptomic analyses. Results showed that the uptake of Cd significantly decreased the concentrations of Cu, Zn, Sr, Se, and Mo in the whole soft tissue from 50 μg/L Cd-treated clams. Significantly negative correlations were observed between Cd and essential elements (Zn, Sr, Se, and Mo). Altered essential elements homeostasis was associated with the gene regulation of transport and detoxification, including ATP-binding cassette protein subfamily B member 1 (ABCB1) and metallothioneins (MT). The crucial contribution of Se to Cd detoxification was also found in clams. Additionally, gene set enrichment analysis showed that Cd could interfere with proteolysis by peptidases and decrease the translation efficiency at 50 μg/L. Cd inhibited lipid metabolism in clams and increased energy demand by up-regulating glycolysis and TCA cycle. Osmotic pressure was regulated by free amino acids, including alanine, glutamate, taurine, and homarine. Meanwhile, significant alterations of some differentially expressed genes, such as dopamine-β-hydroxylase (DBH), neuroligin (NLGN), NOTCH 1, and chondroitin sulfate proteoglycan 1 (CSPG1) were observed in clams, which implied potential interference with synaptic transmission. Overall, through integrating multiple omics, this study provided new insights into the toxicological mechanisms of Cd, particularly in those mediated by dysregulation of essential element homeostasis.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, 266071, PR China.
| |
Collapse
|
2
|
Chahouri A, Yacoubi B, Moukrim A, Banaoui A. Integration assay of bacteriological risks in marine environment using salmonella spp and multimarker response in the bivalve Donax trunculus: Novel biomonitoring approach. CHEMOSPHERE 2022; 297:134149. [PMID: 35271906 DOI: 10.1016/j.chemosphere.2022.134149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Microbiological contamination is one of the riskiest forms of human contamination in seawater, which threaten the stability of ecosystems and human health. In this study, we study the accumulation of a pathogenic bacteria Salmonella spp; isolated from the marine environment, in the soft tissue of Donax trunculus (Mollusca, Bivalvia), a commonly used as a bioindicators species for aquatic ecosystems monitoring, under laboratory conditions during both exposure and recovery periods. These bacteria were added in seawater at three concentrations previously determined against sentinel specie at three exposure periods (24, 48 and 96 h). In a second series of experiments, exposed specimens were afterward transplanted to clean water to assess the recovery pattern. The mortality rate of bivalves was determined as biomarker of general stress. Our findings suggest that microbiological contamination by Salmonella spp was gradually incorporated into the body of D. trunculus causing a significant induction of enzymatic activity of acetylcholinesterase (AChE), Catalase (CAT), glutathione-S-transferase (GST) and malondialdehyde (MDA) levels, as a function of time and concentration. Exposure to a bacterial concentration of 5.104 bacteria/liter resulted in the mortality of more than 80% of the specimens. This study is to test the pathogenicity of Salmonella strains at concentrations close to those of the marine environment, and their effects on biomarkers, thus deducing the existence of an exponential relationship between bacterial concentrations and enzymatic response. The principal component analysis shows that the four biomarkers had similar variation with bacterial concentrations, while two groups were obtained to change following the exposure time (CAT-GST and AChE-MDA). This study provides new findings on the potential accumulation of pathogenic bacteria associated with neurotoxicity and oxidative stress in the wedge clam Donax trunculus.
Collapse
Affiliation(s)
- Abir Chahouri
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco.
| | - Bouchra Yacoubi
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| | | | - Ali Banaoui
- Aquatic System Laboratory: Marine and Continental Environment, Faculty of Sciences Agadir, Department of Biology, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
3
|
Prestes JG, De Souza MRDP, Kandalski PK, Herrerias T, Machado C, de Arruda Martins E, Dos Anjos VA, Neundorf AKA, Pereira DMC, Moura MO, Donatti L. Biomarkers of oxidative stress and cell damage in freshwater bivalves Diplodon parodizi exposed to landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28384-28395. [PMID: 32418097 DOI: 10.1007/s11356-020-08721-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Landfill is a public and environmental health problem; establishing and understanding methodologies to decrease its toxicity are thus necessary. Leachate samples were collected, at a sanitary landfill, immediately after the exit from the landfill, i.e. raw leachate (collection point A), after conventional treatment (point B) and after treatment by wetlands (point C). D. parodizi specimens were exposed to 3%, 10% and control (0%) dilutions of leachate from these collection points for 7 days. Markers of antioxidant defences and cell damage were analysed. At point B, the gills of D. parodizi showed higher glutathione-S-transferase (GST) and glutathione reductase (GR) activity; the latter is a supplier of glutathione reductase (GSH). The low GST activity at point A was associated with the hormesis effect. Higher levels of superoxide dismutase (SOD), ethoxyresorufin-O-deethylase (EROD) and glutathione peroxidase (GPx) occurred at point A. Glucose-6-phosphate dehydrogenase (G6PDH) was inhibited at the points with the highest pollutant load and at the highest leachate dilutions. Higher levels of markers at point A may be related to the high pollutant charge and specific compounds present in the untreated leachate. The multi-xenobiotic resistance mechanism (MXR), metallothionein-like proteins (MT) and lipid peroxidation (LPO) did not vary among treatments. The biomarker responses showed negative effects of the leachate on the freshwater bivalve and simultaneously showed that the wetland treatment employed at the Caximba sanitary landfill is effective.
Collapse
Affiliation(s)
| | | | | | | | - Cintia Machado
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | | | - Lucelia Donatti
- Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
de Oliveira LF, Santos C, Dos Reis Martinez CB. Biomarkers in the freshwater bivalve Corbicula fluminea confined downstream a domestic landfill leachate discharge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13931-13942. [PMID: 27040540 DOI: 10.1007/s11356-016-6567-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/27/2016] [Indexed: 06/05/2023]
Abstract
Landfills represent a severe environmental problem mainly due to the generation of leachates, and this study aimed to evaluate sublethal effects of a domestic landfill leachate in the freshwater bivalve Corbicula fluminea. Clams were submitted to in situ tests along a stream, at three sites, representing increasing distances from the leachate discharge (Pq1, Pq2, and Pq3), for 1, 5, and 15 days. The following biomarkers were analyzed in the gills and digestive glands: 7-ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) activities, multixenobiotic resistance mechanism (MXR), total antioxidant capacity (TAC), reactive oxygen species (ROS), and lipid peroxidation (LPO). Metallothionein (MT) content was determined in the gills and DNA damage in hemocytes. The mortality rate of animals during in situ tests was reduced as the distance from the leachate discharge source increased. On the other hand, biomarker results showed sublethal effects on C. fluminea confined at all sites of PqS. GST, TAC, ROS, and DNA damage were the most significant biomarkers for this species and should be considered for future monitoring and assessment of freshwater environments located in landfill areas.
Collapse
Affiliation(s)
- Luciana Fernandes de Oliveira
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
| | - Caroline Santos
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Laboratório de Ecofisiologia Animal, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil.
| |
Collapse
|
5
|
De Lisa E, Carella F, De Vico G, Di Cosmo A. The gonadotropin releasing hormone (GnRH)-like molecule in prosobranch Patella caerulea: potential biomarker of endocrine-disrupting compounds in marine environments. Zoolog Sci 2013; 30:135-40. [PMID: 23387848 DOI: 10.2108/zsj.30.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported that endocrine disrupter compounds (EDCs) interfere with the endocrine system, mimicking the action of sex steroid hormones in different species of mollusks. Prosobranchs are frequently used as a reliable bioindicator to evaluate EDC exposure. In this article, we evaluate the effects of the xenoestrogen 4-n-nonylphenol (NP) in the prosobranch gastropod Patella caerulea, which exhibits protandrous hermaphroditism as its reproductive strategy. We isolated a partial sequence of a GnRH-like molecule from the gonads of Patella caerulea. The deduced amino acid sequence is highly homologous to that reported for the Lottia gigantea GnRH. Patella caerulea GnRH (pGnRH) mRNA expression is widespread in both male and female germ lines during gametogenesis. We suggest pGnRH as a novel biomarker for the early assessment of presence of EDCs and monitoring short and long-term impacts on Patella caerulea community structure.
Collapse
Affiliation(s)
- Emilia De Lisa
- Department of Structural and Functional Biology, University of Napoli "Federico II", via Cinthia, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
6
|
Scott AP. Do mollusks use vertebrate sex steroids as reproductive hormones? II. Critical review of the evidence that steroids have biological effects. Steroids 2013; 78:268-81. [PMID: 23219696 DOI: 10.1016/j.steroids.2012.11.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/22/2012] [Accepted: 11/02/2012] [Indexed: 01/02/2023]
Abstract
In assessing the evidence as to whether vertebrate sex steroids (e.g. testosterone, estradiol, progesterone) have hormonal actions in mollusks, ca. 85% of research papers report at least one biological effect; and 18 out of 21 review papers (published between 1970 and 2012) express a positive view. However, just under half of the research studies can be rejected on the grounds that they did not actually test steroids, but compounds or mixtures that were only presumed to behave as steroids (or modulators of steroids) on the basis of their effects in vertebrates (e.g. Bisphenol-A, nonylphenol and sewage treatment effluents). Of the remaining 55 papers, some can be criticized for having no statistical analysis; some for using only a single dose of steroid; others for having irregular dose-response curves; 40 out of the 55 for not replicating the treatments; and 50 out of 55 for having no within-study repetition. Furthermore, most studies had very low effect sizes in comparison to fish-based bioassays for steroids (i.e. they had a very weak 'signal-to-noise' ratio). When these facts are combined with the fact that none of the studies were conducted with rigorous randomization or 'blinding' procedures (implying the possibility of 'operator bias') one must conclude that there is no indisputable bioassay evidence that vertebrate sex steroids have endocrinological or reproductive roles in mollusks. The only observation that has been independently validated is the ability of estradiol to trigger rapid (1-5 min) lysosomal membrane breakdown in hemocytes of Mytilus spp. This is a typical 'inflammatory' response, however, and is not proof that estradiol is a hormone - especially when taken in conjunction with the evidence (discussed in a previous review) that mollusks have neither the enzymes necessary to synthesize vertebrate steroids nor nuclear receptors with which to respond to them.
Collapse
Affiliation(s)
- Alexander P Scott
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK.
| |
Collapse
|
7
|
Karami A, Christianus A, Bahraminejad B, Gagné F, Courtenay SC. Artificial neural network modeling of biomarkers to infer characteristics of contaminant exposure in Clarias gariepinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 77:28-34. [PMID: 22101109 DOI: 10.1016/j.ecoenv.2011.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 05/31/2023]
Abstract
This study examined the potential of artificial neural network (ANN) modeling to infer timing, route and dose of contaminant exposure from biomarkers in a freshwater fish. Hepatic glutathione S-transferase (GST) activity and biliary concentrations of BaP, 1-OH BaP, 3-OH BaP and 7,8D BaP were quantified in juvenile Clarias gariepinus injected intramuscularly or intraperitoneally with 10-50 mg/kg benzo[a]pyrene (BaP) 1-3 d earlier. A feedforward multilayer perceptron (MLP) ANN resulted in more accurate prediction of timing, route and exposure dose than a linear neural network or a radial basis function (RBF) ANN. MLP sensitivity analyses revealed contribution of all five biomarkers to predicting route of exposure but no contribution of hepatic GST activity or one of the two hydroxylated BaP metabolites to predicting time of exposure and dose of exposure. We conclude that information content of biomarkers collected from fish can be extended by judicious use of ANNs.
Collapse
Affiliation(s)
- Ali Karami
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | | | | | | | | |
Collapse
|