1
|
Zappaterra F, Renzi M, Piccardo M, Spennato M, Asaro F, Di Serio M, Vitiello R, Turco R, Todea A, Gardossi L. Understanding Marine Biodegradation of Bio-Based Oligoesters and Plasticizers. Polymers (Basel) 2023; 15:polym15061536. [PMID: 36987316 PMCID: PMC10054732 DOI: 10.3390/polym15061536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/08/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The study reports the enzymatic synthesis of bio-based oligoesters and chemo-enzymatic processes for obtaining epoxidized bioplasticizers and biolubricants starting from cardoon seed oil. All of the molecules had MW below 1000 g mol-1 and were analyzed in terms of marine biodegradation. The data shed light on the effects of the chemical structure, chemical bond lability, thermal behavior, and water solubility on biodegradation. Moreover, the analysis of the biodegradation of the building blocks that constituted the different bio-based products allowed us to distinguish between different chemical and physicochemical factors. These hints are of major importance for the rational eco-design of new benign bio-based products. Overall, the high lability of ester bonds was confirmed, along with the negligible effect of the presence of epoxy rings on triglyceride structures. The biodegradation data clearly indicated that the monomers/building blocks undergo a much slower process of abiotic or biotic transformations, potentially leading to accumulation. Therefore, the simple analysis of the erosion, hydrolysis, or visual/chemical disappearance of the chemical products or plastic is not sufficient, but ecotoxicity studies on the effects of such small molecules are of major importance. The use of natural feedstocks, such as vegetable seed oils and their derivatives, allows the minimization of these risks, because microorganisms have evolved enzymes and metabolic pathways for processing such natural molecules.
Collapse
Affiliation(s)
- Federico Zappaterra
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, Via L. Girgieri 10, 34127 Trieste, Italy
| | - Manuela Piccardo
- Department of Life Sciences, University of Trieste, Via L. Girgieri 10, 34127 Trieste, Italy
| | - Mariachiara Spennato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Napoli, Italy
| | - Rosa Vitiello
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Napoli, Italy
| | - Rosa Turco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, 80126 Napoli, Italy
- Institute for Polymers, Composites and Biomaterials, National Council of Research, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anamaria Todea
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Lucia Gardossi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
2
|
Falakdin P, Terzaghi E, Di Guardo A. Spatially resolved environmental fate models: A review. CHEMOSPHERE 2022; 290:133394. [PMID: 34953876 DOI: 10.1016/j.chemosphere.2021.133394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Spatially resolved environmental models are important tools to introduce and highlight the spatial variability of the real world into modeling. Although various spatial models have been developed so far, yet the development and evaluation of these models remain a challenging task due to several difficulties related to model setup, computational cost, and obtaining high-resolution input data (e.g., monitoring and emission data). For example, atmospheric transport models can be used when high resolution predicted concentrations in atmospheric compartments are required, while spatial multimedia fate models may be preferred for regulatory risk assessment, life cycle impact assessment of chemicals, or when the partitioning of chemical substances in a multimedia environment is considered. The goal of this paper is to review and compare different spatially resolved environmental models, according to their spatial, temporal and chemical domains, with a closer insight into spatial multimedia fate models, to achieve a better understanding of their strengths and limitations. This review also points out several requirements for further improvement of existing models as well as for their integration.
Collapse
Affiliation(s)
- Parisa Falakdin
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, CO, Italy.
| |
Collapse
|
3
|
Pellis A, Malinconico M, Guarneri A, Gardossi L. Renewable polymers and plastics: Performance beyond the green. N Biotechnol 2020; 60:146-158. [PMID: 33068793 DOI: 10.1016/j.nbt.2020.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Renewable bio-based polymers are one of the effective answers that the bioeconomy offers to solve the environmental emergency connected to plastics and more specifically fossil-based plastics. Previous studies have shown that more than 70 % of the natural capital cost associated with plastic derives from the extraction and processing of fossil raw materials and that the price of fossil plastic would be on average 44 % higher if such impact was fully paid by businesses. The disclosure of the hidden costs of plastics will contribute to dispelling the myth of the expensiveness of renewable polymers. Nevertheless, the adoption of bio-based plastics in the market must be motivated by their functional properties and not merely by their green credentials. This article highlights some successful examples of synergies between chemistry and biotechnology in achieving a new generation of bio-based monomers and polymers. Their success is justified by the combination of scientific advances with positive environmental and social fallouts.
Collapse
Affiliation(s)
- Alessandro Pellis
- University of Natural Resources and Life Sciences Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Mario Malinconico
- Institute for Polymers, Composites and Biomaterials, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucia Gardossi
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| |
Collapse
|
4
|
Paulillo A, Clift R, Dodds JM, Milliken A, Palethorpe SJ, Lettieri P. Radiological impacts in Life Cycle Assessment. Part I: General framework and two practical methodologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135179. [PMID: 31806334 DOI: 10.1016/j.scitotenv.2019.135179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
To date, impacts of ionising radiations have been largely disregarded in Life Cycle Assessment (LCA). This omission can be linked to the lack of a standard and comprehensive framework for including the effects of radionuclides alongside other emissions from industrial processes. Drawing on a recent review of Radiological Impact Assessment methodologies for LCA studies, this article proposes an overarching framework for integrating impacts of radionuclides in the Impact Assessment phase of LCA. From this framework, two alternative methodologies have been derived. They differ mainly in the way transport and dispersion of radionuclides in the environment are modelled: UCrad represents the first-of-its-kind compartment-type methodology for radionuclides, whereas the alternative Critical Group Methodology (CGM) has been adapted from standard Risk Assessment practices. Characterisation factors for a range of emitted species have been calculated using both methodologies and compared with those obtained from the Human Health Damages methodology, which is the only approach to radiological impacts yet implemented in LCA. For both UCrad and CGM the results are in general agreement with the Human Health Damages methodology, but UCrad gives factors closer to those obtained by the CGM approach. UCrad represents a major step towards incorporating ionising radiation impacts in LCIA. A subsequent paper will explore quantitatively the main differences between the UCrad and CGM methodologies.
Collapse
Affiliation(s)
- Andrea Paulillo
- Department of Chemical Engineering, University College London, Torrington Place, London WC1 E7JE, United Kingdom.
| | - Roland Clift
- Centre for Environment and Sustainability, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Jonathan M Dodds
- National Nuclear Laboratory, Workington, Cumbria CA14 3YQ, United Kingdom
| | - Andrew Milliken
- Ardskell, Embleton, Cockermouth, Cumbria CA13 9YP, United Kingdom
| | | | - Paola Lettieri
- Department of Chemical Engineering, University College London, Torrington Place, London WC1 E7JE, United Kingdom
| |
Collapse
|
5
|
Mutel C, Liao X, Patouillard L, Bare J, Fantke P, Frischknecht R, Hauschild M, Jolliet O, de Souza DM, Laurent A, Pfister S, Verones F. Overview and recommendations for regionalized life cycle impact assessment. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2019; 24:856-865. [PMID: 33122880 PMCID: PMC7592718 DOI: 10.1007/s11367-018-1539-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/05/2018] [Indexed: 05/05/2023]
Abstract
PURPOSE Regionalized life cycle impact assessment (LCIA) has rapidly developed in the past decade, though its widespread application, robustness, and validity still faces multiple challenges. Under the umbrella of UNEP/SETAC Life Cycle Initiative, a dedicated cross-cutting working group on regionalized LCIA aims to provides an overview of the status of regionalization in LCIA methods. We give guidance and recommendations to harmonize and support regionalization in LCIA for developers of LCIA methods, LCI databases, and LCA software. METHOD A survey of current practice among regionalized LCIA method developers was conducted. The survey included questions on chosen method spatial resolution and scale, the spatial resolution of input parameters, choice of native spatial resolution and limitations, operationalization and alignment with life cycle inventory data, methods for spatial aggregation, the assessment of uncertainty from input parameters and model structure, and variability due to spatial aggregation. Recommendations are formulated based on the survey results and extensive discussion by the authors. RESULTS AND DISCUSSION Survey results indicate that majority of regionalized LCIA models have global coverage. Native spatial resolutions are generally chosen based on the availability of global input data. Annual modelled or measured elementary flow quantities are mostly used for aggregating characterization factors (CFs) to larger spatial scales, although some use proxies, such as population counts. Aggregated CFs are mostly available at the country level. Although uncertainty due to input parameter, model structure, and spatial aggregation are available for some LCIA methods, they are rarely implemented for LCA studies. So far, there is no agreement if a finer native spatial resolution is the best way to reduce overall uncertainty. When spatially differentiated models CFs are not easily available, archetype models are sometimes developed. CONCLUSIONS Regionalized LCIA methods should be provided as a transparent and consistent set of data and metadata using standardized data formats. Regionalized CFs should include both uncertainty and variability. In addition to the native-scale CFs, aggregated CFs should always be provided, and should be calculated as the weighted averages of constituent CFs using annual flow quantities as weights whenever available. This paper is an important step forward for increasing transparency, consistency and robustness in the development and application of regionalized LCIA methods.
Collapse
Affiliation(s)
- Chris Mutel
- Paul Scherrer Institute, 5232 PSI Villigen, Switzerland
| | - Xun Liao
- Industrial Process and Energy Systems Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l'Industrie 17, CH-1951 Sion, Switzerland
- Quantis, EPFL Innovation Park (EIP-D), Lausanne, Switzerland
| | - Laure Patouillard
- CIRAIG, Polytechnique Montréal, P.O. Box 6079, Montréal, Québec H3C 3A7, Canada
- IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France
- UMR 0210 INRA-AgroParisTech Economie publique, INRA, Thiverval-Grignon, France
| | - Jane Bare
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | | | - Michael Hauschild
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Olivier Jolliet
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Maia de Souza
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
- Département de Stratégie, Responsabilité Sociale et Environnementale, Université du Québec à Montréal, Montreal, H3C 3P8, QC, Canada
| | - Alexis Laurent
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116B, 2800 Kgs. Lyngby, Denmark
| | - Stephan Pfister
- Institute of Environmental Engineering, ETH Zurich, Switzerland
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
6
|
Bai S, Ren N, You S, Zhao X, Li Y, Wang X. Modeling the oxygen-depleting potential and spatially differentiated effect of sewage organics in life cycle assessment for wastewater management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1071-1080. [PMID: 30577101 DOI: 10.1016/j.scitotenv.2018.11.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Excessive organic emissions measured as chemical oxygen demand (COD) have caused serious regional water pollution i.e. the widespread malodorous black rivers in China. Assessing the optimum treatment strategies is generally a complicated work involving sophisticated trade-offs across regional improvement and global sustainability. Life cycle assessment (LCA) is a promising tool to support such trade-offs, but it appears difficult to comprehensively reflect the direct impact of high-COD wastewater. This is because, the current LCA framework only highlights the effect of nutrients as a representative eutrophication indicator. To address this issue, this study extends the LCA framework by defining a new COD category to characterize the oxygen-depleting processes associated with development of characterization factors and models. By combining water quality model, the modeling scheme is shown capable of converting dynamic effects of COD on the receiving water into the spatially differentiated impact-assessment results. Upon a descriptive case, we also illustrate that the modeling scheme can construct different environmental situations by varying the embedded variables. This enables the refined investigations of the paradigm shift in wastewater treatment, which contributes to the avoidance of "one-size-fits-all" solution identified without considerations of environmental sustainability. Last, we discuss the ways to further refining the modeling scheme to make it applicable in more cases of water pollution.
Collapse
Affiliation(s)
- Shunwen Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Xinyue Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 150090 Harbin, China.
| |
Collapse
|
7
|
Konstantzos GE, Malamis D, Sotiropoulos A, Loizidou M. Environmental profile of an innovative household biowaste dryer system based on Life Cycle Assessment. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:48-58. [PMID: 30103653 DOI: 10.1177/0734242x18792604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An alternative approach to biowaste management involves the application of an innovative household dryer for the dehydration of biowaste at source, in order to significantly reduce its mass and volume, and subsequently the collection frequency. The main objective of this work is to assess the potential impacts of the system under examination, which involves the household dryer use and kerbside collection of the dehydrated residues (biomass), by conducting a Life Cycle Assessment study. The stages considered in the present study include the following: (a) the construction of the household biowaste dryer; (b) the use of the dryer and the collection of dehydrated residues; (c) the end-of-life treatment of the dryer. The results revealed that emissions coming from kerbside collection account for the vast majority of the total emissions from each category examined, apart from Terrestrial Ecotoxicity, where lignite, heavy fuel oil and diesel combustion during electricity production affect mainly this category. The potential impact in Global Warming over 100 years was estimated to be 8.87 kg CO2 eq / t biowaste. The Human Toxicity Potential was 1.86 kg 1,4-DB eq / t biowaste, Terrestrial Ecotoxicity Potential was 0.027 kg 1,4-DB eq / t biowaste, Freshwater Aquatic Ecotoxicity Potential was 0.0126 kg 1,4-DB eq / t biowaste and Marine Aquatic Ecotoxicity Potential was 521.85 kg 1,4-DB eq / t biowaste. Acidification Potential was estimated at 0.035 kg SO2 eq / t biowaste, while Eutrophication Potential was 0.0065 kg PO4- eq / t biowaste. Finally, Photochemical Oxidation Potential was 0.0014 kg C2H4 eq / t biowaste.
Collapse
Affiliation(s)
- Giorgos E Konstantzos
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science and Technology, Greece
| | - Dimitrios Malamis
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science and Technology, Greece
| | - Aggelos Sotiropoulos
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science and Technology, Greece
| | - Maria Loizidou
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science and Technology, Greece
| |
Collapse
|
8
|
Tian S, Bilec M. Integrating site-specific dispersion modeling into life cycle assessment, with a focus on inhalation risks in chemical production. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:1224-1238. [PMID: 29985784 DOI: 10.1080/10962247.2018.1496189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
It has become increasingly important for environmental managers to evaluate the human health (HH) impact of chemicals in their supply chain. Current life cycle assessment (LCA) methods are limited because they often only address the HH impact at large geographical scales. This paper aims to develop a method that derives a regionalized life cycle inventory data set and site-specific air dispersion modeling to evaluate the HH impact of chemicals along the life cycle phases at finer geographical scales to improve decision-making, with focus on inhalation pathway. More specifically, cancer risk and noncancer hazard index (HI) are quantified at the county level to identify high-risk regions and at the census tract level to reveal the geographical pattern of health impacts. The results showed that along the cradle-to-gate life cycle stages of a widely used chemical, methylene diphenyl diisocyanate (MDI), the accumulative inhalation risk was 3 orders of magnitude below the U.S. Environmental Protection Agency (EPA) risk management thresholds for both cancer risk (2.16 × 10-9) and noncancer HI (1.53 × 10-3). However, the absolute value of inhalation risks caused by the case study chemicals varied significantly in different geographical areas, up to 4 orders of magnitude. This paper demonstrates a feasible approach to improve human health impact assessment (HHIA) by combining site-specific air dispersion modeling and LCA using publicly available inventory data. This proposed method complements existing life cycle impact assessment (LCIA) models to improve HHIA by employing both HH risk assessment and LCA techniques. One potential outcome is to prioritize pollution prevention and risk reduction measures based on the risk maps derived from this method. Implications: It has become increasingly important for environmental managers to evaluate the human health impacts of chemicals in their supply chain. Regionalized life cycle inventory data sets should be developed using publically available databases such as EPA's toxic release inventory. The combination of site-specific dispersion modeling and life cycle assessment modeling can improve human health impact assessment of chemicals by providing more regionalized results along their supply chain.
Collapse
Affiliation(s)
- Shen Tian
- a Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , PA, USA
- b Product Safety and Regulatory Affairs , Covestro LLC , Pittsburgh , PA , USA
| | - Melissa Bilec
- a Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , PA, USA
| |
Collapse
|
9
|
Guinée JB, Heijungs R, Vijver MG, Peijnenburg WJGM. Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. NATURE NANOTECHNOLOGY 2017; 12:727-733. [PMID: 28775351 DOI: 10.1038/nnano.2017.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/09/2017] [Indexed: 05/23/2023]
Abstract
Although technological and environmental benefits are important stimuli for nanotechnology development, these technologies have been contested from an environmental point of view. The steady growth of applications of engineered nanomaterials has heated up the debate on quantifying the environmental repercussions. The two main scientific methods to address these environmental repercussions are risk assessment and life-cycle assessment. The strengths and weaknesses of each of these methods, and the relation between them, have been a topic of debate in the world of traditional chemistry for over two decades. Here we review recent developments in this debate in general and for the emerging field of nanomaterials specifically. We discuss the pros and cons of four schools of thought for combining and integrating risk assessment and life-cycle assessment and conclude with a plea for action.
Collapse
Affiliation(s)
- Jeroen B Guinée
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
| | - Reinout Heijungs
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
- Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
10
|
Csiszar SA, Meyer DE, Dionisio KL, Egeghy P, Isaacs KK, Price PS, Scanlon KA, Tan YM, Thomas K, Vallero D, Bare JC. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11922-11934. [PMID: 27668689 PMCID: PMC7388028 DOI: 10.1021/acs.est.6b02277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.
Collapse
Affiliation(s)
- Susan A Csiszar
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, hosted at U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| | - David E Meyer
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| | - Kathie L Dionisio
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Peter Egeghy
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kristin K Isaacs
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Paul S Price
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kelly A Scanlon
- AAAS Science & Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Radiation and Indoor Air, Washington, DC 20460, United States
| | - Yu-Mei Tan
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kent Thomas
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Daniel Vallero
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Jane C Bare
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| |
Collapse
|
11
|
Harder R, Holmquist H, Molander S, Svanström M, Peters GM. Review of Environmental Assessment Case Studies Blending Elements of Risk Assessment and Life Cycle Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13083-93. [PMID: 26542458 DOI: 10.1021/acs.est.5b03302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Risk assessment (RA) and life cycle assessment (LCA) are two analytical tools used to support decision making in environmental management. This study reviewed 30 environmental assessment case studies that claimed an integration, combination, hybridization, or complementary use of RA and LCA. The focus of the analysis was on how the respective case studies evaluated emissions of chemical pollutants and pathogens. The analysis revealed three clusters of similar case studies. Yet, there seemed to be little consensus as to what should be referred to as RA and LCA, and when to speak of combination, integration, hybridization, or complementary use of RA and LCA. This paper provides clear recommendations toward a more stringent and consistent use of terminology. Blending elements of RA and LCA offers multifaceted opportunities to adapt a given environmental assessment case study to a specific decision making context, but also requires awareness of several implications and potential pitfalls, of which six are discussed in this paper. To facilitate a better understanding and more transparent communication of the nature of a given case study, this paper proposes a "design space" (i.e., identification framework) for environmental assessment case studies blending elements of RA and LCA. Thinking in terms of a common design space, we postulate, can increase clarity and transparency when communicating the design and results of a given assessment together with its potential strengths and weaknesses.
Collapse
Affiliation(s)
- Robin Harder
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Hanna Holmquist
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Sverker Molander
- Environmental Systems Analysis, Department of Energy and Environment, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Magdalena Svanström
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | - Gregory M Peters
- Chemical Environmental Science, Department of Chemistry and Chemical Engineering, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| |
Collapse
|
12
|
Kobayashi Y, Peters GM, Ashbolt NJ, Shiels S, Khan SJ. Assessing burden of disease as disability adjusted life years in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 530-531:120-128. [PMID: 26042893 DOI: 10.1016/j.scitotenv.2015.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 06/04/2023]
Abstract
Disability adjusted life years (DALYs) have been used to quantify endpoint indicators of the human burden of disease in life cycle assessment (LCA). The purpose of this paper was to examine the current use of DALYs in LCA, and also to consider whether DALYs as used in LCA have the potential to be compatible with DALYs as used in quantitative risk assessment (QRA) to facilitate direct comparison of the results of the two approaches. A literature review of current usage of DALYs in LCA was undertaken. Two prominent methods were identified: ReCiPe 2008 and LIME2. The methods and assumptions used in their calculations were then critically reviewed. The assumptions used for the derivation of characterization factors in DALYs were found to be considerably different between LCA methods. In many cases, transparency of these calculations and assumptions is lacking. Furthermore, global average DALY values are often used in these calculations, but may not be applicable for impact categories where the local factors play a significant role. The concept of DALYs seems beneficial since it enables direct comparison and aggregation of different health impacts. However, given the different assumptions used in each LCA method, it is important that LCA practitioners are aware of the differences and select the appropriate method for the focus of their study. When applying DALYs as a common metric between LCA and QRA, understanding the background information on how DALYs were derived is crucial to ensure the consistency of DALYs used in LCA and QRA for resulting DALYs to be comparable and to minimize any double counting of effects.
Collapse
Affiliation(s)
- Yumi Kobayashi
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Greg M Peters
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Nicholas J Ashbolt
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; School of Public Health, University of Alberta, Edmonton T6G 2G7, Alberta, Canada
| | - Sean Shiels
- Knowledge, Technology & Innovation, Environment Protection Authority Victoria, 200 Victoria Street, Carlton, VIC 3053, Australia
| | - Stuart J Khan
- School of Civil & Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
13
|
Marvuglia A, Kanevski M, Benetto E. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space. ENVIRONMENT INTERNATIONAL 2015; 83:72-85. [PMID: 26101085 DOI: 10.1016/j.envint.2015.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
Toxicity characterization of chemical emissions in Life Cycle Assessment (LCA) is a complex task which usually proceeds via multimedia (fate, exposure and effect) models attached to models of dose-response relationships to assess the effects on target. Different models and approaches do exist, but all require a vast amount of data on the properties of the chemical compounds being assessed, which are hard to collect or hardly publicly available (especially for thousands of less common or newly developed chemicals), therefore hampering in practice the assessment in LCA. An example is USEtox, a consensual model for the characterization of human toxicity and freshwater ecotoxicity. This paper places itself in a line of research aiming at providing a methodology to reduce the number of input parameters necessary to run multimedia fate models, focusing in particular to the application of the USEtox toxicity model. By focusing on USEtox, in this paper two main goals are pursued: 1) performing an extensive exploratory analysis (using dimensionality reduction techniques) of the input space constituted by the substance-specific properties at the aim of detecting particular patterns in the data manifold and estimating the dimension of the subspace in which the data manifold actually lies; and 2) exploring the application of a set of linear models, based on partial least squares (PLS) regression, as well as a nonlinear model (general regression neural network--GRNN) in the seek for an automatic selection strategy of the most informative variables according to the modelled output (USEtox factor). After extensive analysis, the intrinsic dimension of the input manifold has been identified between three and four. The variables selected as most informative may vary according to the output modelled and the model used, but for the toxicity factors modelled in this paper the input variables selected as most informative are coherent with prior expectations based on scientific knowledge of toxicity factors modelling. Thus the outcomes of the analysis are promising for the future application of the approach to other portions of the model, affected by important data gaps, e.g., to the calculation of human health effect factors.
Collapse
Affiliation(s)
- Antonino Marvuglia
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41, rue du Brill, L-4422 Belvaux, Luxembourg.
| | - Mikhail Kanevski
- University of Lausanne (UNIL), Faculty of Geosciences and Environment, Geopolis Building CH-1015 Lausanne, Switzerland
| | - Enrico Benetto
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
14
|
Dong Y, Gandhi N, Hauschild MZ. Development of Comparative Toxicity Potentials of 14 cationic metals in freshwater. CHEMOSPHERE 2014; 112:26-33. [PMID: 25048884 DOI: 10.1016/j.chemosphere.2014.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/24/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
Site-dependent and site-generic Comparative Toxicity Potentials (CTPs) (also known as Characterization Factors (CFs)) were calculated for 14 cationic metals (Al(III), Ba, Be, Cd, Co, Cr(III), Cs, Cu(II), Fe(II), Fe(III), Mn(II), Ni, Pb, Sr and Zn), to be applied in Life Cycle Impact Assessment. CTPs were calculated for 7 EU-archetypes, taking bioavailability and speciation pattern into account. The resulting site-dependent CTPs showed up to 2.4-6.5 orders of magnitude variation across archetypes for those metals that form stable hydroxyl compounds in slightly alkaline waters (Al(III), Be, Cr(III), Cu(II) and Fe(III)), emphasizing the importance of using site-dependent CTPs for these metals where possible. For the other metals, CTPs stayed within around 0.9 orders of magnitude, making spatial differentiation less important. In acidic waters (pH<6.4), Al(III) and Cu(II) had the highest CTPs, while Cd ranked highest in other waters. Based on the site-dependent CTPs, site-generic CTPs were developed applying different averaging principle. Emission weighted average of 7 EU-archetype CTPs was recommended as site-generic CTP for use in LCA studies, where receiving location is unclear. Compared to previous studies by Gandhi et al. (2010, 2011a), new site-dependent CTPs were similar or slightly higher for Cd, Co, Ni, Pb and Zn, but 1-2 orders of magnitude higher for Cu. Compared to the default site-generic CTPs in the frequently used characterization models USES-LCA and USEtox, new site-generic CTPs were mostly higher or similar, within up to ∼2 orders of magnitude difference.
Collapse
Affiliation(s)
- Yan Dong
- Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, Nils Koppels Alle, Building 426D, DK-2800 Kgs. Lyngby, Denmark.
| | - Nilima Gandhi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Michael Z Hauschild
- Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, Nils Koppels Alle, Building 426D, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Kounina A, Margni M, Shaked S, Bulle C, Jolliet O. Spatial analysis of toxic emissions in LCA: a sub-continental nested USEtox model with freshwater archetypes. ENVIRONMENT INTERNATIONAL 2014; 69:67-89. [PMID: 24815341 DOI: 10.1016/j.envint.2014.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 04/10/2014] [Accepted: 04/10/2014] [Indexed: 05/21/2023]
Abstract
This paper develops continent-specific factors for the USEtox model and analyses the accuracy of different model architectures, spatial scales and archetypes in evaluating toxic impacts, with a focus on freshwater pathways. Inter-continental variation is analysed by comparing chemical fate and intake fractions between sub-continental zones of two life cycle impact assessment models: (1) the nested USEtox model parameterized with sub-continental zones and (2) the spatially differentiated IMPACTWorld model with 17 interconnected sub-continental regions. Substance residence time in water varies by up to two orders of magnitude among the 17 zones assessed with IMPACTWorld and USEtox, and intake fraction varies by up to three orders of magnitude. Despite this variation, the nested USEtox model succeeds in mimicking the results of the spatially differentiated model, with the exception of very persistent volatile pollutants that can be transported to polar regions. Intra-continental variation is analysed by comparing fate and intake fractions modelled with the a-spatial (one box) IMPACT Europe continental model vs. the spatially differentiated version of the same model. Results show that the one box model might overestimate chemical fate and characterisation factors for freshwater eco-toxicity of persistent pollutants by up to three orders of magnitude for point source emissions. Subdividing Europe into three archetypes, based on freshwater residence time (how long it takes water to reach the sea), improves the prediction of fate and intake fractions for point source emissions, bringing them within a factor five compared to the spatial model. We demonstrated that a sub-continental nested model such as USEtox, with continent-specific parameterization complemented with freshwater archetypes, can thus represent inter- and intra-continental spatial variations, whilst minimizing model complexity.
Collapse
Affiliation(s)
- Anna Kounina
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Quantis, Parc scientifique EPFL, Bâtiment D, 1015 Lausanne, Switzerland.
| | - Manuele Margni
- Quantis, Parc scientifique EPFL, Bâtiment D, 1015 Lausanne, Switzerland; CIRAIG, Polytechnique of Montréal, Chemin Polytechnique Montréal, QC, Canada
| | - Shanna Shaked
- University of Michigan, School of Public Health, Environmental Health Sciences, Ann Arbor, MI 48109, USA
| | - Cécile Bulle
- CIRAIG, Polytechnique of Montréal, Chemin Polytechnique Montréal, QC, Canada
| | - Olivier Jolliet
- Quantis, Parc scientifique EPFL, Bâtiment D, 1015 Lausanne, Switzerland; University of Michigan, School of Public Health, Environmental Health Sciences, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Ciuffo B, Sala S. Climate-based archetypes for the environmental fate assessment of chemicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 129:435-43. [PMID: 23999273 DOI: 10.1016/j.jenvman.2013.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 05/13/2023]
Abstract
Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits that influence their spatial variability. This hypothesis was tested by comparing the variability of the output of MAPPE for four different climatic zones on four different continents for four different chemicals (which represent different combinations of physical and chemical properties). Results showed the high suitability of climate-based archetypes in assessing the impacts of chemicals released in air. However, further research work is still necessary to test these findings.
Collapse
Affiliation(s)
- Biagio Ciuffo
- European Commission - Joint Research Centre, Institute for Environment and Sustainability, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | | |
Collapse
|
17
|
Sala S, Goralczyk M. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2013; 9:623-32. [PMID: 23907984 DOI: 10.1002/ieam.1471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/03/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In this article, we present a case study at the macroscale for the European Union, in which the chemical footprint according to step 1 is calculated for the year 2005. A proposal for extending this approach toward step 2 is presented and discussed, complemented by a discussion on the challenges and the use of appropriate methodologies for assessing chemical footprints to stimulate further research and discussion on the topic.
Collapse
Affiliation(s)
- Serenella Sala
- European Commission, Joint Research Centre, Institute of Environment and Sustainability, Sustainability Assessment Unit, Ispra (VA), Italy
| | | |
Collapse
|
18
|
Azevedo LB, Henderson AD, van Zelm R, Jolliet O, Huijbregts MAJ. Assessing the importance of spatial variability versus model choices in Life Cycle Impact Assessment: the case of freshwater eutrophication in Europe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13565-70. [PMID: 24256144 DOI: 10.1021/es403422a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In Life Cycle Impact Assessment (LCIA) both spatial variability and model choices may be influential. In the case of the effect model, the effect factors differ with respect to their assumption of linear/nonlinear responses to increases in environmental stressor levels, and whether or not they account for the current stressor levels in the environment. Here, we derived spatially explicit characterization factors of phosphorus emissions causing eutrophication based on three different effect models (depicted by marginal, linear, and average effect factors) and two freshwater types (lakes and streams) and we performed an analysis of variance (ANOVA) to investigate how the selection of the effect models and the freshwater types influence the impacts of phosphorus emissions to freshwater on heterotrophic species. We found that 56% of the variability of ecological impacts per unit of phosphorus emission was explained, primarily, by the difference between freshwater types and, to a lesser extent, by the difference between effect models. The remaining variability was attributed to the spatial variation between river basins, mainly due to the variability in fate factors. Our study demonstrates the particular importance of accounting for spatial variability and model choices in LCIA.
Collapse
Affiliation(s)
- Ligia B Azevedo
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen , P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Guillén D, Ginebreda A, Farré M, Darbra RM, Petrovic M, Gros M, Barceló D. Prioritization of chemicals in the aquatic environment based on risk assessment: analytical, modeling and regulatory perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 440:236-52. [PMID: 22809786 DOI: 10.1016/j.scitotenv.2012.06.064] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 05/22/2023]
Abstract
The extensive and intensive use of chemicals in our developed, highly technological society includes more than 100,000 chemical substances. Significant scientific evidence has lead to the recognition that their improper use and release may result in undesirable and harmful side-effects on both the human and ecosystem health. To cope with them, appropriate risk assessment processes and related prioritization schemes have been developed in order to provide the necessary scientific support for regulatory procedures. In the present paper, two of the elements that constitute the core of risk assessment, namely occurrence and hazard effects, have been discussed. Recent advances in analytical chemistry (sample pre-treatment and instrumental equipment, etc.) have allowed for more comprehensive monitoring of environmental pollution reaching limits of detection up to sub ng L(-1). Alternative to analytical measurements, occurrence models can provide risk managers with a very interesting approach for estimating environmental concentrations from real or hypothetical scenarios. The most representative prioritization schemes used for issuing lists of concerning chemicals have also been examined and put in the context of existing environmental policies for protection strategies and regulations. Finally, new challenges in the field of risk-assessment have been outlined, including those posed by new materials (i.e., nanomaterials), transformation products, multi-chemical exposure, or extension of the risk assessment process to the whole ecosystem.
Collapse
Affiliation(s)
- D Guillén
- IDAEA-CSIC, Jordi Girona, 18-26, 08024 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
20
|
Tessum CW, Marshall JD, Hill JD. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11408-17. [PMID: 22906224 DOI: 10.1021/es3010514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The environmental health impacts of transportation depend in part on where and when emissions occur during fuel production and combustion. Here we describe spatially and temporally explicit life cycle inventories (LCI) of air pollutants from gasoline, ethanol derived from corn grain, and ethanol from corn stover. Previous modeling for the U.S. by Argonne National Laboratory (GREET: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) suggested that life cycle emissions are generally higher for ethanol from corn grain or corn stover than for gasoline. Our results show that for ethanol, emissions are concentrated in the Midwestern "Corn Belt". We find that life cycle emissions from ethanol exhibit different temporal patterns than from gasoline, reflecting seasonal aspects of farming activities. Enhanced chemical speciation beyond current GREET model capabilities is also described. Life cycle fine particulate matter emissions are higher for ethanol from corn grain than for ethanol from corn stover; for black carbon, the reverse holds. Overall, our results add to existing state-of-the-science transportation fuel LCI by providing spatial and temporal disaggregation and enhanced chemical speciation, thereby offering greater understanding of the impacts of transportation fuels on human health and opening the door to advanced air dispersion modeling of fuel life cycles.
Collapse
Affiliation(s)
- Christopher W Tessum
- Department of Civil Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
21
|
Caudeville J, Bonnard R, Boudet C, Denys S, Govaert G, Cicolella A. Development of a spatial stochastic multimedia exposure model to assess population exposure at a regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 432:297-308. [PMID: 22750175 DOI: 10.1016/j.scitotenv.2012.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 05/11/2023]
Abstract
Analyzing the relationship between the environment and health has become a major focus of public health efforts in France, as evidenced by the national action plans for health and the environment. These plans have identified the following two priorities: - identify and manage geographic areas where hotspot exposures are a potential risk to human health; and - reduce exposure inequalities. The aim of this study is to develop a spatial stochastic multimedia exposure model for detecting vulnerable populations and analyzing exposure determinants at a fine resolution and regional scale. A multimedia exposure model was developed by INERIS to assess the transfer of substances from the environment to humans through inhalation and ingestion pathways. The RESPIR project adds a spatial dimension by linking GIS (Geographic Information System) to the model. Tools are developed using modeling, spatial analysis and geostatistic methods to build and discretize interesting variables and indicators from different supports and resolutions on a 1-km(2) regular grid. We applied this model to the risk assessment of exposure to metals (cadmium, lead and nickel) using data from a region in France (Nord-Pas-de-Calais). The considered exposure pathways include the atmospheric contaminant inhalation and ingestion of soil, vegetation, meat, egg, milk, fish and drinking water. Exposure scenarios are defined for different reference groups (age, dietary properties, and the fraction of food produced locally). The two largest risks correspond to an ancient industrial site (Metaleurop) and the Lille agglomeration. In these areas, cadmium, vegetation ingestion and soil contamination are the principal determinants of the computed risk.
Collapse
Affiliation(s)
- Julien Caudeville
- INERIS (French National Institute for Industrial Environment and Risks), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France.
| | | | | | | | | | | |
Collapse
|
22
|
Mutel CL, Pfister S, Hellweg S. GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1096-103. [PMID: 22206467 DOI: 10.1021/es203117z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.
Collapse
Affiliation(s)
- Christopher L Mutel
- ETH Zurich, Institute of Environmental Engineering, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|
23
|
Rovira J, Nadal M, Domingo JL, Tanaku T, Suciu NA, Trevisan M, Capri E, Seguí X, Darbra RM, Schuhmacher M. A Revision of Current Models for Environmental and Human Health Impact and Risk Assessment for Application to Emerging Chemicals. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2012. [DOI: 10.1007/698_2012_171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|