1
|
Leri AC, Fassihi GE, Lundquist MJ, Khan M, Arguin ML. Vertical stratification and seasonality of fecal indicator bacteria in New York City playground sandboxes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116152. [PMID: 38417319 DOI: 10.1016/j.ecoenv.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Sandboxes in public play spaces afford a crucial opportunity for urban children to engage in naturalistic play that fosters development of cognitive, social, and motor skills. As open pits, sandboxes in New York City public playgrounds are potentially exposed to fecal inputs from various sources, including wild and domestic animals. A longitudinal study of thirteen sandboxes located in public playgrounds on the east side of Manhattan reveals ubiquity of the fecal indicator bacteria enterococci and Escherichia coli through all seasons. The highest concentrations of bacteria occur in surface sand (n = 42; mean enterococci 230 MPN/g and E. coli 182 MPN/g dry weight), with significantly lower levels at depths below the surface (n = 35; mean enterococci 21 MPN/g and E. coli 12 MPN/g dry weight), a stratification consistent with fecal loading at the surface. Generalized linear mixed models indicate that sand depth (surface vs. underlayers) is the most influential variable affecting bacterial levels (P <0.001 for both enterococci and E. coli), followed by sampling season (P <0.001 for both). Bacterial concentrations do not vary significantly as a function of playground location or ZIP code within the study area. Children's exposure while playing in sandboxes likely reaches 105 enterococci and 104E. coli in a typical play period. Microbial source tracking to identify fecal hosts reveals dog, bird, and human biomarkers in low concentrations. Open sandbox microcosms installed at ground level in the urban environment of Manhattan are fouled by enterococci and E. coli within two weeks, while adjacent closed microcosms exhibit no fecal contamination over a 33-day sampling period. Collectively, our results indicate that increasing the frequency of sand refills and covering sandboxes during times of disuse would be straightforward management strategies to mitigate fecal contamination in playground sandboxes.
Collapse
Affiliation(s)
- Alessandra C Leri
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States.
| | - G Eliana Fassihi
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States
| | - Matthew J Lundquist
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States
| | - Marjan Khan
- Department of Natural Sciences, Marymount Manhattan College, 221 E 71st St., New York, NY 10021, United States
| | - Mariette L Arguin
- P.S. 77 Lower Lab School, 1700 3rd Ave., New York, NY 10128, United States
| |
Collapse
|
2
|
Soltani Tehrani R, Hornstra L, van Dam J, Cirkel DG. Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow. Appl Environ Microbiol 2023; 89:e0021923. [PMID: 37458609 PMCID: PMC10467344 DOI: 10.1128/aem.00219-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/15/2023] [Indexed: 08/31/2023] Open
Abstract
For production of clean drinking water, the processes governing bacterial remobilization in the unsaturated zone at transient water flow are critical. Although managed aquifer recharge is an effective way to dispose of pathogens, there are concerns about recontamination after heavy precipitation. To better understand how bacteria that were initially retained in porous media can be released to groundwater due to transient water content, transport experiments and modeling for Escherichia coli and Enterococcus moraviensis were conducted at the soil column scale. After inoculating dune sand columns with a bacteria suspension for 4 h, three rainfall events were performed at 24-h intervals. The effluent from sand columns was collected to analyze bacteria breakthrough curves (BTCs). After the rainfall experiments, the bacteria distribution in the sand column was determined. The collected BTCs and profile retentions were modeled with HYDRUS-1D, using different model concepts, including one-site kinetic attachment/detachment (M1), Langmuirian (M2), Langmuirian and blocking (M3), and two-site attachment/detachment (M4). After inoculation, almost 99% of the bacteria remained in the soil. The M1 and M2 bacteria models had a high agreement between observed and modeled concentrations, and attachment and detachment were two significant mechanisms for regulating bacteria movement in a porous medium with fluctuations in water flow. At the end of the experiment, the majority of bacteria were still found within the depth range of 5 cm to 15 cm. Our experiments show that E. coli is more mobile in sandy soils than E. moraviensis. The results of this study also suggest that the unsaturated zone is an important barrier between microbial contamination at the soil surface and groundwater. Follow-up studies are needed to completely understand the variables that regulate bacteria remobilization in the unsaturated zone of dune sands. IMPORTANCE At managed artificial recharge sites in the Netherlands, recontamination of infiltrated water with fecal indicator bacteria has been observed. The results of this study suggest that the unsaturated zone is an important barrier between microbial contamination at the soil surface and groundwater. Bacteria that accumulate in the unsaturated zone, on the other hand, can multiply to such an extent that they can be released into the saturated zone when saturation increases due to major rain events or a rise in groundwater level.
Collapse
Affiliation(s)
- Rozita Soltani Tehrani
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, The Netherlands
| | - Luc Hornstra
- KWR Water Research Institute, Nieuwegein, The Netherlands
| | - Jos van Dam
- Department of Soil Physics and Land Management, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
3
|
Tamai S, Shimamoto H, Nukazawa K, Suzuki Y. Growth and Decay of Fecal Indicator Bacteria and Changes in the Coliform Composition on the Top Surface Sand of Coastal Beaches during the Rainy Season. Microorganisms 2023; 11:microorganisms11041074. [PMID: 37110497 PMCID: PMC10145847 DOI: 10.3390/microorganisms11041074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
High counts of bacteria are present in beach sand, and human health threats attributable to contact with sand have been reported. In this study, we investigated fecal indicator bacteria in the top surface sand of coastal beaches. Monitoring investigations were performed during a monsoon when rainfall occurs randomly, and the composition of the coliforms was analyzed. The coliform count in the top surface sand (depth < 1 cm) increased by approximately 100 fold (26-2.23 × 103 CFU/100 g) with increasing water content because of precipitation. The composition of the coliforms in the top surface sand changed within 24 h of rainfall, with Enterobacter comprising more than 40% of the coliforms. Estimation of factors that changed the bacterial counts and composition revealed that coliform counts tended to increase with increasing water content in the top surface sand. However, the abundance of Enterobacter was independent of the sand surface temperature and water content. Coliform counts in the top surface sand rapidly increased and the composition showed remarkable variations because of the supply of water to the beach following rainfall. Among them, some bacteria with suspected pathogenicity were present. Controlling bacteria in coastal beaches is important for improving public health for beachgoers.
Collapse
Affiliation(s)
- Soichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroshi Shimamoto
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
4
|
Gallard-Gongora J, Lobos A, Conrad JW, Peraud J, Harwood VJ. An assessment of three methods for extracting bacterial DNA from beach sand. J Appl Microbiol 2021; 132:2990-3000. [PMID: 34932856 DOI: 10.1111/jam.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Beach water quality is regulated by faecal indicator bacteria levels, sand is not, despite known human health risk from exposure to beach sand. We compared the performance of three methods to extract bacterial DNA from beach sand as a step toward a standard method. METHODS AND RESULTS The analytical sensitivity of quantitative polymerase chain reaction (qPCR) for Enterococcus was compared for the slurry (suspension, agitation, membrane filtration of supernatant), versus direct extraction using PowerSoil™ or PowerMax Soil™ kits. The slurry method had the lowest limit of detection at 20-80 gene copies g-1 , recovered significantly more DNA, and the only method that detected Enterococcus by qPCR in all samples; therefore, the only method used in subsequent experiments. The slurry method reflected the spatial variability of Enterococcus in individual transect samples. Mean recovery efficiency of the microbial source tracking marker HF183 from wastewater spiked marine and freshwater beach sand was 100.8% and 64.1%, respectively, but varied, indicating that the mixing protocol needs improvement. CONCLUSIONS Among the three methods, the slurry method had the best analytical sensitivity and produced extracts that were useful for culture or molecular analysis. SIGNIFICANCE AND IMPACT OF STUDY Standardization of methods for extraction of bacterial DNA from sand facilitates comparisons among studies, and ultimately contributes to the safety of recreational beaches.
Collapse
Affiliation(s)
| | - Aldo Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - James W Conrad
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Butler AJ, Pintar K, Thomas JL, Fleury M, Kadykalo S, Ziebell K, Nash J, Lapen D. Microbial water quality at contrasting recreational areas in a mixed-use watershed in eastern Canada. JOURNAL OF WATER AND HEALTH 2021; 19:975-989. [PMID: 34874904 DOI: 10.2166/wh.2021.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recreational water use is an important source of human enteric illness. Enhanced (episodic) surveillance of natural recreational waters as a supplement to beach monitoring can enrich our understanding of human health risks. From 2011 to 2013, water sampling was undertaken at recreational sites on a watershed in eastern Canada. This study compared the prevalence and associations of human enteric pathogens and fecal indicator organisms. Beach water samples had lower pathogen presence than those along the main river, due to different pollution sources and the hydrological disposition. Pathogen profiles identified from the beach sites suggested a more narrow range of sources, including birds, indicating that wild bird management could help reduce public health risks at these sites. The presence and concentration of indicator organisms did not differ significantly between beaches and the river. However, higher concentrations of generic Escherichia coli were observed when Salmonella and Cryptosporidium were present at beach sites, when Salmonella was present at the river recreational site, and when verotoxigenic E. coli were present among all sites sampled. In this watershed, generic E. coli concentrations were good indicators of potential contamination, pathogen load, and elevated human health risk, supporting their use for routine monitoring where enhanced pathogen testing is not possible.
Collapse
Affiliation(s)
| | | | - Janis L Thomas
- Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment, Conservation and Parks, Toronto, Canada
| | - Manon Fleury
- Centre for Food-borne, Environmental and Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, Canada E-mail:
| | - Stefanie Kadykalo
- Centre for Food-borne, Environmental and Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, Canada E-mail:
| | - Kim Ziebell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Canada
| | - John Nash
- National Microbiology Laboratory at Toronto, Public Health Agency of Canada, Toronto, Canada
| | - David Lapen
- Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
6
|
Scoullos IM, Adhikari S, Lopez Vazquez CM, van de Vossenberg J, Brdjanovic D. Inactivation of indicator organisms on different surfaces after urban floods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135456. [PMID: 31837866 DOI: 10.1016/j.scitotenv.2019.135456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/12/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The high frequency and intensity of urban floods caused by climate change, urbanisation and infrastructure failures increase public health risks when the flood water contaminated from combined sewer overflows (CSOs) or other sources of faecal contamination remains on urban surfaces. This study contributes to a better understanding of the effects of urban and recreational surfaces on the occurrence of waterborne pathogens. The inactivation of selected indicator organisms was studied under controlled exposure to artificial sunlight for 6 h followed by 18 h in dark conditions. Concrete, asphalt, pavement blocks and glass as control were inoculated with artificial floodwater containing, as indicator organisms, Escherichia coli bacteria, which are common faecal indicator bacteria (FIB) for water quality assessment, Bacillus subtilis spores chosen as surrogates for Cryptosporidium parvum oocysts and Giardia cysts, and bacteriophages MS2 as indicators for viral contamination. On practically all the surfaces in this study, E. coli had the highest inactivation under light conditions followed by MS2 and B. subtilis, except asphalt where MS2 was inactivated faster. The highest inactivation under light conditions was seen with E. coli on a concrete surface (pH 9.6) with an inactivation rate of 1.85 h-1. However, the pH of the surfaces (varying between 7.0 and 9.6) did not have any influence on inactivation rates under dark conditions. MS2 bacteriophage had the highest inactivation under light conditions on asphalt with a rate of 1.29 h-1. No die-off of B. subtilis spores was observed on any of the surfaces during the experiment, neither in light nor in dark conditions. This study underpins the need to use different indicator organisms to test their inactivation after flooding. It also suggests that given the sunlight conditions, concentration of indicator organisms and type of surface, the fate of waterborne pathogens after a flood could be estimated.
Collapse
Affiliation(s)
- Iosif Marios Scoullos
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, Delft 2601 DA, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.
| | - Sabita Adhikari
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, Delft 2601 DA, The Netherlands
| | - Carlos M Lopez Vazquez
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, Delft 2601 DA, The Netherlands
| | - Jack van de Vossenberg
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, Delft 2601 DA, The Netherlands
| | - Damir Brdjanovic
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, Delft 2601 DA, The Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
7
|
Scoullos IM, Lopez Vazquez CM, van de Vossenberg J, Brdjanovic D. Die-off of E. coli as fecal indicator organism on different surfaces after urban floods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109516. [PMID: 31513998 DOI: 10.1016/j.jenvman.2019.109516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/24/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
A better understanding of the effects of different urban and recreational surfaces on the die-off of water-borne pathogens that can cause infections after urban floods if released from surcharged combined sewers and other sources of fecal contamination is needed. The die-off of fecal indicator Escherichia coli was studied under controlled exposure to simulated sunlight on a range of different surfaces found in urban environments: gravel, sand, asphalt, pavement blocks, concrete, playground rubber tiles and grass, using glass as control. The surfaces were inoculated with artificial flooding water containing 105 colony forming units (CFU) of E. coli per mL and sampled periodically using the sterile cotton swab technique, after lowering the water level. The results show that dark inactivation was not statistically significant for any surface, suggesting that chemical composition and pH (varying between 6.5 ± 0.8 and 9.2 ± 0.4) did not affect the die-off rates. The highest light-induced die-off rates for E. coli after the floodwater recession, observed on rubber (>3.46 h-1) and asphalt (2.7 h-1), were attributed to temperature stress and loss of surface moisture.
Collapse
Affiliation(s)
- Iosif Marios Scoullos
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| | - Carlos M Lopez Vazquez
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA, Delft, the Netherlands.
| | - Jack van de Vossenberg
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA, Delft, the Netherlands.
| | - Damir Brdjanovic
- Environmental Engineering & Water Technology Department, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA, Delft, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
8
|
Abstract
Fecal microorganisms can enter water bodies in diverse ways, including runoff, sewage discharge, and direct fecal deposition. Once in water, the microorganisms experience conditions that are very different from intestinal habitats. The transition from host to aquatic environment may lead to rapid inactivation, some degree of persistence, or growth. Microorganisms may remain planktonic, be deposited in sediment, wash up on beaches, or attach to aquatic vegetation. Each of these habitats offers a panoply of different stressors or advantages, including UV light exposure, temperature fluctuations, salinity, nutrient availability, and biotic interactions with the indigenous microbiota (e.g., predation and/or competition). The host sources of fecal microorganisms are likewise numerous, including wildlife, pets, livestock, and humans. Most of these microorganisms are unlikely to affect human health, but certain taxa can cause waterborne disease. Others signal increased probability of pathogen presence, e.g., the fecal indicator bacteria Escherichia coli and enterococci and bacteriophages, or act as fecal source identifiers (microbial source tracking markers). The effects of environmental factors on decay are frequently inconsistent across microbial species, fecal sources, and measurement strategies (e.g., culture versus molecular). Therefore, broad generalizations about the fate of fecal microorganisms in aquatic environments are problematic, compromising efforts to predict microbial decay and health risk from contamination events. This review summarizes the recent literature on decay of fecal microorganisms in aquatic environments, recognizes defensible generalizations, and identifies knowledge gaps that may provide particularly fruitful avenues for obtaining a better understanding of the fates of these organisms in aquatic environments.
Collapse
|
9
|
Links between bacteria derived from penguin guts and deposited guano and the surrounding soil microbiota. Polar Biol 2017. [DOI: 10.1007/s00300-017-2189-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Orden C, Neila C, Blanco JL, Álvarez-Pérez S, Harmanus C, Kuijper EJ, García ME. Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile. Zoonoses Public Health 2017; 65:88-95. [PMID: 28686001 DOI: 10.1111/zph.12374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 12/13/2022]
Abstract
Different studies have suggested that the sand of public playgrounds could have a role in the transmission of infections, particularly in children. Furthermore, free access of pets and other animals to the playgrounds might increase such a risk. We studied the presence of Clostridium difficile in 20 pairs of sandboxes for children and dogs located in different playgrounds within the Madrid region (Spain). Clostridium difficile isolation was performed by enrichment and selective culture procedures. The genetic (ribotype and amplified fragment length polymorphism [AFLP]) diversity and antibiotic susceptibility of isolates was also studied. Overall, 52.5% (21/40) of samples were positive for the presence of C. difficile. Eight of the 20 available isolates belonged to the toxigenic ribotypes 014 (n = 5) and 106 (n = 2), both regarded as epidemic, and CD047 (n = 1). The other 12 isolates were non-toxigenic, and belonged to ribotypes 009 (n = 5), 039 (n = 4), and 067, 151 and CD048 (one isolate each). Nevertheless, all isolates (even those of a same ribotype) were classified into different AFLP genotypes indicating non-relatedness. In conclusion, our results revealed the presence of epidemic ribotypes of C. difficile in children's and dog's sandboxes located nearby, which constitutes a major health risk.
Collapse
Affiliation(s)
- Cristina Orden
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Neila
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - Celine Harmanus
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Marta E García
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Wu MZ, O'Carroll DM, Vogel LJ, Robinson CE. Effect of Low Energy Waves on the Accumulation and Transport of Fecal Indicator Bacteria in Sand and Pore Water at Freshwater Beaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2786-2794. [PMID: 28186740 DOI: 10.1021/acs.est.6b05985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Elevated fecal indicator bacteria (FIB) in beach sand and pore water represent an important nonpoint source of contamination to surface waters. This study examines the physical processes governing the accumulation and distribution of FIB in a beach aquifer. Field data indicate E. coli and enterococci can be transported 1 and 2 m, respectively, below the water table. Data were used to calibrate a numerical model whereby FIB are delivered to a beach aquifer by wave-induced infiltration across the beach face. Simulations indicate FIB rapidly accumulate in a beach aquifer with FIB primarily associated with sand rather than freely residing in the pore water. Simulated transport of E. coli in a beach aquifer is complex and does not correlate with conservative tracer transport. Beaches with higher wave-induced infiltration rate and vertical infiltration velocity (i.e., beaches with higher beach slope and wave height, and lower terrestrial groundwater discharge) had greater E. coli accumulation and E. coli was transported deeper below the beach face. For certain beach conditions, the amount of FIB accumulated in sand over 5-6 days was found to be sufficient to trigger a beach advisory if eroded to surface water.
Collapse
Affiliation(s)
- Ming Zhi Wu
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
- School of Civil and Environmental Engineering, Connected Water Initiative, University of New South Wales , Manly Vale NSW 2093, Australia
| | - Laura J Vogel
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
| | - Clare E Robinson
- Department of Civil and Environmental Engineering, Western University , London ON, Canada N6A 5B9
| |
Collapse
|
12
|
Distribution and Differential Survival of Traditional and Alternative Indicators of Fecal Pollution at Freshwater Beaches. Appl Environ Microbiol 2017; 83:AEM.02881-16. [PMID: 27940538 DOI: 10.1128/aem.02881-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/02/2016] [Indexed: 12/30/2022] Open
Abstract
Alternative indicators have been developed that can be used to identify host sources of fecal pollution, yet little is known about how their distribution and fate compare to traditional indicators. Escherichia coli and enterococci were widely distributed at the six beaches studied and were detected in almost 95% of water samples (n = 422) and 100% of sand samples (n = 400). Berm sand contained the largest amount of E. coli (P < 0.01), whereas levels of enterococci were highest in the backshore (P < 0.01). E. coli and enterococci were the lowest in water, using a weight-to-volume comparison. The gull-associated Catellicoccus marimammalium (Gull2) marker was found in over 80% of water samples, regardless of E. coli levels, and in 25% of sand samples. Human-associated Bacteroides (HB) and Lachnospiraceae (Lachno2) were detected in only 2.4% of water samples collected under baseflow and post-rain conditions but produced a robust signal after a combined sewage overflow, despite low E. coli concentrations. Burdens of E. coli and enterococci in water and sand were disproportionately high in relation to alternative indicators when comparing environmental samples to source material. In microcosm studies, Gull2, HB, and Lachno2 quantitative PCR (qPCR) signals were reduced twice as quickly as those from E. coli and enterococci and approximately 20% faster than signals from culturable E. coli High concentrations of alternative indicators in source material illustrated their high sensitivity for the identification of fecal sources; however, differential survival and the potential for long-term persistence of traditional fecal indicators complicate the use of alternative indicator data to account for the levels of E. coli and enterococci in environmental samples. IMPORTANCE E. coli and enterococci are general indicators of fecal pollution and may persist in beach sand, making their use problematic for many applications. This study demonstrates that gull fecal pollution is widespread at Great Lakes beaches, whereas human and ruminant contamination is evident only after major rain events. An exploration of sand as a reservoir for indicators found that E. coli was ubiquitous, while gull host markers were detected in only 25% of samples. In situ sand beach microcosms provided decay rate constants for E. coli and enterococci relative to alternative indicators, which establish comparative benchmarks that would be helpful to distinguish recent from past pollution. Overall, alternative indicators are useful for identifying sources and assessing potentially high health risk contamination events; however, beach managers should be cautious in attempting to directly link their detection to the levels of E. coli or enterococci.
Collapse
|
13
|
Ma J, Feng Y, Hu Y, Villegas EN, Xiao L. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. JOURNAL OF WATER AND HEALTH 2016; 14:411-23. [PMID: 27280607 PMCID: PMC5788172 DOI: 10.2166/wh.2016.192] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, the fecal coliform count is the only microbial indicator, raising concerns about the potential for pathogen transmission through WWTP effluent reuse. In this study, we collected 50 effluent samples (30 L/sample) from three municipal WWTPs in Shanghai, China, and analyzed for Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi by microscopy and/or polymerase chain reaction (PCR). Moreover, propidium monoazide (PMA)-PCR was used to assess the viability of oocysts/cysts. The microscopy and PCR-positive rates for Cryptosporidium spp. were 62% and 40%, respectively. The occurrence rates of G. duodenalis were 96% by microscopy and 92-100% by PCR analysis of three genetic loci. Furthermore, E. bieneusi was detected in 70% (35/50) of samples by PCR. Altogether, 10 Cryptosporidium species or genotypes, two G. duodenalis genotypes, and 11 E. bieneusi genotypes were found, most of which were human-pathogenic. The chlorine dioxide disinfection employed in WWTP1 and WWTP3 failed to inactivate the residual pathogens; 93% of the samples from WWTP1 and 83% from WWTP3 did not meet the national standard on fecal coliform levels. Thus, urban WWTP effluents often contain residual waterborne human pathogens.
Collapse
Affiliation(s)
- Jiawen Ma
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Yue Hu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Eric N Villegas
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|