1
|
Grundy JS, Lambert MK, Burgess RM. Passive Sampling-Based versus Conventional-Based Metrics for Evaluating Remediation Efficacy at Contaminated Sediment Sites: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10151-10172. [PMID: 37364241 PMCID: PMC10404352 DOI: 10.1021/acs.est.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Passive sampling devices (PSDs) are increasingly used at contaminated sites to improve the characterization of contaminant transport and assessment of ecological and human health risk at sediment sites and to evaluate the effectiveness of remedial actions. The use of PSDs after full-scale remediation remains limited, however, in favor of evaluation based on conventional metrics, such as bulk sediment concentrations or bioaccumulation. This review has three overall aims: (1) identify sites where PSDs have been used to support cleanup efforts, (2) assess how PSD-derived remedial end points compare to conventional metrics, and (3) perform broad semiquantitative and selective quantitative concurrence analyses to evaluate the magnitude of agreement between metrics. Contaminated sediment remedies evaluated included capping, in situ amendment, dredging and monitored natural recovery (MNR). We identify and discuss 102 sites globally where PSDs were used to determine remedial efficacy resulting in over 130 peer-reviewed scientific publications and numerous technical reports and conference proceedings. The most common conventional metrics assessed alongside PSDs in the peer-reviewed literature were bioaccumulation (39%), bulk sediments (40%), toxicity (14%), porewater grab samples (16%), and water column grab samples (16%), while about 25% of studies used PSDs as the sole metric. In a semiquantitative concurrence analysis, the PSD-based metrics agreed with conventional metrics in about 68% of remedy assessments. A more quantitative analysis of reductions in bioaccumulation after remediation (i.e., remediation was successful) showed that decreases in uptake into PSDs agreed with decreases in bioaccumulation (within a factor of 2) 61% of the time. Given the relatively good agreement between conventional and PSD-based metrics, we propose several practices and areas for further study to enhance the utilization of PSDs throughout the remediation of contaminated sediment sites.
Collapse
Affiliation(s)
- James S Grundy
- Oak Ridge Institute for Science and Education c/o U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Edison, New Jersey 08837, United States
| | - Matthew K Lambert
- U.S. Environmental Protection Agency, OLEM, Office of Superfund Remediation and Technology Innovation, Washington, District of Columbia 20460, United States
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM, Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island 02882, United States
| |
Collapse
|
2
|
Kong J, Cao X, Huang W, Li C, Xian Q, Yang S, Li S, Sun C, He H. Predicting the bioavailability of nitro polycyclic aromatic hydrocarbons in sediments: ZIF-8/h-BN solid-phase microextraction versus Tenax extraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120896. [PMID: 36535426 DOI: 10.1016/j.envpol.2022.120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The occurrence of nitrated polycyclic aromatic hydrocarbons (NPAHs) in sediments has been widely reported, but research on NPAH bioavailability is lacking. In this study, a self-made zeolite imidazolate framework-8/hexagonal boron nitride (ZIF-8/h-BN) solid-phase microextraction (SPME) fiber and commercial Tenax are compared as efficient tools to predict the bioavailability of NPAHs in sediments with bioassays using Cipangopaludina chinensis. During the process of SPME, the NPAH concentrations on the ZIF-8/h-BN fibers reached extraction equilibrium after 72 h. The fiber extraction of NPAHs in sediments was well-fitted by the pseudo first-order kinetic model with a rate constant of 2 × 10-2 h-1 (R2 > 0.98). The extraction rates ranking of NPAHs in sediments was 2-nitrobiphenyl>1-nitropyrene>5-nitroacenaphthene>2-nitrofluorene. Compared with SPME, NPAH concentrations reached equilibrium after 168 h for the Tenax extraction. The orders of magnitude of fast, slow, and very slow desorption rate constants were 10-1, 10-2, and 10-4, respectively. At extraction equilibrium (168 h), the SPME was close to the bioavailability of the NPAHs in sediments to Cipangopaludina chinensis with a slope statistically approximated to one. In addition, the linear regression for SPME (R2 = 0.7285) was slightly higher than that of the Tenax extraction (R2 = 0.7168) over a short time (6 h). This could be because the coating material of ZIF-8/h-BN can rapidly adsorb freely dissolved NPAHs, and the SPME fibers can accurately predict the bioaccumulated concentrations of NPAHs in exposed organisms by measuring the concentration of NPAHs in the pore water of sediment. This study provides a time-saving and easy procedure to predict the bioavailability of NPAHs in sediments.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China; The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Wen Huang
- Kaver Scientific Instruments, Co., Ltd, Nanjing, 210000, PR China
| | - Chao Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; School of Geography, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qiming Xian
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China
| | - Cheng Sun
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing, 210023, PR China; College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, 354300, PR China.
| |
Collapse
|
3
|
Zhang C, Dionysiou DD, Wen R, Zhang H, Wan X, Wang X, Li F, Li Y, Zhou Q, Ying GG, Huang M. Inference of emission history of neonicotinoid pesticides from marine sediment cores impacted by riverine runoff of a developed agricultural region: The Pearl River Basin, China. WATER RESEARCH 2022; 218:118475. [PMID: 35472748 DOI: 10.1016/j.watres.2022.118475] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoids (NEOs), as the most-consumed pesticides on a global scale, have posed a serious threat to human health and ecological environment. Information regarding the emission history of NEOs is of great importance to improve the prediction of their environmental loading and biological risk potential. In the present study, contamination levels and compositions of 12 NEOs were identified in 8 sediment cores from the Lingdingyang Estuary, which was impacted by agricultural emissions in riverine runoff of the Pearl River Basin for centuries. The total concentration of 12 target NEOs (∑12NEOs) ranged from 0.02 to 69.5 ng/g dw along the sediment core profile, with a mean of 12.9 ± 15.9 ng/g dw. Net deposition fluxes and concentrations of 5 parent NEOs experienced a remarkable exponential increase in the vertical profile of sediment cores, except for imidacloprid (IMI). Despite the similar exponential growth before 2012, subsequent decreased levels of IMI in historical sediment indicated its gradual replacement by other NEOs. IMI was the NEO with the highest frequency of 80.3% and the highest mean concentration of 7.66 ± 8.76 ng/g dw. The ecological risk assessment of NEOs suggests that 65.1% of sediment samples exceeded the chronic threshold for aqueous organisms using equilibrium partitioning approach. Since downward diffusion of NEOs in the Lingdingyang Estuary was rectified by their rapid desorption, the sedimentary record probably provided an accurate illustration of agricultural NEO emissions in the Pearl River Basin, China. The recent NEO inventory in the adjacent waters of core sites was estimated with a mean of 76.8 tons/yr. This study provides insights into the role of agricultural emission in riverine runoff in the environmental loads of NEOs in the historical sediment.
Collapse
Affiliation(s)
- Chao Zhang
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (ChEE), Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012, United States
| | - Rubing Wen
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Huike Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xin Wan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Xinzhi Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Feng Li
- School of Civil Engineering & Transportation, South China University of Technology, Guangzhou 510640, PR China.
| | - Yingqiang Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Qiao Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, PR China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd, Qingyuan 511517, PR China; South China Intelligence Environment Technology (Qingyuan) Co., Ltd, Qingyuan 511517, PR China.
| |
Collapse
|
4
|
Allan IJ, Raffard V, Kringstad A, Næs K. Assessment of marine sediment remediation efficiency with SPME-based passive sampling measurement. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143854. [PMID: 33279202 DOI: 10.1016/j.scitotenv.2020.143854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Passive sampling has been shown to be a suitable procedure to assess the risk of contaminated sediments through the measurement of freely dissolved concentrations (CFree) and remedial actions involving amendments such as activated carbon (AC). Here we report results of the application of simple, solvent-free solid phase micro extraction methodology (SPME) to assess the performance of different materials for the remediation of selected Norwegian harbour sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). AC amendments enabled a reduction of the availability of PAHs and/or PCBs by a factor of ten to over one hundred in Aker Brygge sediments (Oslo) and sediments from Elkembukta, impacted by industrial emissions of PAHs with/from coal tar pitch. Another material, anthracite, slightly less effective in this set of experiment than AC, showed nonetheless great promise as capping material. The SPME data are put in perspective with equilibrium measurements of CFree for PAHs and organochlorines with silicone rubber in other Elkembukta sediments collected in the vicinity of those used for the remediation experiments. A reduction of sediment Cfree for pyrene, benzo[a]pyrene and benzo[ghi]perylene in inner Elkembukta sediment from on average 407, 6.3 and 0.82 ng L-1 to values of/or below 1.3, 0.15 and 0.076 ng L-1, respectively can be expected upon remediation with AC. For the outer, less contaminated Elkembukta sediment, Cfree would reduce from 36, 0.81 and 0.13 ng L-1 to value of or below 0.06, 0.03 and 0.005 ng L-1 for these three compounds, respectively. Differences in pattern of PAH and organochlorine contamination of inner and outer Elkembukta sediments are discussed.
Collapse
Affiliation(s)
- Ian J Allan
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Violette Raffard
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Alfhild Kringstad
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Kristoffer Næs
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| |
Collapse
|
5
|
Li J, Wang J, Taylor AR, Cryder Z, Schlenk D, Gan J. Inference of Organophosphate Ester Emission History from Marine Sediment Cores Impacted by Wastewater Effluents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8767-8775. [PMID: 31303003 DOI: 10.1021/acs.est.9b01713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organophosphate esters (OPEs) have been in use as flame retardants for many decades, with their actual usage varying over time. Knowledge of the emission history of OPEs is valuable for improving our prediction of their environmental loadings and associated risks. In this study, concentrations and compositions of 10 OPEs were measured in three dated sediment cores from the Palos Verdes Shelf (PVS) off the coast of Los Angeles, which has been impacted by wastewater treatment plant (WWTP) effluents for over a century. The total OPE concentrations varied from 0.68 to 1064 ng/g along the sediment profile, with two apparent peaks. The first peak occurred in the 1970s, coinciding with peak emissions from WWTPs. The second peak appeared in the 2000s and was possibly attributed to increased consumption of OPEs as replacement flame retardants. Since downward movement of OPEs in the PVS sediment bed was retarded by their slow desorption, the reconstructed history likely provided an accurate picture of OPE emissions in Southern California and North America. These findings suggest that the near-shore marine sediments affected by WWTP effluents could serve as an environmental proxy documenting history in OPE use and emissions.
Collapse
Affiliation(s)
- Jun Li
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
- School of the Earth Sciences and Resources , China University of Geosciences , Beijing 100083 , China
| | - Jie Wang
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Allison R Taylor
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Zachary Cryder
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Daniel Schlenk
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Jay Gan
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
6
|
Taylor AR, Wang J, Liao C, Schlenk D, Gan J. Effect of aging on bioaccessibility of DDTs and PCBs in marine sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:582-589. [PMID: 30471469 PMCID: PMC6349416 DOI: 10.1016/j.envpol.2018.10.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 05/06/2023]
Abstract
Hydrophobic legacy contaminants like dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) were banned almost half a century ago. While their residues still remain in many environmental compartments, they have undergone extensive aging and likely have lower bioaccessibility (the available fraction) compared to fresh residues. However, risk assessment relies heavily on the use of total chemical concentration, rather than accounting for age-diminished bioaccessibility, likely leading to overestimated risks. In this study, we used 24 h Tenax desorption to measure the potential bioaccessibility of DDTs and PCBs in two sediment cores taken from the Palos Verdes Shelf Superfund site in the Pacific Ocean. The total concentrations of DDTs and PCBs from the core located at the sewage outfall (8C) were as high as 41,000-15,700 μg/kg (dry weight, dw) and 530-2600 μg/kg dw, respectively, while those from a location 7 km northeast of the outfall (3C) were 2-3 orders of magnitude lower. Bioaccessibility estimated by 24-h Tenax-aided desorption (F24h) decreased in the order of DDD > DDE > DDT for DDT derivatives, and PCB 52 > PCB 70 > PCB 153 for PCB congeners, showing a negative correlation with their log Kow. Due to the extensive aging, F24h values were <20% of the total chemical concentration for most contaminants and <5% for DDT, DDE and PCB 153, suggesting that aging greatly diminished their bioavailability. However, a quantitative relationship between F24h and sediment age along the vertical profile was not found, likely because the contaminant residues had undergone aging before their offsite transport and deposition onto the ocean floor. As the use of man-made chemicals such as DDT and PCBs was discontinued in the U.S. many decades ago, the reduction in their bioavailability due to aging may be universal and should be taken into consideration to avoid overly conservative risk predictions or unnecessary mitigation interventions.
Collapse
Affiliation(s)
- Allison R Taylor
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States.
| | - Jie Wang
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| |
Collapse
|
7
|
Li M, Fan X, Zhu M, Zou C, Song J, Wei S, Jia W, Peng P. Abundance and Light Absorption Properties of Brown Carbon Emitted from Residential Coal Combustion in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:595-603. [PMID: 30584761 DOI: 10.1021/acs.est.8b05630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Brown carbon (BrC) fractions, including water-soluble organic carbon (WSOC), water-soluble humic-like substances (HULISw), alkaline soluble organic carbon (ASOC), and methanol soluble organic carbon (MSOC) were extracted from particles emitted from the residential combustion of coal with different geological maturities. The abundances and light absorption properties of these BrC fractions were comprehensively studied. The results showed that the abundances of the different constituents of the BrC fraction varied greatly with the extraction solvent, accounting for 4.3%-46%, 2.3%-23%, 3.2%-14%, and 76%-98% of the total carbon content in particles. The specific UV-vis absorbance (SUVA254) of BrC fractions followed the order of MSOC > ASOC > HULISw > WSOC. The WSOC and MSOC fractions from the combustion of low maturity coal had relatively low SUVA254 and high SR values. The mass absorption efficiencies (MAE365) for ASOC and MSOC were higher than for WSOC, and WSOC and MSOC from low maturity coal combustion had relatively low levels of light absorption. These findings indicated that coal combustion is a potential source of atmospheric BrC and the abundance and light absorption of the coal combustion-derived BrC fractions were strongly dependent on the extraction methods used and the coal maturity rather than the coal shapes.
Collapse
Affiliation(s)
- Meiju Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xingjun Fan
- College of Resource and Environment , Anhui Science and Technology University , Anhui 233100 , China
- Anhui Province Key Laboratory of Biochar and Cropland Pollution Prevention , Bengbu 233400 , China
| | - Mengbo Zhu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunlin Zou
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Siye Wei
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- South China Institute of Environmental Sciences , Ministry of Environmental Protection , Guangzhou 510655 , China
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
8
|
Wang L, Chen L, Tsang DCW, Li JS, Yeung TLY, Ding S, Poon CS. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO 2 utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1321-1327. [PMID: 29727956 DOI: 10.1016/j.scitotenv.2018.03.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials.
Collapse
Affiliation(s)
- Lei Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Liang Chen
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jiang-Shan Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Tiffany L Y Yeung
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chi Sun Poon
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
9
|
Wang J, Taylor A, Xu C, Schlenk D, Gan J. Evaluation of different methods for assessing bioavailability of DDT residues during soil remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:462-470. [PMID: 29587217 DOI: 10.1016/j.envpol.2018.02.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Compared to the total chemical concentration, bioavailability is a better measurement of risks of hydrophobic organic contaminants (HOCs) to biota in contaminated soil or sediment. Many different bioavailability estimation methods have been introduced to assess the effectiveness of remediation treatments. However, to date the different methods have rarely been evaluated against each other, leading to confusions in method selection. In this study, four different bioavailability estimation methods, including solid phase microextraction (SPME) and polyethylene passive sampling (PE) aiming to detect free chemical concentration (Cfree), and Tenax desorption and isotope dilution method (IDM) aiming to measure chemical accessibility, were used in parallel to estimate in bioavailability of DDT residues (DDXs) in a historically contaminated soil after addition of different black carbon sorbents. Bioaccumulation into earthworm (Eisenia fetida) was measured concurrently for verification. Activated carbon or biochar amendment at 0.2-2% decreased earthworm bioaccumulation of DDXs by 83.9-99.4%, while multi-walled carbon nanotubes had a limited effect (4.3-20.7%). While all methods correctly predicted changes in DDX bioavailability after black carbon amendment, passive samplers offered more accurate predictions. Predicted levels of DDXs in earthworm lipid using the estimated bioavailability and empirical BCFs matched closely with the experimentally derived tissue concentrations. However, Tenax and IDM overestimated bioavailability when the available DDX levels were low. Our findings suggested that both passive samplers and bioaccessibility methods can be used in assessing remediation efficiency, presenting flexibility in method selection. While accessibility-oriented methods offer better sensitivity and shorter sampling time, passive samplers may be more advantageous because of their better performance and computability for in situ deployment.
Collapse
Affiliation(s)
- Jie Wang
- Department of Environmental Science, University of California, Riverside, CA 92521, USA.
| | - Allison Taylor
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Chenye Xu
- Department of Environmental Science, University of California, Riverside, CA 92521, USA; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel Schlenk
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Ren X, Zeng G, Tang L, Wang J, Wan J, Wang J, Deng Y, Liu Y, Peng B. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 72:138-149. [PMID: 29183697 DOI: 10.1016/j.wasman.2017.11.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/08/2017] [Accepted: 11/16/2017] [Indexed: 05/21/2023]
Abstract
Large numbers of organic pollutants (OPs), such as polycyclic aromatic hydrocarbons, pesticides and petroleum, are discharged into soil, posing a huge threat to natural environment. Traditional chemical and physical remediation technologies are either incompetent or expensive, and may cause secondary pollution. The technology of soil composting or use of compost as soil amendment can utilize quantities of active microbes to degrade OPs with the help of available nutrients in the compost matrix. It is highly cost-effective for soil remediation. On the one hand, compost incorporated into contaminated soil is capable of increasing the organic matter content, which improves the soil environment and stimulates the metabolically activity of microbial community. On the other hand, the organic matter in composts would increase the adsorption of OPs and affect their bioavailability, leading to decreased fraction available for microorganism-mediated degradation. Some advanced instrumental analytical approaches developed in recent years may be adopted to expound this process. Therefore, the study on bioavailability of OPs in soil is extremely important for the application of composting technology. This work will discuss the changes of physical and chemical properties of contaminated soils and the bioavailability of OPs by the adsorption of composting matrix. The characteristics of OPs, types and compositions of compost amendments, soil/compost ratio and compost distribution influence the bioavailability of OPs. In addition, the impact of composting factors (composting temperature, co-substrates and exogenous microorganisms) on the removal and bioavailability of OPs is also studied.
Collapse
Affiliation(s)
- Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| | - Jingjing Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaocheng Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yani Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Bo Peng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| |
Collapse
|