1
|
Nogueira L, Florez N. The Impact of Climate Change on Global Oncology. Hematol Oncol Clin North Am 2024; 38:105-121. [PMID: 37580192 DOI: 10.1016/j.hoc.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Climate change is the greatest threat to human health of our time, with significant implications for global cancer control efforts. The changing frequency and behavior of climate-driven extreme weather events results in more frequent and increasingly unanticipated disruptions in access to cancer care. Given the significant threat that climate change poses to cancer control efforts, oncology professionals should champion initiatives that help protect the health and safety of patients with cancer, such as enhancing emergency preparedness and response efforts and reducing emissions from our own professional activities, which has health cobenefits for the entire population.
Collapse
Affiliation(s)
- Leticia Nogueira
- Surveillance and Health Equity Sciences, American Cancer Society, Palm Harbor, FL, USA.
| | | |
Collapse
|
2
|
Nogueira LM, Yabroff KR. Climate change and cancer: the Environmental Justice perspective. J Natl Cancer Inst 2024; 116:15-25. [PMID: 37813679 DOI: 10.1093/jnci/djad185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/11/2023] Open
Abstract
Despite advances in cancer control-prevention, screening, diagnosis, treatment, and survivorship-racial disparities in cancer incidence and survival persist and, in some cases, are widening in the United States. Since 2020, there's been growing recognition of the role of structural racism, including structurally racist policies and practices, as the main factor contributing to historical and contemporary disparities. Structurally racist policies and practices have been present since the genesis of the United States and are also at the root of environmental injustices, which result in disproportionately high exposure to environmental hazards among communities targeted for marginalization, increased cancer risk, disruptions in access to care, and worsening health outcomes. In addition to widening cancer disparities, environmental injustices enable the development of polluting infrastructure, which contribute to detrimental health outcomes in the entire population, and to climate change, the most pressing public health challenge of our time. In this commentary, we describe the connections between climate change and cancer through an Environmental Justice perspective (defined as the fair treatment and meaningful involvement of people of all racialized groups, nationalities, or income, in all aspects, including development, implementation, and enforcement, of policies and practices that affect the environment and public health), highlighting how the expertise developed in communities targeted for marginalization is crucial for addressing health disparities, tackling climate change, and advancing cancer control efforts for the entire population.
Collapse
Affiliation(s)
- Leticia M Nogueira
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, GA, USA
| | - K Robin Yabroff
- Surveillance and Health Equity Science, American Cancer Society, Atlanta, GA, USA
| |
Collapse
|
3
|
Calderon JL, Sorensen C, Lemery J, Workman CF, Linstadt H, Bazilian MD. Managing upstream oil and gas emissions: A public health oriented approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114766. [PMID: 35228168 DOI: 10.1016/j.jenvman.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Oil and natural gas are the largest primary global energy sources, and upstream gas emissions from these fuels can impact global climate change and local public health. This paper employs a public health-oriented perspective that reviews grey and academic literature, industry data, technical reports, and policy trends to highlight issues of emissions monitoring. We identify gaps in the existing landscape of emissions reduction strategies and highlight options for addressing them. Policy recommendations include the use of new digital monitoring technologies to better understand causes of emission events, to create data-driven oil and gas regulations, and to begin accurately measuring the volumes of gases released during oil and gas production. Areas for future research relating to emissions and public health impacts are outlined to further enable oil and gas policy discussions.
Collapse
Affiliation(s)
- Jordan L Calderon
- The Payne Institute for Public Policy, Colorado School of Mines, 816 15th St, Golden, CO, USA.
| | - C Sorensen
- School of Medicine, University of Colorado, 13001 East 17th Place, Aurora, CO, USA
| | - J Lemery
- School of Medicine, University of Colorado, 13001 East 17th Place, Aurora, CO, USA
| | - C F Workman
- The Payne Institute for Public Policy, Colorado School of Mines, 816 15th St, Golden, CO, USA
| | - H Linstadt
- School of Medicine, University of Colorado, 13001 East 17th Place, Aurora, CO, USA
| | - M D Bazilian
- The Payne Institute for Public Policy, Colorado School of Mines, 816 15th St, Golden, CO, USA
| |
Collapse
|
4
|
Liu S, Yang X, Zhou X. Development of a low-cost UAV-based system for CH 4 monitoring over oil fields. ENVIRONMENTAL TECHNOLOGY 2021; 42:3154-3163. [PMID: 31997723 DOI: 10.1080/09593330.2020.1724199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The recent booming of oil and gas production in the U.S. sparks a growing concern about greenhouse gas emissions from the petroleum industry. This study aimed to develop a low-cost UAV-based system for CH4 monitoring over oil fields. The system consisted of an airborne sensor node, a ground station, and a laptop. The sensor node was comprised of low-cost gas sensors, a microcontroller, a LoRa wireless transceiver, a GPS module, and an SD card reader. The ground station included a microcontroller and a LoRa transceiver. Both the sensor node and the ground station were programmed using Arduino. A graphic user interface was created using LabVIEW for data logging and visualization on the laptop. A preliminary test showed that the system was capable of measuring CH4 concentrations, along with temperature, humidity, and GPS location; while sending the real-time data to the ground station up to ∼1 km away without any loss. The system was further tested at two oil production sites in North Dakota. The results revealed a heterogeneous distribution of CH4 over the sites due to flares and road traffic, demonstrating a potential application of the system for air quality survey and gas leakage detection. The advantage of this system lies in its light weight (∼540 g), low cost (∼$300), expandability, ease of deployment and operation. Data quality collected by the system depended on the gas sensors chosen. With advancement in sensor technologies, it is expected that the quality of monitoring data can be considerably improved in the near future.
Collapse
Affiliation(s)
- Siwen Liu
- Department of Environmental Engineering, Montana Technological University, Butte, MT, USA
| | - Xufei Yang
- Department of Environmental Engineering, Montana Technological University, Butte, MT, USA
| | - Xiaobing Zhou
- Department of Geophysical Engineering, Montana Technological University, Butte, MT, USA
| |
Collapse
|
5
|
Tang IW, Langlois PH, Vieira VM. Birth defects and unconventional natural gas developments in Texas, 1999-2011. ENVIRONMENTAL RESEARCH 2021; 194:110511. [PMID: 33245885 DOI: 10.1016/j.envres.2020.110511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Unconventional natural gas developments (UNGD) may release air and water pollutants into the environment, potentially increasing the risk of birth defects. We conducted a case-control study evaluating 52,955 cases with birth defects and 642,399 controls born between 1999 and 2011 to investigate the relationship between UNGD exposure and the risk of gastroschisis, congenital heart defects (CHD), neural tube defects (NTDs), and orofacial clefts in Texas. We calculated UNGD densities (number of UNGDs per area) within 1, 3, and 7.5 km of maternal address at birth and categorized exposure by density tertiles. For CHD subtypes with large case numbers, we also performed time-stratified analyses to examine temporal trends. We calculated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association with UNGD exposure, accounting for maternal characteristics and neighborhood factors. We also included a bivariable smooth of geocoded maternal location in an additive model to account for unmeasured spatially varying risk factors. Positive associations were observed between the highest tertile of UNGD density within 1 km of maternal address and risk of anencephaly (aOR: 2.44, 95% CI: 1.55, 3.86), spina bifida (aOR: 2.09, 95% CI: 1.47, 2.99), gastroschisis among older mothers (aOR: 3.19, 95% CI: 1.77, 5.73), aortic valve stenosis (aOR: 1.90, 95% CI: 1.33, 2.71), hypoplastic left heart syndrome (aOR: 2.00, 95% CI: 1.39, 2.86), and pulmonary valve atresia or stenosis (aOR: 1.36, 95% CI: 1.10, 1.66). For CHD subtypes, results did not differ substantially by distance from maternal address or when residual confounding was considered, except for atrial septal defects. We did not observe associations with orofacial clefts. Our results suggest that UNGDs were associated with some CHDs and possibly NTDs. In addition, we identified temporal trends and observed presence of spatial residual confounding for some CHDs.
Collapse
Affiliation(s)
- Ian W Tang
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA.
| | - Peter H Langlois
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health Austin Regional Campus, Austin, TX, USA
| | - Verónica M Vieira
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA
| |
Collapse
|
6
|
Stanish LF, Sherwood OA, Lackey G, Osborn S, Robertson CE, Harris JK, Pace N, Ryan JN. Microbial and Biogeochemical Indicators of Methane in Groundwater Aquifers of the Denver Basin, Colorado. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:292-303. [PMID: 33296185 DOI: 10.1021/acs.est.0c04228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The presence of methane and other hydrocarbons in domestic-use groundwater aquifers poses significant environmental and human health concerns. Isotopic measurements are often relied upon as indicators of groundwater aquifer contamination with methane. While these parameters are used to infer microbial metabolisms, there is growing evidence that isotopes present an incomplete picture of subsurface microbial processes. This study examined the relationships between microbiology and chemistry in groundwater wells located in the Denver-Julesburg Basin of Colorado, a rapidly urbanizing area with active oil and gas development. A primary goal was to determine if microbial data can reliably indicate the quantities and sources of groundwater methane. Comprehensive chemical and molecular analyses were performed on 39 groundwater well samples from five aquifers. Elevated methane concentrations were found in only one aquifer, and both isotopic and microbial data support a microbial origin. Microbial parameters had similar explanatory power as chemical parameters for predicting sample methane concentrations. Furthermore, a subset of samples with unique microbiology corresponded with unique chemical signatures that may be useful indicators of methane gas migration, potentially from nearby coal seams interacting with the aquifer. Microbial data may allow for more accurate determination of groundwater contamination and improved long-term water quality monitoring compared solely to isotopic and chemical data in areas with microbial methane.
Collapse
Affiliation(s)
- Lee F Stanish
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Owen A Sherwood
- Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Greg Lackey
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| | - Stephen Osborn
- Department of Geological Sciences, California State Polytechnic University, Pomona, California 91768, United States
| | | | | | - Norman Pace
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Joseph N Ryan
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Zhou X, Peng X, Montazeri A, McHale LE, Gaßner S, Lyon DR, Yalin AP, Albertson JD. Mobile Measurement System for the Rapid and Cost-Effective Surveillance of Methane and Volatile Organic Compound Emissions from Oil and Gas Production Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:581-592. [PMID: 33314919 DOI: 10.1021/acs.est.0c06545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a ground-based mobile measurement system was developed to provide rapid and cost-effective emission surveillance of both methane (CH4) and volatile organic compounds (VOCs) from oil and gas (O&G) production sites. After testing in several controlled release experiments, the system was deployed in a field campaign in the Eagle Ford basin, TX. We found fat-tail distributions for both methane and total VOC (C4-C12) emissions (e.g., the top 20% sites ranked according to methane and total VOC (C4-C12) emissions were responsible for ∼60 and ∼80% of total emissions, respectively) and a good correlation between them (Spearman's R = 0.74). This result suggests that emission controls targeting relatively large emitters may help significantly reduce both methane and VOCs in oil and wet gas basins, such as the Eagle Ford. A strong correlation (Spearman's R = 0.84) was found between total VOC (C4-C12) emissions estimated using SUMMA canisters and data reported from a local ambient air monitoring station. This finding suggests that this system has the potential for rapid emission surveillance targeting relatively large emitters, which can help achieve emission reductions for both greenhouse gas (GHG) and air toxics from O&G production well pads in a cost-effective way.
Collapse
Affiliation(s)
- Xiaochi Zhou
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xiao Peng
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Amir Montazeri
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Laura E McHale
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Simon Gaßner
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David R Lyon
- Environmental Defense Fund, Austin, Texas 78701, United States
| | - Azer P Yalin
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - John D Albertson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Elser H, Goldman-Mellor S, Morello-Frosch R, Deziel NC, Ranjbar K, Casey JA. Petro-riskscapes and environmental distress in West Texas: Community perceptions of environmental degradation, threats, and loss. ENERGY RESEARCH & SOCIAL SCIENCE 2020; 70:101798. [PMID: 33072520 PMCID: PMC7566653 DOI: 10.1016/j.erss.2020.101798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Unconventional oil and gas development (UOGD) expanded rapidly in the United States between 2004-2019 with resultant industrial change to landscapes and new environmental exposures. By 2019, West Texas' Permian Basin accounted for 35% of domestic oil production. We conducted an online survey of 566 Texans in 2019 to examine the implications of UOGD using three measures from the Environmental Distress Scale (EDS): perceived threat of environmental issues, felt impact of environmental change, and loss of solace when valued environments are transformed ("solastalgia"). We found increased levels of environmental distress among respondents living in counties in the Permian Basin who reported a 2.75% increase in perceived threat of environmental issues (95% CI = -1.14, 6.65) and a 4.21% increase in solastalgia (95% CI = 0.03, 8.40). In our subgroup analysis of women, we found higher EDS subscale scores among respondents in Permian Basin counties for perceived threat of environmental issues (4.08%, 95% CI= -0.12, 8.37) and solastalgia (7.09%, 95% CI= 2.44, 11.88). In analysis restricted to Permian Basin counties, we found exposure to at least one earthquake of magnitude ≥ 3 was associated with increases in perceived threat of environmental issues (4.69%, 95% CI = 0.15, 9.23), and that county-level exposure to oil and gas injection wells was associated with increases in felt impact (4.38%, 95% CI = -1.77, 10.54) and solastalgia (4.06%, 95% CI = 3.02, 11.14). Our results indicate increased environmental distress in response to UOGD-related environmental degradation among Texans and highlight the importance of considering susceptible sub-groups.
Collapse
Affiliation(s)
- Holly Elser
- Stanford Medical School, Stanford Center for Population Health Sciences
| | | | - Rachel Morello-Frosch
- Department of Environment, Science, Policy and Management & School of Public Health, University of California, Berkeley
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health
| | - Kelsey Ranjbar
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - Joan A Casey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St, Rm 1206, New York NY 10032-3727
| |
Collapse
|
9
|
McLaughlin MC, Borch T, McDevitt B, Warner NR, Blotevogel J. Water quality assessment downstream of oil and gas produced water discharges intended for beneficial reuse in arid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136607. [PMID: 31955100 DOI: 10.1016/j.scitotenv.2020.136607] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/23/2023]
Abstract
Produced water (PW) is the largest waste stream associated with oil and gas extraction and contains organics, salts, metals and radioactive materials. In the United States, west of the 98th meridian, the National Pollutant Discharge Elimination System exemption allows for release of PW to surface waters for agricultural beneficial reuse if it is "of good enough quality". Due to the complex and variable composition of PW, the downstream impacts of these releases are not fully understood. In this study, a detailed chemical analysis was conducted on a stream composed of PW released for agricultural beneficial reuse. Over 50 geogenic and anthropogenic organic chemicals not specified in the effluent limits were detected at the discharge including hydrocarbons, halogenated compounds, and surfactants. Most were removed within 15 km of the discharge due to volatilization, biodegradation, and sorption to sediment. Inorganics detected at the discharge were within regulatory effluent limits. While some inorganic species (i.e., strontium, barium and radium) decreased in concentration downstream due to co-precipitation, concentrations of many inorganic species including sodium, sulfate and boron increased due to water evaporation. Consequently, downstream water quality changes need to be considered to adequately evaluate the potential impact of discharged PW. Regulatory health thresholds for humans, livestock, and aquatic species for most chemical species present at the discharge are still lacking. As a result, toxicity tests are necessary to determine the potential health impacts to downstream users.
Collapse
Affiliation(s)
- Molly C McLaughlin
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA
| | - Thomas Borch
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA; Department of Chemistry, Colorado State University, 1872 Campus Delivery, Fort Collins, CO 80523, USA; Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Bonnie McDevitt
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathaniel R Warner
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University, 1320 Campus Delivery, Fort Collins, CO 80523, USA.
| |
Collapse
|
10
|
Hildenbrand ZL, Carlton DD, Wicker AP, Habib S, Granados PS, Schug KA. Characterizing anecdotal claims of groundwater contamination in shale energy basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136618. [PMID: 31958728 DOI: 10.1016/j.scitotenv.2020.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The increased societal monitoring of unconventional oil and gas development (UD) has brought forth tremendous scrutiny over the environmental stewardship and subsequent public health impacts of surface and sub-surface activities. Concerns over groundwater quality in shale energy basins have prompted concerned citizens into monitoring UD activities for a series of qualitative parameters, and even coordinating sampling efforts for chemical analysis. Here we present a list of analytical parameters, hierarchically structured to guide concerned citizens through an efficient and cost-effective monitoring program. Utilizing this multi-step testing regime, we assessed groundwater quality from 36 private water wells involved in 19 anecdotal claims of alleged UD-related contamination across the Barnett, Eagle Ford, Haynesville, and Marcellus Shale formations in the United States. Our analytical findings aligned with the landowners' accounts of their situation in only 5 of the 36 collected samples, with several cases revealing environmental abnormalities that were unbeknownst to the landowners but likely unrelated to UD activities. These data are some of the first to assess the relationship between landowner perception and analytical determination in a cohort of highly variable anecdotal cases of alleged groundwater contamination, revealing a notable disconnect that is likely attributable to a myriad of societal and environmental factors. The analytical modalities presented here also serve as a step-wise method in a weight of evidence approach to assess the presence or absence of anthropogenic contamination under the most variable hydrogeological conditions.
Collapse
Affiliation(s)
- Zacariah L Hildenbrand
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States of America; Inform Environmental, LLC, Dallas, TX 75206, United States of America.
| | - Doug D Carlton
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States of America; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - A Paige Wicker
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States of America; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Sabrina Habib
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States of America; University of South Carolina, Columbia, SC 29208, United States of America
| | | | - Kevin A Schug
- Affiliate of the Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, United States of America; Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
11
|
Richards LC, Davey NG, Gill CG, Krogh ET. Discrimination and geo-spatial mapping of atmospheric VOC sources using full scan direct mass spectral data collected from a moving vehicle. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:173-186. [PMID: 31808488 DOI: 10.1039/c9em00439d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Volatile and semi-volatile organic compounds (S/VOCs) are ubiquitous in the environment, come from a wide variety of anthropogenic and biogenic sources, and are important determinants of environmental and human health due to their impacts on air quality. They can be continuously measured by direct mass spectrometry techniques without chromatographic separation by membrane introduction mass spectrometry (MIMS) and proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). We report the operation of these instruments in a moving vehicle, producing full scan mass spectral data to fingerprint ambient S/VOC mixtures with high temporal and spatial resolution. We describe two field campaigns in which chemometric techniques are applied to the full scan MIMS and PTR-ToF-MS data collected with a mobile mass spectrometry lab. Principal Component Analysis (PCA) has been successfully employed in a supervised analysis to discriminate VOC samples collected near known VOC sources including internal combustion engines, sawmill operations, composting facilities, and pulp mills. A Gaussian mixture model and a density-based spatial clustering of application with noise (DBSCAN) algorithm have been used to identify sample clusters within the full time series dataset collected and we present geospatial maps to visualize the distribution of VOC sources measured by PTR-ToF-MS.
Collapse
Affiliation(s)
- L C Richards
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada. and Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - N G Davey
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada.
| | - C G Gill
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada. and Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada and Chemistry Department, Simon Fraser University, Burnaby, B.C., Canada and Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - E T Krogh
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada. and Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
12
|
Latif MT, Abd Hamid HH, Ahamad F, Khan MF, Mohd Nadzir MS, Othman M, Sahani M, Abdul Wahab MI, Mohamad N, Uning R, Poh SC, Fadzil MF, Sentian J, Tahir NM. BTEX compositions and its potential health impacts in Malaysia. CHEMOSPHERE 2019; 237:124451. [PMID: 31394440 DOI: 10.1016/j.chemosphere.2019.124451] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
This study aims to determine the composition of BTEX (benzene, toluene, ethylbenzene and xylene) and assess the risk to health at different sites in Malaysia. Continuous monitoring of BTEX in Kuala Lumpur City Centre, Kuala Terengganu, Kota Kinabalu and Fraser Hill were conducted using Online Gas Chromatograph. For comparison, BTEX at selected hotspot locations were determined by active sampling method using sorbent tubes and Thermal Desorption Gas Chromatography Mass Spectrometry. The hazard quotient (HQ) for non-carcinogenic and the life-time cancer risk (LTCR) of BTEX were calculated using the United States Environmental Protection Agency (USEPA) health risk assessment (HRA) methods. The results showed that the highest total BTEX concentrations using continuous monitoring were recorded in the Kuala Lumpur City Centre (49.56 ± 23.71 μg/m3). Toluene was the most dominant among the BTEX compounds. The average concentrations of benzene ranged from 0.69 ± 0.45 μg/m3 to 6.20 ± 3.51 μg/m3. Measurements using active sampling showed that BTEX concentrations dominated at the roadside (193.11 ± 114.57 μg/m3) in comparison to petrol station (73.08 ± 30.41 μg/m3), petrochemical industry (32.10 ± 13.13 μg/m3) and airport (25.30 ± 6.17 μg/m3). Strong correlations among BTEX compounds (p<0.01, r>0.7) at Kuala Lumpur City Centre showed that BTEX compounds originated from similar sources. The values of HQ at all stations were <1 indicating the non-carcinogenic risk are negligible and do not pose threats to human health. The LTCR value based on benzene inhalation (1.59 × 10-5) at Kuala Lumpur City Centre were between 1 × 10-4 and 1 × 10-5, representing a probable carcinogenic risk.
Collapse
Affiliation(s)
- Mohd Talib Latif
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Haris Hafizal Abd Hamid
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Fatimah Ahamad
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Md Firoz Khan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Shahrul Mohd Nadzir
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Murnira Othman
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mazrura Sahani
- Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Muhammad Ikram Abdul Wahab
- Centre for Health and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Noorlin Mohamad
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Royston Uning
- School of Environment and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Seng Chee Poh
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Muhammad Fais Fadzil
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Justin Sentian
- Faculty Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Norhayati Md Tahir
- Environmental Research Group, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| |
Collapse
|
13
|
McKenzie LM, Allshouse W, Daniels S. Congenital heart defects and intensity of oil and gas well site activities in early pregnancy. ENVIRONMENT INTERNATIONAL 2019; 132:104949. [PMID: 31327466 DOI: 10.1016/j.envint.2019.104949] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Preliminary studies suggest that offspring to mothers living near oil and natural gas (O&G) well sites are at higher risk of congenital heart defects (CHDs). OBJECTIVES Our objective was to address the limitations of previous studies in a new and more robust evaluation of the relationship between maternal proximity to O&G well site activities and births with CHDs. METHODS We employed a nested case-control study of 3324 infants born in Colorado between 2005 and 2011. 187, 179, 132, and 38 singleton births with an aortic artery and valve (AAVD), pulmonary artery and valve (PAVD), conotruncal (CTD), or tricuspid valve (TVD) defect, respectively, were frequency matched 1:5 to controls on sex, maternal smoking, and race and ethnicity yielding 2860 controls. We estimated monthly intensities of O&G activity at maternal residences from three months prior to conception through the second gestational month with our intensity adjusted inverse distance weighted model. We used logistic regression models adjusted for O&G facilities other than wells, intensity of air pollution sources not associated with O&G activities, maternal age and socioeconomic status index, and infant sex and parity, to evaluate associations between CHDs and O&G activity intensity groups (low, medium, and high). RESULTS Overall, CHDs were 1.4 (1.0, 2.0) and 1.7 (1.1, 2.6) times more likely than controls in the medium and high intensity groups, respectively, compared to the low intensity group. PAVDs were 1.7 (0.93, 3.0) and 2.5 (1.1, 5.3) times more likely in the medium and high intensity groups for mothers with an address found in the second gestational month. In rural areas, AAVDs, CTDs, and TVDs were 1.8 (0.97, 3.3) and 2.6 (1.1, 6.1); 2.1 (0.96, 4.5) and 4.0 (1.4, 12); and 3.4 (0.95, 12) and 4.6 (0.81, 26) times more likely than controls in the medium and high intensity groups. CONCLUSIONS This study provides further evidence of a positive association between maternal proximity to O&G well site activities and several types of CHDs, particularly in rural areas.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA.
| | - William Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Stephen Daniels
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Shaw JT, Allen G, Pitt J, Mead MI, Purvis RM, Dunmore R, Wilde S, Shah A, Barker P, Bateson P, Bacak A, Lewis AC, Lowry D, Fisher R, Lanoisellé M, Ward RS. A baseline of atmospheric greenhouse gases for prospective UK shale gas sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:1-13. [PMID: 31150871 DOI: 10.1016/j.scitotenv.2019.05.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
We report a 24-month statistical baseline climatology for continuously-measured atmospheric carbon dioxide (CO2) and methane (CH4) mixing ratios linked to surface meteorology as part of a wider environmental baselining project tasked with understanding pre-existing local environmental conditions prior to shale gas exploration in the United Kingdom. The baseline was designed to statistically characterise high-precision measurements of atmospheric composition gathered over two full years (between February 1st 2016 and January 31st 2018) at fixed ground-based measurement stations on, or near to, two UK sites being developed for shale gas exploration involving hydraulic fracturing. The sites, near Blackpool (Lancashire) and Kirby Misperton (North Yorkshire), were the first sites approved in the UK for shale gas exploration since a moratorium was lifted in England. The sites are operated by Cuadrilla Resources Ltd. and Third Energy Ltd., respectively. A statistical climatology of greenhouse gas mixing ratios linked to prevailing local surface meteorology is presented. This study diagnoses and interprets diurnal, day-of-week, and seasonal trends in measured mixing ratios and the contributory role of local, regional and long-range emission sources. The baseline provides a set of contextual statistical quantities against which the incremental impacts of new activities (in this case, future shale gas exploration) can be quantitatively assessed. The dataset may also serve to inform the design of future case studies, as well as direct baseline monitoring design at other potential shale gas and industrial sites. In addition, it provides a quantitative reference for future analyses of the impact, and efficacy, of specific policy interventions or mitigating practices. For example, statistically significant excursions in measured concentrations from this baseline (e.g. >99th percentile) observed during phases of operational extraction may be used to trigger further examination in order to diagnose the source(s) of emission and links to on-site activities at the time, which may be of importance to regulators, site operators and public health stakeholders. A guideline algorithm for identifying these statistically significant excursions, or "baseline deviation events", from the expected baseline conditions is presented and tested. Gaussian plume modelling is used to further these analyses, by simulating approximate upper-limits of CH4 fluxes which could be expected to give observable enhancements at the monitoring stations under defined meteorological conditions.
Collapse
Affiliation(s)
- Jacob T Shaw
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK.
| | - Grant Allen
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Joseph Pitt
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Mohammed I Mead
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Ruth M Purvis
- National Centre for Atmospheric Science, University of York, Heslington, York YO10 5DD, UK
| | - Rachel Dunmore
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Shona Wilde
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Adil Shah
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Patrick Barker
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Prudence Bateson
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Asan Bacak
- School of Earth and Environmental Science, University of Manchester, Manchester M13 9PL, UK
| | - Alastair C Lewis
- National Centre for Atmospheric Science, University of York, Heslington, York YO10 5DD, UK
| | - David Lowry
- School of Earth Sciences, Royal Holloway University of London, UK
| | - Rebecca Fisher
- School of Earth Sciences, Royal Holloway University of London, UK
| | | | - Robert S Ward
- British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
| |
Collapse
|
15
|
Pretreatment Techniques for Produced Water with Subsequent Forward Osmosis Remediation. WATER 2019. [DOI: 10.3390/w11071437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unconventional oil and gas extraction is on the rise across the United States and comprises an integral component in meeting the nation’s energy needs. The primary by-product of this industrious process is produced water, which is a challenging matrix to remediate because of its complex physical and chemical composition. Forward osmosis is a viable option to treat high-salinity produced water; however, fouling has been an issue. This study aimed to treat produced water before using forward osmosis as a remediation option. Trials consisted of a series of five experiments in order to evaluate the performance of the membrane. Samples were treated by centrifugation, activated carbon, filtration, ferric chloride, as well as coagulants and a polymer. It can be concluded that forward osmosis can be used to extract water from high-salinity oil field brines and produced water, and that pretreating the produced water decreased the tendency for fouling. The pretreatment with the overall best performance was activated carbon, which also yielded the lowest total organic carbon concentrations of 1.9 mg/L. During remediation trials using produced water pretreated with activated carbon as the feed solution, there was a 14% decrease in flux over the course of the 7 h trials. The membrane performance was restored after washing.
Collapse
|
16
|
Haynes EN, Hilbert TJ, Roberts R, Quirolgico J, Shepler R, Beckner G, Veevers J, Burkle J, Jandarov R. Public Participation in Air Sampling and Water Quality Test Kit Development to Enable Citizen Science. Prog Community Health Partnersh 2019; 13:141-151. [PMID: 31178449 DOI: 10.1353/cpr.2019.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Public participation in environmental data collection is a rapidly growing approach providing opportunity for hands-on public engagement in environmental field studies. This methodology is important when addressing community-identified exposure concerns. OBJECTIVES Our goal was to establish an academic-community partnership between University of Cincinnati (UC) researchers and local officials and residents of Guernsey County, Ohio, to address their interest in assessing environmental quality near proposed and operating natural gas extraction (NGE) waste sites. METHODS A pilot research study was developed using community-based participatory research principles. A community resident was trained to collect air samples. Air was sampled at 10 locations for 63 volatile organic compounds (VOCs). Water quality test kits were developed in partnership with local middle and high school teachers. RESULTS Community partners were involved throughout the project. VOCs were detected at all locations. Nineteen unique VOCs were detected; one was above the recommended exposure level. Findings were reported back to local officials and community members. Water quality test kits were developed and then piloted in middle school and high school classrooms. CONCLUSIONS Academic-community partnerships were instrumental in the identification of sampling locations, obtaining the participation of landowners, and conducting sampling. Measuring the impact of NGE activities on air quality is challenging owing to competing exposures, limited resources, and access to sites. Water quality test kits were found by Guernsey County teachers to be useful tools in the classroom.
Collapse
|
17
|
Garcia-Gonzales DA, Shonkoff SB, Hays J, Jerrett M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu Rev Public Health 2019; 40:283-304. [DOI: 10.1146/annurev-publhealth-040218-043715] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased energy demands and innovations in upstream oil and natural gas (ONG) extraction technologies have enabled the United States to become one of the world's leading producers of petroleum and natural gas hydrocarbons. The US Environmental Protection Agency (EPA) lists 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Several of these HAPs have been measured at elevated concentrations around ONG sites, but most have not been studied in the context of upstream development. In this review, we analyzed recent global peer-reviewed articles that investigated HAPs near ONG operations to ( a) identify HAPs associated with upstream ONG development, ( b) identify their specific sources in upstream processes, and ( c) examine the potential for adverse health outcomes from HAPs emitted during these phases of hydrocarbon development.
Collapse
Affiliation(s)
- Diane A. Garcia-Gonzales
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Seth B.C. Shonkoff
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Environment Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake Hays
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| |
Collapse
|
18
|
In-Situ Analysis of Essential Fragrant Oils Using a Portable Mass Spectrometer. Int J Anal Chem 2019; 2019:1780190. [PMID: 31057619 PMCID: PMC6463677 DOI: 10.1155/2019/1780190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022] Open
Abstract
A portable mass spectrometer was coupled to a direct inlet membrane (DIM) probe and applied to the direct analysis of active fragrant compounds (3-methylbutyl acetate, 2-methyl-3-furanthiol, methyl butanoate, and ethyl methyl sulfide) in real time. These fragrant active compounds are commonly used in the formulation of flavours and fragrances. Results obtained show that the portable mass spectrometer with a direct membrane inlet can be used to detect traces of the active fragrant compounds in complex mixtures such as essential fragrant oils and this represents a novel in-situ analysis methodology. Limits of detection (LOD) in the sub-ppb range (< 2.5 pg) are demonstrated. Standard samples in the gaseous phase presented very good linearity with RSD % at 5 to 7 for the selected active fragrant compounds (i.e., isoamyl acetate, 2-methyl-3-furanthiol, methyl butanoate, and methyl ethyl sulphide). The rise and fall times of the DIM probe are in the ranges from 15 to 31 seconds and 23 to 41 seconds, respectively, for the standard model compounds analysed. The identities of the fragrance active compounds in essential oil samples (i.e., banana, tangerine, papaya, and blueberry muffin) were first identified by comparison with a standard fragrance compounds mixture using their major fragment peaks, the NIST standard reference library, and gas chromatography mass spectrometry (GC-MS) analysis. No sample preparation is required for analysis using a portable mass spectrometer coupled to a DIM probe, so the cycle time from ambient air sampling to the acquisition of the results is at least 65 seconds.
Collapse
|
19
|
Liden T, Carlton DD, Miyazaki S, Otoyo T, Schug KA. Forward osmosis remediation of high salinity Permian Basin produced water from unconventional oil and gas development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:82-90. [PMID: 30408671 DOI: 10.1016/j.scitotenv.2018.10.325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Unconventional oil and gas operations are on the rise, and they are an integral component to meeting the nation's energy needs. Produced water is the primary by-product of oil and gas operations, and it has proven challenging to treat to date. The aim of this study was to evaluate the feasibility of using forward osmosis with thin-film composite hollow fiber membranes as a remediation option for produced water with high total dissolved solids levels from the Permian Basin. Trials consisted of a series of 5 experiments in order to evaluate the performance of the membrane. Three PW samples, each from different locations, were used to conduct the series of experiments and compare the performance of the membranes on samples with TDS levels ranging from 16,000 to 210,000 mg/L. It was concluded that forward osmosis can be used to extract water from high salinity oil field brines and PW. Flux decreased over the course of the trials due to a combination of membrane fouling, concentration polarization, and temperature fluctuations. The flux of the PW was similar to the flux measured for the PW mimic with small difference due to the influence of activity on the osmotic pressure. The flux was also influenced by temperature and the linear velocity of the feed solution and draw solution.
Collapse
Affiliation(s)
- Tiffany Liden
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Doug D Carlton
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shinji Miyazaki
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Takehiko Otoyo
- Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, 700 Planetarium Place, Arlington, TX 76019, USA; Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
20
|
Franklin M, Chau K, Cushing LJ, Johnston JE. Characterizing Flaring from Unconventional Oil and Gas Operations in South Texas Using Satellite Observations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2220-2228. [PMID: 30657671 PMCID: PMC8915930 DOI: 10.1021/acs.est.8b05355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Over the past decade, increases in high-volume hydraulic fracturing for oil and gas extraction in the United States have raised concerns with residents living near wells. Flaring, or the combustion of petroleum products into the open atmosphere, is a common practice associated with oil and gas exploration and production, and has been under-examined as a potential source of exposure. We leveraged data from the Visible Infrared Imaging Spectroradiometer (VIIRS) Nightfire satellite product to characterize the extent of flaring in the Eagle Ford Shale region of south Texas, one of the most productive in the nation. Spatiotemporal hierarchical clustering identified flaring sources, and a regression-based approach combining VIIRS information with reported estimates of vented and flared gas from the Railroad Commission of Texas enabled estimation of flared gas volume at each flare. We identified 43887 distinct oil and gas flares in the study region from 2012 to 2016, with a peak in activity in 2014 and an estimated 4.5 billion cubic meters of total gas volume flared over the study period. A comparison with well permit data indicated the majority of flares were associated with oil-producing (82%) and horizontally drilled (92%) wells. Of the 49 counties in the region, 5 accounted for 71% of the total flaring. Our results suggest flaring may be a significant environmental exposure in parts of this region.
Collapse
Affiliation(s)
- Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
- Corresponding author: Phone: +1 (323) 442-2703;
| | - Khang Chau
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Lara J. Cushing
- Department of Health Education, San Francisco State University, San Francisco California, 94132, United States
| | - Jill E. Johnston
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| |
Collapse
|
21
|
|
22
|
Santos IC, Hildenbrand ZL, Schug KA. A Review of Analytical Methods for Characterizing the Potential Environmental Impacts of Unconventional Oil and Gas Development. Anal Chem 2018; 91:689-703. [PMID: 30392348 DOI: 10.1021/acs.analchem.8b04750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Inês C Santos
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Place , Arlington , Texas 76019 , United States.,Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| | - Zacariah L Hildenbrand
- Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation , The University of Texas at Arlington , Arlington , Texas 76019 , United States.,Inform Environmental, LLC , 6060 N. Central Expressway, Suite 500 , Dallas , Texas 75206 , United States
| | - Kevin A Schug
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Place , Arlington , Texas 76019 , United States.,Affiliate of Collaborative Laboratories for Environmental Analysis and Remediation , The University of Texas at Arlington , Arlington , Texas 76019 , United States
| |
Collapse
|
23
|
Varona-Torres E, Carlton DD, Hildenbrand ZL, Schug KA. Matrix-effect-free determination of BTEX in variable soil compositions using room temperature ionic liquid co-solvents in static headspace gas chromatography mass spectrometry. Anal Chim Acta 2018; 1021:41-50. [DOI: 10.1016/j.aca.2018.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
|
24
|
McBride EM, Verbeck GF. A Mass Spectrometer in Every Fume Hood. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1555-1566. [PMID: 29881996 DOI: 10.1007/s13361-018-1964-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Since their inception, mass spectrometers have played a pivotal role in the direction and application of synthetic chemical research. The ability to develop new instrumentation to solve current analytical challenges in this area has always been at the heart of mass spectrometry, although progress has been slow at times. Herein, we briefly review the history of how mass spectrometry has been used to approach challenges in organic chemistry, how new developments in portable instrumentation and ambient ionization have been used to open novel areas of research, and how current techniques have the ability to expand on our knowledge of synthetic mechanisms and kinetics. Lastly, we discuss the relative paucity of work done in recent years to embrace the concept of improving benchtop synthetic chemistry with mass spectrometry, the disconnect between applications and fundamentals within these studies, and what hurdles still need to be overcome. Graphical Abstract.
Collapse
Affiliation(s)
- Ethan M McBride
- Department of Chemistry, University of North Texas, Denton, TX,, 76203, USA
| | - Guido F Verbeck
- Department of Chemistry, University of North Texas, Denton, TX,, 76203, USA.
- CHEM 195, 1508 West Mulberry Street, Denton, TX, 76201, USA.
| |
Collapse
|
25
|
Richards LC, Davey NG, Fyles TM, Gill CG, Krogh ET. Discrimination of constructed air samples using multivariate analysis of full scan membrane introduction mass spectrometry (MIMS) data. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:349-360. [PMID: 29277946 DOI: 10.1002/rcm.8049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Volatile and semi-volatile organic compounds (S/VOCs) are important atmospheric pollutants affecting both human and environmental health. They are directly measured as an unresolved mixture using membrane introduction mass spectrometry (MIMS). We apply chemometric techniques to discriminate, classify, and apportion air samples from a variety of sources. METHODS Full scan mass spectra of lab-constructed air samples were obtained using a polydimethylsiloxane membrane interface and an electron ionization ion trap mass spectrometer. Normalized full scan spectra were analyzed using principal component analysis (PCA), cluster analysis, and k-nearest neighbours (kNN) for sample discrimination and classification. Multivariate curve resolution (MCR) was used to extract pure component contributions. Similar techniques were applied to VOC mixtures sampled from different woodsmoke emissions and from the headspace above aqueous hydrocarbon solutions. RESULTS PCA successfully discriminated 32 constructed VOC mixtures from nearly 300 air samples, with cluster analysis showing similar results. Further, kNN classification (k = 1) correctly classified all but one test set sample, and MCR successfully identified the pure compounds used to construct the VOC mixtures. Real-world samples resulting from the combustion of different wood species and those associated with water contaminated with different commercial hydrocarbon products were similarly discriminated by PCA. CONCLUSIONS Chemometric techniques have been evaluated using full scan MIMS spectra with a series of VOC mixtures of known composition containing known compounds, and successfully applied to samples with known sources, but unknown molecular composition. These techniques have application to source identification and apportionment in real-world environmental samples impacted by atmospheric pollutants.
Collapse
Affiliation(s)
- L C Richards
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - N G Davey
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - T M Fyles
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - C G Gill
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| | - E T Krogh
- Applied Environmental Research Laboratories, Chemistry Department, Vancouver Island University, Nanaimo, British Columbia, Canada
- Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
26
|
Liden T, Clark BG, Hildenbrand ZL, Schug KA. Unconventional Oil and Gas Production: Waste Management and the Water Cycle. ADVANCES IN CHEMICAL POLLUTION, ENVIRONMENTAL MANAGEMENT AND PROTECTION 2017. [DOI: 10.1016/bs.apmp.2017.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Kleinman MT, Mueller GR, Stevenson E, Alvarez R, Marchese AJ, Allen D. Emissions from oil and gas operations in the United States and their air quality implications. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2016; 66:1165-1170. [PMID: 27726643 DOI: 10.1080/10962247.2016.1238201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Michael T Kleinman
- a Department of Medicine , Division of Environmental and Occupational Medicine, University of California , Irvine , CA , USA
| | - Gary R Mueller
- b Shell Projects and Technology (US) , Shell Global Solutions Inc ., Houston , TX , USA
| | - Eric Stevenson
- c Bay Area Air Quality Management District , San Francisco , CA , USA
| | | | - Anthony J Marchese
- e Department of Mechanical Engineering , Colorado State University , Fort Collins , CO , USA
| | - David Allen
- f Department of Chemical Engineering, and Center for Energy and Environmental Resources , University of Texas at Austin , Austin , TX , USA
| |
Collapse
|