1
|
Yang PT, Liang YH, Lee DC, Wang SL. Chemical speciation and rice uptake of soil molybdenum-Investigation with X-ray absorption spectroscopy and isotope fractionation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175141. [PMID: 39094649 DOI: 10.1016/j.scitotenv.2024.175141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Molybdenum (Mo) contamination of farmland soils poses health risks due to Mo accumulation in crops like rice. However, the mechanisms regulating soil availability and plant uptake of Mo remain poorly understood. This study investigated Mo uptake by rice plants, focusing on Mo speciation and isotope fractionation in soil and rice plants. Soil Mo species were identified as sorbed Mo(VI) and Fe-Mo(VI) using X-ray absorption spectroscopy (XAS). Soil submergence during rice cultivation led to the reductive dissolution of Fe-associated Mo(VI) while increasing sorbed Mo(VI) and Ca-Mo(VI). Soil Mo release to soil solution was a dynamic process involving continuous dissolution/desorption and re-precipitation/sorption. Mo isotope analysis showed soil solution was consistently enriched in heavier isotopes during rice growth, attributed to re-sorption of released Mo and the uptake of Mo by rice plants. Mo was significantly associated with Fe in rice rhizosphere as sorbed Mo(VI) and Fe-Mo(VI), and around 60 % of Mo accumulated in rice roots was sequestrated by Fe plaque of the roots. The desorption of Mo from Fe hydroxides to soil solution and its subsequent diffusion to the root surface were the key rhizosphere processes regulating root Mo uptake. Once absorbed by roots, Mo was efficiently transported to shoots and then to grains, resulting in heavier isotope fractionation during the translocation within plants. Although Mo translocation to rice grains was relatively limited, human exposure via rice consumption remains a health concern. This study provides insights into the temporal dynamics of Mo speciation in submerged paddy soil and the uptake mechanisms of Mo by rice plants.
Collapse
Affiliation(s)
- Puu-Tai Yang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan, ROC
| | - Yu-Hsuan Liang
- Institute of Earth Sciences, Academia Sinica, Taipei 105201, Taiwan, ROC
| | - Der-Chun Lee
- Institute of Earth Sciences, Academia Sinica, Taipei 105201, Taiwan, ROC
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan, ROC.
| |
Collapse
|
2
|
Sosnowska A, Hęclik KI, Kisała JB, Celuch M, Pogocki D. Perspectives for Photocatalytic Decomposition of Environmental Pollutants on Photoactive Particles of Soil Minerals. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3975. [PMID: 39203153 PMCID: PMC11356147 DOI: 10.3390/ma17163975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
The literature shows that both in laboratory and in industrial conditions, the photocatalytic oxidation method copes quite well with degradation of most environmental toxins and pathogenic microorganisms. However, the effective utilization of photocatalytic processes for environmental decontamination and disinfection requires significant technological advancement in both the area of semiconductor material synthesis and its application. Here, we focused on the presence and "photocatalytic capability" of photocatalysts among soil minerals and their potential contributions to the environmental decontamination in vitro and in vivo. Reactions caused by sunlight on the soil surface are involved in its normal redox activity, taking part also in the soil decontamination. However, their importance for decontamination in vivo cannot be overstated, due to the diversity of soils on the Earth, which is caused by the environmental conditions, such as climate, parent material, relief, vegetation, etc. The sunlight-induced reactions are just a part of complicated soil chemistry processes dependent on a plethora of environmental determinates. The multiplicity of affecting factors, which we tried to sketch from the perspective of chemists and environmental scientists, makes us rather skeptical about the effectiveness of the photocatalytic decontamination in vivo. On the other hand, there is a huge potential of the soils as the alternative and probably cheaper source of useful photocatalytic materials of unique properties. In our opinion, establishing collaboration between experts from different disciplines is the most crucial opportunity, as well as a challenge, for the advancement of photocatalysis.
Collapse
Affiliation(s)
- Agnieszka Sosnowska
- Department of Landscape Architecture, Institute of Environmental Engineering, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland;
| | - Kinga I. Hęclik
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland; (K.I.H.); (J.B.K.)
| | - Joanna B. Kisała
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland; (K.I.H.); (J.B.K.)
| | - Monika Celuch
- Łukasiewicz Research Network—Warsaw Institute of Technology, Duchnicka 3, 01-796 Warsaw, Poland;
| | - Dariusz Pogocki
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
3
|
Zheng Y, Pan Y, Wang Z, Jiang F, Wang Y, Yi X, Dang Z. Temporal and spatial evolution of different heavy metal fractions and correlation with environmental factors after prolonged acid mine drainage irrigation: A column experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173136. [PMID: 38734110 DOI: 10.1016/j.scitotenv.2024.173136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Acid mine drainage (AMD) has global significance due to its low pH and elevated heavy metal content, which have received widespread attention. After AMD irrigation in mining areas, heavy metals are distributed among soil layers, but the influencing factors and mechanisms remain unclear. AMD contamination of surrounding soil is primarily attributed to surface runoff and irrigation and causes significant environmental degradation. A laboratory soil column experiment was conducted to investigate the temporal and spatial distribution of the heavy metals Cd and Cu, as well as the impact of key environmental factors on the migration and transformation of these heavy metals following long-term soil pollution by AMD. After AMD addition, the soil exhibited a significant increase in acidity, accompanied by notable alterations in various environmental parameters, including soil pH, Eh, Fe(II) content, and iron oxide content. Over time, Cd and Cu in the soil mainly existed in the exchangeable and carbonate-bound fractions. In spatial terms, exchangeable Cu increased with increasing depth. Pearson correlation analysis indicated significant negative correlations between pH and Cu, Cd, and Eh in pore water, as well as negative correlations between pH and the exchangeable fraction of Cd (F1), carbonate-bound fraction of Cd (F2), and exchangeable fraction of Cu (F1) in the solid phase. Additionally, a positive correlation was observed between pH and the residual fraction of Cu (F5). Furthermore, the soil total Cd content exhibited a positive correlation with pyrophosphate-Fe (Fep) and dithionite-Fe (Fed), while CdF1, CdF2, total Cu, and CuF1 displayed positive correlations with Fep. Our findings indicate that the presence of AMD in soil leads to alterations in the chemical fractions of Cd and Cu, resulting in enhanced bioavailability. These results offer valuable insights for developing effective remediation strategies for soils near mining sites.
Collapse
Affiliation(s)
- Yanjie Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Pan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Zufei Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Feng Jiang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yaozhong Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Zhong S, Yu S, Liu Y, Gao R, Pan D, Chen G, Li X, Liu T, Liu C, Li F. Impact of Flooding-Drainage Alternation on Fe Uptake and Transport in Rice: Novel Insights from Iron Isotopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1500-1508. [PMID: 38165827 DOI: 10.1021/acs.jafc.3c07640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Iron (Fe) isotopes were utilized to provide insights into the temporal changes underlying Fe uptake and translocation during rice growth (tillering, jointing, flowering, and maturity stages) in soil-rice systems under typical flooding-drainage alternation. Fe isotopic composition (δ56Fe values) of the soil solution generally decreased at vegetative stages in flooding regimes but increased during grain-filling. Fe plaques were the prevalent source of Fe uptake, as indicated by the concurrent increase in the δ56Fe values of Fe plaques and rice plants during rice growth. The increasing fractionation magnitude from stem/nodes I to flag leaves can be attributed to the preferred phloem transport of light isotopes toward grains, particularly during grain-filling. This study demonstrates that rice plants take up heavy Fe isotopes from Fe plaque and soil solution via strategy II during flooding and the subsequent drainage period, respectively, thereby providing valuable insights into improving the nutritional quality during rice production.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Shan Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ruichuan Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Dandan Pan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Huang Y, Yi J, Huang Y, Zhong S, Zhao B, Zhou J, Wang Y, Zhu Y, Du Y, Li F. Insights into the reduction of methylmercury accumulation in rice grains through biochar application: Hg transformation, isotope fractionation, and transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122863. [PMID: 37925005 DOI: 10.1016/j.envpol.2023.122863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Methylmercury (MeHg), a potent neurotoxin, easily moves from the soil into rice plants and subsequently accumulates within the grains. Although biochar can reduce MeHg accumulation in rice grains, the precise mechanism underlying biochar-mediated responses to mercury (Hg) stress, specifically regarding MeHg accumulation in rice, remains poorly understood. In the current study, we employed a 4% biochar amendment to remediate Hg-contaminated paddy soil, elucidate the impacts of biochar on MeHg accumulation through a comprehensive analysis involving Hg isotopic fractionation and transcriptomic analyses. The results demonstrated that biochar effectively lowered the levels of MeHg in paddy soils by decreasing bioavailable Hg and microbial Hg methylation. Furthermore, biochar reduced the uptake and translocation of MeHg in rice plants, ultimately leading to a reduction MeHg accumulation in rice grains. During the process of total mercury (THg) uptake, biochar induced a more pronounced negative isotope fractionation magnitude, whereas the effect was less pronounced during the upward transport of THg. Conversely, biochar caused a more pronounced positive isotope fractionation magnitude during the upward transport of MeHg. Transcriptomics analyses revealed that biochar altered the expression levels of genes associated with the metabolism of cysteine, glutathione, and metallothionein, cell wall biogenesis, and transport, which possibly enhance the sequestration of MeHg in rice roots. These findings provide novel insights into the effects of biochar application on Hg transformation and transport, highlighting its role in mitigating MeHg accumulation in rice.
Collapse
Affiliation(s)
- Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China
| | - Jicai Yi
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Bin Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; Norwegian University of Life Sciences, Department of Environmental Sciences, 5003, N-1432 Ås, Norway
| | - Jing Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yuxuan Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yiwen Zhu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
6
|
Zhong S, Fang L, Li X, Liu T, Wang P, Gao R, Chen G, Yin H, Yang Y, Huang F, Li F. Roles of Chloride and Sulfate Ions in Controlling Cadmium Transport in a Soil-Rice System as Evidenced by the Cd Isotope Fingerprint. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17920-17929. [PMID: 37755710 DOI: 10.1021/acs.est.3c04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Anions accompanying inorganic fertilizers, such as chloride and sulfate ions, potentially affect the solubility, uptake, and transport of Cd to rice grains. However, the role of anions in controlling Cd transport in the soil-soil solution-Fe plaque-rice plant continuum remains poorly understood. Cd isotope ratios were applied to Cd-contaminated soil pots, hydroponic rice, and adsorption experiments with or without KCl and K2SO4 treatments to decipher transport processes in the complex soil-rice system. The chloride and sulfate ions increased the Cd concentrations in the soil solution, Fe plaque, and rice plants. Accordingly, the magnitude of positive fractionation from soil to the soil solution was less pronounced, but that between soil and Fe plaque or rice plant is barely varied. The similar isotope composition of Fe plaque and soil, and the similar fractionation magnitude between Fe plaque and the solution and between goethite and the solution, suggested that desorption-sorption between iron oxides and the solution could be important at the soil-soil solution-Fe plaque continuum. This study reveals the roles of chloride and sulfate ions: (i) induce the mobility of light Cd isotopes from soil to the soil solution, (ii) chloro-Cd and sulfato-Cd complexes contribute to Cd immobilization in the Fe plaque and uptake into roots, and (iii) facilitate second leaves/node II-to-grain Cd transport within shoots. These results provide insights into the anion-induced Cd isotope effect in the soil-rice system and the roles of anions in facilitating Cd migration and transformation.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pei Wang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Ruichuan Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yang Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Zhong S, Li X, Li F, Pan D, Liu T, Huang Y, Wang Q, Yin H, Huang F. Cadmium isotope fractionation and gene expression evidence for tracking sources of Cd in grains during grain filling in a soil-rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162325. [PMID: 36813190 DOI: 10.1016/j.scitotenv.2023.162325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Grain filling is the key period that causes excess cadmium (Cd) accumulation in rice grains. Nevertheless, uncertainties remain in distinguishing the multiple sources of Cd enrichment in grains. To better understand the transport and redistribution of Cd to grains upon drainage and flooding during grain filling, Cd isotope ratios and Cd-related gene expression were investigated in pot experiments. The results showed that the Cd isotopes in rice plants were much lighter than those in soil solutions (∆114/110Cdrice-soil solution = -0.36 to -0.63 ‰) but moderately heavier than those in Fe plaques (∆114/110Cdrice-Fe plaque = 0.13 to 0.24 ‰). Calculations revealed that Fe plaque might serve as the source of Cd in rice (69.2 % to 82.6 %), particularly upon flooding at the grain filling stage (82.6 %). Drainage at the grain filling stage yielded a larger extent of negative fractionation from node I to the flag leaves (∆114/110Cdflag leaves-node I = -0.82 ± 0.03 ‰), rachises (∆114/110Cdrachises-node I = -0.41 ± 0.04 ‰) and husks (∆114/110Cdrachises-node I = -0.30 ± 0.02 ‰), and significantly upregulated the OsLCT1 (phloem loading) and CAL1 (Cd-binding and xylem loading) genes in node I relative to that upon flooding. These results suggest that phloem loading of Cd into grains and transport of Cd-CAL1 complexes to flag leaves, rachises and husks were simultaneously facilitated. Upon flooding of grain filling, the positive fractionation from the leaves, rachises and husks to the grains (∆114/110Cdflag leaves/rachises/husks-node I = 0.21 to 0.29 ‰) is less pronounced than those upon drainage (∆114/110Cdflag leaves/rachises/husks-node I = 0.27 to 0.80 ‰). The CAL1 gene in flag leaves is down-regulated relative to that upon drainage. Thus, the supply of Cd from the leaves, rachises and husks to the grains is facilitated during flooding. These findings demonstrate that the excess Cd was purposefully transported to grain via xylem-to-phloem within nodes I upon the drainage during grain filling, and the expression of genes responsible for encoding ligands and transporters together with isotope fractionation could be used to tracking the source of Cd transported to rice grain.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Zhang H, Xie S, Wan N, Feng B, Wang Q, Huang K, Fang Y, Bao Z, Xu F. Iron plaque effects on selenium and cadmium stabilization in Cd-contaminated seleniferous rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22772-22786. [PMID: 36303005 DOI: 10.1007/s11356-022-23705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake. Through hydroponic culture and adsorption-desorption experiments, this paper focused on Se and Cd uptake in rice seedlings associated with the interactive effects of Se (Se4+ or Se6+), Cd, and iron (Fe) plaque. The formation of Fe plaque was promoted by Fe2+ and inhibited by Cd but not related with Se species. Shoot Se (Se4+ or Se6+) uptake was not affected by Fe plaque in most treatments, except that shoot Se concentrations were decreased by Fe plaque when Se4+ and Cd co-exposure. Shoot Cd concentrations were always inhibited by Fe plaque, regardless of Se species. Inhibiting Cd adsorption onto root surface (Se4+ + Cd) or increased Cd retention in Fe plaque (Se6+ + Cd) is an important mechanism for Fe plaque to reduce Cd uptake by rice. However, we found that DCB Cd concentrations (Cd adsorbed by Fe plaque) were not always positively correlated with Fe plaque amounts and always negatively correlated with the distribution ratios of Cd mass in root to that in Fe plaque (abbreviated as DRCMRF; r = - 0.942**); meanwhile, with the increase of DCB Fe concentration, the directions of variations of DCB Cd concentration and DRCMRF were affected by Se species. It indicated that the root system is also an important factor to affect DCB Cd concentration and inhibit Cd uptake, which is mediated by Se species. This paper provides a new understanding of Fe plaque-mediated interactive effect of Se and Cd uptakes in rice, which is beneficial for the remediation of Cd-contaminated and Cd-contaminated seleniferous areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Neng Wan
- WuHan Natural Resources and Planning Bureau, Wuhan, 430034, China
| | - Boxin Feng
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, 710069, China
| | - Qi Wang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Kangjun Huang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Yang Fang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd, Ankang, 725000, China
| |
Collapse
|
9
|
Han R, Zhang Q, Xu Z. Tracing Fe cycle isotopically in soils based on different land uses: Insight from a typical karst catchment, Southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158929. [PMID: 36152861 DOI: 10.1016/j.scitotenv.2022.158929] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/01/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) isotopes can effectively unveil the Fe cycle mechanisms under redox and biological conditions during the weathering and pedogenic processes. Fe contents and Fe isotope compositions (defined as δ56Fe) in the soil profiles under secondary forest land, abandoned cropland and shrubland were investigated in a typical karst area in Southwest China. The results showed that the Fe content ranged from 23.92 to 38.56 g/kg, 21.92 to 33.02 g/kg and 12.98 to 27.93 g/kg, and the δ56Fe levels varied from -0.48 ‰ to 0.21 ‰, -0.24 ‰ to 0.11 ‰ and - 0.11 ‰ to 0.16 ‰ from the secondary forest land, abandoned cropland and shrubland, respectively. The correlation analysis results showed that Fe transportation and isotopic fractionation were regulated by the redox processes through soil pH and soil organic matter (SOM) in the abandoned cropland and shrubland. Heavier Fe isotope may be accumulated in the deeper soil of secondary forest land due to Fe-oxide precipitation. The Fe isotope fractionations were greatly altered by soil organic carbon (SOC) in surface soils due to negative surface charges. Soil pH also plays a key role in enriching lighter Fe in a medium-acidic environment (shrubland) by ligand-controlled dissolution and reductive dissolution. Long-term cultivation in abandoned cropland and grazing in shrubland reshaped the Fe cycle in soil profiles by changing soil pH and SOC contents. However, the similar values of δ56Fe in different land use soils indicated that the agricultural activities have no significant impact on the Fe transformation in karst soil ecosystems. The land utilization is reasonable in the Yinjiang County. This study provided effective data and insightful analysis to understand the Fe cycle processes in the karst soils under varied land uses.
Collapse
Affiliation(s)
- Ruiyin Han
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhifang Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
10
|
Zhang Q, Liu M, Zhang S, Wang L, Zhu G. Environmental implications of agricultural abandonment on Fe cycling: Insight from iron forms and stable isotope composition in karst soil, southwest China. ENVIRONMENTAL RESEARCH 2022; 215:114377. [PMID: 36152887 DOI: 10.1016/j.envres.2022.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Land-use change influences the fate of nutrient elements, including iron (Fe), and then threaten soil security. In this study, Fe forms and stable isotope composition (δ56Fe) in soils were investigated to identify the variations in the processes of Fe cycling during agricultural abandonment in a karst region of Southwest China. Soil δ56Fe compositions varied from -0.05‰-0.02‰ in croplands, 0.05‰-0.12‰ in abandoned croplands, to 0.30‰-0.80‰ in the native vegetation lands. In the croplands, Fe oxidation-precipitation process is considered as the main contributor to Fe migration and isotope fractionation, leading to a relatively enrichment of heavier Fe isotope in deeper soil layer. In the abandoned croplands and native vegetation lands, Fe isotope in the organic-rich layer (0-10 cm) was significantly lighter than that in subsurface layer (20-30 cm), mainly due to the recovery of soil organic carbon (SOC) and macro-aggregate after cropland abandonment. Moreover, the eluviation process mainly caused a decrease in soil Fe contents and enrichment of heavy Fe isotope in deeper soils (below 40 cm). The positive correlation between oxidized Fe and SOC contents suggested the accumulation of mobile Fe in soils after agricultural abandonment, which is beneficial for Fe uptake and assimilation by plants. This study suggests that agricultural abandonment significantly reduce soil Fe leaching loss and improve plant Fe supply by SOC accumulation in surface soil, which gives an environmental implication for the management of soil nutrients.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing, 100101, China.
| | - Man Liu
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shitong Zhang
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyou Zhu
- Research Institute of Petroleum Exploration and Development, Beijing, 100083, China
| |
Collapse
|
11
|
Gao T, Wu Q, Xia Y, Liu Y, Zhu JM, Qi M, Song C, Liu Y, Sun G, Liu C. Flooding-drainage alternations impact mobilization and isotope fractionation of cadmium in soil-rice systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129048. [PMID: 35526343 DOI: 10.1016/j.jhazmat.2022.129048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Sequential flooding and draining substantially alter Cd mobilization in paddy fields, primarily due to redox-driven changes in Fe-Mn (hydro)oxides and Cd-sulfides. However, the impacts of carbonates on Cd mobilization during flooding-drainage alternations remain poorly understood. In this study, Cd isotope compositions were analyzed in soils and plants at three growth stages, and the results show a pH-dependent Cd mobilization and isotope fractionation. Sequential extraction shows the Cd mainly binds to the exchangeable fraction and carbonates, and their amounts vary with pH. Exchangeable Cd with light isotopes coprecipitates into carbonates due to increased pH during flooding (tillering and panicle initiation). Whereas in drained soils (maturity), the carbonate-bound Cd releases with decreased pH. Light isotopes are enriched in rice compared with exchangeable Cd, but this enrichment is insignificant at maturity. This difference is mainly caused by the change in Cd isotope composition of exchangeable Cd pool due to carbonate coprecipitation during flooding. Limited isotope fractionation between roots and aboveground tissues is found at tillering, whereas significant isotope fractionation is observed at two other stages, suggesting the nodes might work during Cd translocation between tissues. These findings demonstrate alternating flooding-drainage impacts the mobilization of carbonate-bound Cd and, consequently, isotope fractionation in soil-rice systems.
Collapse
Affiliation(s)
- Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Qiqi Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, PR China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changshun Song
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, Guizhou Education University, Guiyang 550018, PR China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China.
| |
Collapse
|
12
|
Wiggenhauser M, Moore RET, Wang P, Bienert GP, Laursen KH, Blotevogel S. Stable Isotope Fractionation of Metals and Metalloids in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:840941. [PMID: 35519812 PMCID: PMC9063737 DOI: 10.3389/fpls.2022.840941] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This work critically reviews stable isotope fractionation of essential (B, Mg, K, Ca, Fe, Ni, Cu, Zn, Mo), beneficial (Si), and non-essential (Cd, Tl) metals and metalloids in plants. The review (i) provides basic principles and methodologies for non-traditional isotope analyses, (ii) compiles isotope fractionation for uptake and translocation for each element and connects them to physiological processes, and (iii) interlinks knowledge from different elements to identify common and contrasting drivers of isotope fractionation. Different biological and physico-chemical processes drive isotope fractionation in plants. During uptake, Ca and Mg fractionate through root apoplast adsorption, Si through diffusion during membrane passage, Fe and Cu through reduction prior to membrane transport in strategy I plants, and Zn, Cu, and Cd through membrane transport. During translocation and utilization, isotopes fractionate through precipitation into insoluble forms, such as phytoliths (Si) or oxalate (Ca), structural binding to cell walls (Ca), and membrane transport and binding to soluble organic ligands (Zn, Cd). These processes can lead to similar (Cu, Fe) and opposing (Ca vs. Mg, Zn vs. Cd) isotope fractionation patterns of chemically similar elements in plants. Isotope fractionation in plants is influenced by biotic factors, such as phenological stages and plant genetics, as well as abiotic factors. Different nutrient supply induced shifts in isotope fractionation patterns for Mg, Cu, and Zn, suggesting that isotope process tracing can be used as a tool to detect and quantify different uptake pathways in response to abiotic stresses. However, the interpretation of isotope fractionation in plants is challenging because many isotope fractionation factors associated with specific processes are unknown and experiments are often exploratory. To overcome these limitations, fundamental geochemical research should expand the database of isotope fractionation factors and disentangle kinetic and equilibrium fractionation. In addition, plant growth studies should further shift toward hypothesis-driven experiments, for example, by integrating contrasting nutrient supplies, using established model plants, genetic approaches, and by combining isotope analyses with complementary speciation techniques. To fully exploit the potential of isotope process tracing in plants, the interdisciplinary expertise of plant and isotope geochemical scientists is required.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Group of Plant Nutrition, Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Rebekah E. T. Moore
- MAGIC Group, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gerd Patrick Bienert
- Crop Physiology, Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristian Holst Laursen
- Plant Nutrients and Food Quality Research Group, Plant and Soil Science Section and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Simon Blotevogel
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), UPS/INSA, Université Paul Sabatier - Toulouse III, Toulouse, France
| |
Collapse
|
13
|
Wu Q, Liu C, Wang Z, Gao T, Liu Y, Xia Y, Yin R, Qi M. Zinc regulation of iron uptake and translocation in rice (Oryza sativa L.): Implication from stable iron isotopes and transporter genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118818. [PMID: 35016986 DOI: 10.1016/j.envpol.2022.118818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 05/24/2023]
Abstract
Iron (Fe) is an essential nutrient for living organisms and Fe deficiency is a worldwide problem for the health of both rice and humans. Zinc (Zn) contamination in agricultural soils is frequently observed. Here, we studied Fe isotope compositions and transcript levels of Fe transporter genes in rice growing in nutrient solutions having a range of Zn concentrations. Our results show Zn stress reduces Fe uptake by rice and drives its δ56Fe value to that of the nutrient solution. These observations can be explained by the weakened Fe(II) uptake through Strategy I but enhanced Fe(III) uptake through Strategy II due to the competition between Zn and Fe(II) combining with OsIRT1 (Fe(II) transporter) in root, which is supported by the downregulated expression of OsIRT1 and upregulated expression of OsYSL15 (Fe(III) transporter). Using a mass balance box model, we also show excess Zn reduces Fe(II) translocation in phloem and its remobilization from senescent leaf, indicating a competition of binding sites on nicotianamine between Zn and Fe(II). This study provides direct evidence that how Zn regulates Fe uptake and translocation in rice and is of practical significance to design strategies to treat Fe deficiency in rice grown in Zn-contaminated soils.
Collapse
Affiliation(s)
- Qiqi Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Chengshuai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Zhengrong Wang
- Department of Earth and Atmospheric Sciences, The City College of New York, CUNY, New York, 10031, USA
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Runsheng Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
14
|
Zhong S, Li X, Li F, Liu T, Pan D, Liu Y, Liu C, Chen G, Gao R. Source and Strategy of Iron Uptake by Rice Grown in Flooded and Drained Soils: Insights from Fe Isotope Fractionation and Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2564-2573. [PMID: 35175773 DOI: 10.1021/acs.jafc.1c08034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rice can simultaneously absorb Fe2+ via a strategy I-like system and Fe(III)-phytosiderophore via strategy II from soil. Still, it remains unclear which strategy and source of Fe dominate under distinct water conditions. An isotope signature combined with gene expression was employed to evaluate Fe uptake and transport in a soil-rice system under flooded and drained conditions. Rice of flooded treatment revealed a similar δ56Fe value to that of soils (Δ56Ferice-soil = 0.05‰), while that of drained treatment was lighter than that of the soils (Δ56Ferice-soil = -0.41‰). Calculations indicated that 70.4% of Fe in rice was from Fe plaque under flooded conditions, while Fe was predominantly from soil solution under drained conditions. Up-regulated expression of OsNAAT1, OsTOM2, and OsYSL15 was observed in the root of flooded treatment, while higher expression of OsIRT1 was observed in the drained treatment. These isotopic and genetic results suggested that the Fe(III)-DMA uptake from Fe plaque and Fe2+ uptake from soil solution dominated under flooded and drained conditions, respectively.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Dandan Pan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yuhui Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chengshuai Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ruichuan Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
15
|
Zhong S, Li X, Li F, Huang Y, Liu T, Yin H, Qiao J, Chen G, Huang F. Cadmium uptake and transport processes in rice revealed by stable isotope fractionation and Cd-related gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150633. [PMID: 34592274 DOI: 10.1016/j.scitotenv.2021.150633] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Multiple processes are involved in Cd transfer in rice plants, including root uptake, xylem loading, and immobilization. These processes can be mediated by membrane transporters and can alter Cd speciation by binding Cd to different organic ligands. However, it remains unclear which processes control Cd transport in rice in response to different watering conditions in soil. Herein, Cd isotope fractionation and Cd-related gene expression were employed to investigate the key regulatory mechanisms during uptake, root-to-shoot, and stem-to-leaf transport of Cd in rice grown in pot experiments with Cd-contaminated soil under flooded and non-flooded conditions, respectively. The results showed that soil flooding decreased the Cd concentration in soil porewater and, thereby, Cd uptake and transport in rice. Cd isotopes fractionated negatively from soil porewater to the whole rice (flooded: ∆114/110Cdrice-porewater = -0.15‰, non-flooded: ∆114/110Cdrice-porewater = -0.39‰), suggesting that Cd transporters preferentially absorbed light Cd isotopes. The non-flooded treatment revealed an upregulated expression of OsNRAMP1 and OsNRAMP5 genes compared to the flooded treatment, which may partially contribute to its more pronounced porewater-to-rice fractionation. Cd isotopes fractionated positively from roots to shoots under flooded conditions (∆114/110Cdshoot-root = 0.19‰). However, a reverse direction of fractionation was observed under non-flooded conditions (∆114/110Cdshoot-root = -0.67‰), which was associated with the substantial upregulation of CAL1 in roots, facilitating xylem loading of Cd-CAL1 complexes with lighter isotopes. After being transported to the shoots, the majority of Cd were detained in stems (44%-55%), which were strongly enriched in lighter isotopes than in the leaves (∆114/110Cdleaf-stem = 0.77 to 1.01‰). Besides the Cd-CAL1 transported from the roots, the expression of OsPCS1 and OsHMA3 in the stems could also favor the enrichment of Cd-PCs with lighter isotopes, leaving heavier isotopes to be transported to the leaves. The higher expression levels of OsMT1e in older leaves than in younger leaves implied that Cd immobilization via binding to metallothioneins like OsMT1e may favor the enrichment of lighter isotopes in older leaves. The non-flooded treatment showed lighter Cd isotopes in younger leaves than the flooded treatment, suggesting that more Cd-CAL1 in the stems and Cd-PCs in the older leaves might be transported to the younger leaves under non-flooded conditions. Our results demonstrate that isotopically light Cd can be preferentially transported from roots to shoots when more Cd is absorbed by rice under non-flooded conditions, and isotope fractionation signature together with gene expression quantification has the potential to provide a better understanding of the key processes regulating Cd transfer in rice.
Collapse
Affiliation(s)
- Songxiong Zhong
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yingmei Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jiangtao Qiao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Zhong S, Li X, Li F, Liu T, Huang F, Yin H, Chen G, Cui J. Water Management Alters Cadmium Isotope Fractionation between Shoots and Nodes/Leaves in a Soil-Rice System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12902-12913. [PMID: 34520188 DOI: 10.1021/acs.est.0c04713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The drainage of rice soils increases Cd solubility and results in high Cd concentrations in rice grains. However, plant Cd uptake is limited by sorption to iron plaques, and Cd redistribution in the plant is regulated by the nodes. To better understand the interplay of Cd uptake and redistribution in rice under drained and flooded conditions, we determined stable Cd isotope ratios and the expression of genes coding transporters that can transport Cd into the plant cells in a pot experiment. In soil, both water management practices showed similar patterns of isotope variation: the soil solution was enriched in heavy isotopes, and the root Fe plaque was enriched in light isotopes. In rice, the leaves were heavier (Δ114/110Cdleaf-shoot = 0.17 to 0.96‰) and the nodes were moderately lighter (Δ114/110Cdnode-shoot = -0.26 to 0.00‰) relative to the shoots under flooded conditions, indicating preferential retention of light isotopes in nodes and export of heavy isotopes toward leaves. This is generally reversed under drained conditions (Δ114/110Cdleaf-shoot = -0.25 to -0.04‰, Δ114/110Cdnode-shoot = 0.10 to 0.19‰). The drained treatment resulted in significantly higher expression of OsHMA2 and OsLCT1 (phloem loading) but lower expression of OsHMA3 (vacuolar sequestration) in nodes and flag leaves relative to the flooded treatment. It appeared that OsHMA2 and OsLCT1 might preferentially transport isotopically heavier Cd, and the excess Cd was purposefully retranslocated via the phloem under drained conditions when the vacuoles could not retain more Cd. Cd in seeds was isotopically heavier than that in stems under both water management practices, indicating that heavy isotopes were preferentially transferred toward seeds via the phloem, leaving light isotopes retained in stems. These findings demonstrate that the Fe plaque preferentially adsorbs and occludes light Cd isotopes on the root surface, and distinct water management practices alter the gene expression of key transporters in the nodes, which corresponds to a change in isotope fractionation between shoots and nodes/leaves.
Collapse
Affiliation(s)
- Songxiong Zhong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Haoming Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guojun Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Han G, Yang K, Zeng J, Zhao Y. Dissolved iron and isotopic geochemical characteristics in a typical tropical river across the floodplain: The potential environmental implication. ENVIRONMENTAL RESEARCH 2021; 200:111452. [PMID: 34111438 DOI: 10.1016/j.envres.2021.111452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Iron (Fe) is an essential element for bio-physiological functioning terrestrial organisms, in particular of aquatic organisms. It is therefore crucial to understand the aquatic iron cycle and geochemical characteristics, which is also significant to obtain the key information on earth-surface evolution. The stable iron isotopic composition (δ56Fe) of the dissolved fraction is determined in the Mun River (main tributary of Mekong River), northeast Thailand to distinguish the human and nature influenced riverine iron geochemical behavior. The results show that dissolved Fe concentration ranges from 8.04 to 135.27 μg/L, and the δ56Fe ranges from -1.34‰ to 0.48‰, with an average of 0.23‰, 0.14‰ and -0.15‰ in the upper, middle and lower reaches, respectively. The δ56Fe values of river water are close to that of the bulk continental crust and other tropical rivers. The correlations between δ56Fe and Fe, Al, and physicochemical parameters show mixing processes of different Fe end-members, including the rock weathering end-member (low Fe/Al ratio and high δ56Fe), the urban activities end-member (high Fe/Al ratio and moderate δ56Fe), and a third end-member with probable sources from the Chi River and reservoir. For the most river water samples, the primary contribution is attributed to rock weathering, and the second is urban activities (only a few samples are from the upper and middle reaches). Thus, Fe isotopes could be employed as a proxy to identify and quantify the natural and anthropogenic contributions, respectively. These findings also provide data support for the scientific management of water resources in the Mun River catchment and other large tropical rivers.
Collapse
Affiliation(s)
- Guilin Han
- Institute of Earth Sciences, China University of Geosciences, Beijing, China.
| | - Kunhua Yang
- Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Jie Zeng
- Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Ye Zhao
- Nu Instruments, 74 Clywedog Road South, Wrexham Industrial Estate, Wrexham, LL13 9XS, United Kingdom
| |
Collapse
|
18
|
New insight into iron biogeochemical cycling in soil-rice plant system using iron isotope fractionation. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
19
|
Qi YH, Cheng W, Nan XY, Yang F, Li J, Li DC, Lundstrom CC, Yu HM, Zhang GL, Huang F. Iron Stable Isotopes in Bulk Soil and Sequential Extracted Fractions Trace Fe Redox Cycling in Paddy Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8143-8150. [PMID: 32633945 DOI: 10.1021/acs.jafc.0c02515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In paddy soils, iron (Fe) forms are highly influenced by the seasonal redox changes and leave detectable isotope signals because of fractionation between different Fe forms. Here, we present Fe concentrations and Fe isotope compositions (expressed as δ56Fe values) in a paddy soil profile from Suzhou, China. Light Fe isotopes were enriched in two iron-accumulation layers (Br3 and G1) with high Fe concentrations. In particular, large shifts in both Fe concentrations and δ56Fe values were found at the Br2 and Br3 boundaries, showing fast and efficient transformation between these horizons. With sequential extraction, we show that Fe isotopes in the short-range-ordered Fe minerals and crystalline Fe oxides were lighter than those in the residual silicate minerals. Iron enriched in light isotopes was leached from the Ap horizon and subsequently moved to Br horizon, quickly precipitating there as Fe oxides.
Collapse
Affiliation(s)
- Yu-Han Qi
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wenhan Cheng
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Xiao-Yun Nan
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Fan Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianghanyang Li
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - De-Cheng Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Craig C Lundstrom
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hui-Min Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| | - Gan-Lin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Huang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
| |
Collapse
|
20
|
From Plant to Paddy—How Rice Root Iron Plaque Can Affect the Paddy Field Iron Cycling. SOIL SYSTEMS 2020. [DOI: 10.3390/soilsystems4020028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron plaque on rice roots represents a sink and source of iron in paddy fields. However, the extent of iron plaque in impacting paddy field iron cycling is not yet fully deciphered. Here, we followed iron plaque formation during plant growth in laboratory-controlled setups containing a transparent soil matrix. Using image analysis, microsensor measurements, and mineral extractions, we demonstrate that radial oxygen loss (ROL) is the main driver for rhizosphere iron oxidation. While O2 was restricted to the vicinity of roots, root tips showed highest spatio-temporal variation in ROL (<5–50 µM) following diurnal patterns. Iron plaque covered >30% of the total root surface corresponding to 60–180 mg Fe(III) per gram dried root and gradually transformed from low-crystalline minerals (e.g., ferrihydrite) on root tips, to >20% higher-crystalline minerals (e.g., goethite) within 40 days. Iron plaque exposed to an Fe(III)-reducing Geobacter spp. culture resulted in 30% Fe(II) remobilization and >50% microbial transformation to Fe(II) minerals (e.g., siderite, vivianite, and Fe–S phases) or persisted by >15% as Fe(III) minerals. Based on the collected data, we estimated that iron plaque formation and reductive dissolution can impact more than 5% of the rhizosphere iron budget which has consequences for the (im)mobilization of soil contaminants and nutrients.
Collapse
|
21
|
Lin J, Sun M, Su B, Owens G, Chen Z. Immobilization of cadmium in polluted soils by phytogenic iron oxide nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:491-498. [PMID: 31096378 DOI: 10.1016/j.scitotenv.2018.12.391] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
While phytogenic nanomaterials have been successfully used to remove heavy metals in wastewater, the potential to successfully use such materials to immobilize heavy metals in soils is still unclear. In this study, phytogenic iron oxide nanoparticles (PION) were used to immobilize cadmium (Cd) in six soils. Amendment with PION effectively immobilized Cd, with a concomitant increase in the concentrations of iron oxides, soil pH and dissolved organic carbon (DOC) under both oxic and anoxic conditions. However, observed changes in soil properties and Cd fractions were different under oxic and anoxic conditions. After PION application, the exchangeable Cd fraction decreased by up to 91 and 69%, while the carbonate bound Cd fraction decreased by up to 61 and 75%, under oxic and anoxic conditions, respectively. Pearson correlation analysis revealed that under both oxic and anoxic conditions, Cd fractions were significantly and positively correlated with free iron oxide content and pH, where free iron oxide content was positively correlated with amorphous iron oxide, DOC and pH. The Cd immobilization mechanisms potentially involved either (1) formation of insoluble hydroxides at elevated pH; (2) participation of biomolecules released from PION in ligand complexation with Cd and (3) co-precipitated of Cd during the formation of iron oxides. This study provided new insights into the potential effects of PION applications for practical Cd immobilization in contaminated soils.
Collapse
Affiliation(s)
- Jiajiang Lin
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Mengqiang Sun
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Binglin Su
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
22
|
Abstract
A model representing isotope separation during water evaporation in plants was constructed. The model accounts for substance diffusion, convective transfer and evaporation from the surface of the leaves. The dependence of the system's separation and enrichment coefficients on various parameters (liquid velocity, diffusion coefficient, and potential barriers for molecules and their thermal velocities) was determined. A comparison was made between the enrichment coefficients calculated from experimental data from different plants and those based on the model. Qualitative agreement between the experimental and theoretical values was obtained for the case of [Formula: see text], where u is the average velocity of water in the plant, h is the height of the plant, and D is the diffusion coefficient of the substance.
Collapse
|
23
|
Fe Isotopic Compositions of Modern Seafloor Hydrothermal Systems and Their Influence Factors. J CHEM-NY 2017. [DOI: 10.1155/2017/1417302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on previous research on the Fe isotope compositions of various components and systems of the Earth, this study focused on the Fe isotope compositions of hydrothermal systems, including the Fe isotope variations in chalcopyrite, pyrite, and sphalerite, and their possible controlling factors. The main findings are as follows: (1) The range of Fe isotopes in hydrothermal systems at mid-ocean ridge is very large. The δ56Fe values of hydrothermal fluids are characterized by significant enrichment in light Fe isotopes. (2) The δ56Fe values of sulfides also exhibit lighter Fe isotope characteristics than those of hydrothermal fluids from hydrothermal vent fields at mid-ocean ridge. The vent temperature, fluid properties, and mineral deposition processes significantly affect the δ56Fe values of hydrothermal sulfides. (3) Chalcopyrite is preferentially enriched in heavy Fe isotopes, whereas sphalerite and pyrite are enriched in light Fe isotopes. In addition, the δ56Fe values of pyrite/marcasite display a larger range than those of chalcopyrite. This pattern is directly related to equilibrium fractionation or kinetic fractionation of Fe isotopes during the deposition of sulfides. To better understand the Fe isotope compositions of modern seafloor hydrothermal systems, the geochemical behavior and fractionation mechanisms of Fe isotopes require further in situ study.
Collapse
|