1
|
Donchev D, Stoikov I, Diukendjieva A, Ivanov IN. Assessment of Skimmed Milk Flocculation for Bacterial Enrichment from Water Samples, and Benchmarking of DNA Extraction and 16S rRNA Databases for Metagenomics. Int J Mol Sci 2024; 25:10817. [PMID: 39409144 PMCID: PMC11477342 DOI: 10.3390/ijms251910817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Water samples for bacterial microbiome studies undergo biomass concentration, DNA extraction, and taxonomic identification steps. Through benchmarking, we studied the applicability of skimmed milk flocculation (SMF) for bacterial enrichment, an adapted in-house DNA extraction protocol, and six 16S rRNA databases (16S-DBs). Surface water samples from two rivers were treated with SMF and vacuum filtration (VF) and subjected to amplicon or shotgun metagenomics. A microbial community standard underwent five DNA extraction protocols, taxonomical identification with six different 16S-DBs, and evaluation by the Measurement Integrity Quotient (MIQ) score. In SMF samples, the skimmed milk was metabolized by members of lactic acid bacteria or genera such as Polaromonas, Macrococcus, and Agitococcus, resulting in increased relative abundance (p < 0.5) up to 5.0 log fold change compared to VF, rendering SMF inapplicable for bacterial microbiome studies. The best-performing DNA extraction protocols were FastSpin Soil, the in-house method, and EurX. All 16S-DBs yielded comparable MIQ scores within each DNA extraction kit, ranging from 61-66 (ZymoBIOMICs) up to 80-82 (FastSpin). DNA extraction kits exert more bias toward the composition than 16S-DBs. This benchmarking study provided valuable information to inform future water metagenomic study designs.
Collapse
Affiliation(s)
- Deyan Donchev
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| | - Ivan Stoikov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| | | | - Ivan N. Ivanov
- National Reference Laboratory for Control and Monitoring of Antimicrobial Resistance, Department of Microbiology, National Center of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd., 1504 Sofia, Bulgaria; (D.D.)
| |
Collapse
|
2
|
Bleotu C, Matei L, Dragu LD, Necula LG, Pitica IM, Chivu-Economescu M, Diaconu CC. Viruses in Wastewater-A Concern for Public Health and the Environment. Microorganisms 2024; 12:1430. [PMID: 39065197 PMCID: PMC11278728 DOI: 10.3390/microorganisms12071430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/26/2024] Open
Abstract
Wastewater monitoring provides essential information about water quality and the degree of contamination. Monitoring these waters helps identify and manage risks to public health, prevent the spread of disease, and protect the environment. Standardizing the appropriate and most accurate methods for the isolation and identification of viruses in wastewater is necessary. This review aims to present the major classes of viruses in wastewater, as well as the methods of concentration, isolation, and identification of viruses in wastewater to assess public health risks and implement corrective measures to prevent and control viral infections. Last but not least, we propose to evaluate the current strategies in wastewater treatment as well as new alternative methods of water disinfection.
Collapse
Affiliation(s)
- Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060023 Bucharest, Romania
- The Academy of Romanian Scientist, 050711 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Mihaela Chivu-Economescu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| | - Carmen Cristina Diaconu
- Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania; (C.B.); (L.M.); (L.D.D.); (L.G.N.); (I.M.P.); (C.C.D.)
| |
Collapse
|
3
|
Toribio-Avedillo D, Gómez-Gómez C, Sala-Comorera L, Galofré B, Muniesa M. Adapted methods for monitoring influenza virus and respiratory syncytial virus in sludge and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170636. [PMID: 38331285 DOI: 10.1016/j.scitotenv.2024.170636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Wastewater-based surveillance constitutes a valuable methodology for the continuous monitoring of viral circulation, with the capacity to function as an early warning system. It holds particular significance in scenarios where respiratory viruses exhibit overlapping clinical presentations, as occurs with SARS-CoV-2, influenza virus (IV), and respiratory syncytial virus (RSV), and allows seasonal virus outbreaks to be distinguished from COVID-19 peaks. Furthermore, sewage sludge, given it harbors concentrated human waste from a large population, serves as a substantial reservoir for pathogen detection. To effectively integrate wastewater-based epidemiology into infectious disease surveillance, the detection methods employed in wastewater samples must be adapted to the distinct characteristics of sludge matrices. In this study, we adapted and applied protocols for the detection of IV and RSV in sewage sludge, comparing their performance with the results obtained in wastewater. To assess the efficiency of these protocols, sludge and wastewater samples were spiked with IV and RSV RNA, either free or incorporated in lentiviral particles. Samples were concentrated using the aluminum hydroxide adsorption-precipitation method before viral RNA extraction. Absolute virus quantification was carried out by RT-qPCR, including an internal control to monitor potential inhibitory factors. Recovery efficiencies for both free IV and RSV RNA were 60 % in sludge, and 75 % and 71 % respectively in wastewater, whereas the values for IV and RSV RNA in lentiviral particles were 16 % and 10 % in sludge and 21 % and 17 % in wastewater respectively. Additionally, the protocol enabled the quantification of naturally occurring IV and RSV in wastewater and sludge samples collected from two wastewater treatment plants during the winter months, thus affirming the efficacy of the employed methodologies.
Collapse
Affiliation(s)
- Daniel Toribio-Avedillo
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain
| | - Belén Galofré
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, General Batet 1-7, Barcelona 08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643 Annex, Floor 0, E-08028 Barcelona, Spain.
| |
Collapse
|
4
|
Fan J, Chen H, Song W, Yang H, Xie R, Zhao M, Wu W, Peng Z, Wu B. Assessment of different factors on the influence of glass wool concentration for detection of main swine viruses in water samples. PeerJ 2023; 11:e16171. [PMID: 37810768 PMCID: PMC10559894 DOI: 10.7717/peerj.16171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/03/2023] [Indexed: 10/10/2023] Open
Abstract
Viruses existed in wastewaters might pose a biosecurity risk to human and animal health. However, it is generally difficult to detect viruses in wastewater directly as they usually occur in low numbers in water. Therefore, processing large volumes of water to concentrate viruses in a much smaller final volume for detection is necessary. Glass wool has been recognized as an effective material to concentrate multiple in water, and in this study, we assessed the use of glass wools on concentrating pseudorabies virus (PRV), African swine fever virus (ASFV), and porcine epidemic diarrhea virus (PEDV) in water samples. The influence of pH values, water matrix, water volume, filtration rate, temperature on the effect of the method concentrating these viruses for detection was evaluated in laboratory. Our results revealed that glass wool was suitable for the concentration of above-mentioned viruses from different water samples, and demonstrated a good application effect for water with pH between 6.0-9.0. Furthermore, glass wool also showed a good recovery effect on concentrating viral nucleic acids and viral particles, as well as living viruses. In addition, combining use of glass wool with skim milk, polyethylene glycol (PEG)-NaCl, or ultracentrifuge had good effects on concentrating ASFV, PRV, and PEDV. Detection of wastewater samples (n = 70) collected from 70 pig farms in 13 regions across Hubei Province in Central China after glass-wool-concentration determined one sample positive for ASFV, eighteen samples positive for PRV, but no sample positive for PEDV. However, these positive samples were detected to be negative before glass wool enrichment was implemented. Our results suggest that glass wool-based water concentration method developed in this study represents an effective tool for detecting viruses in wastewater.
Collapse
Affiliation(s)
- Jie Fan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenbo Song
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hao Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenqing Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Maksimovic Carvalho Ferreira O, Lengar Ž, Kogej Z, Bačnik K, Bajde I, Milavec M, Županič A, Mehle N, Kutnjak D, Ravnikar M, Gutierrez-Aguirre I. Evaluation of Methods and Processes for Robust Monitoring of SARS-CoV-2 in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:384-400. [PMID: 35999429 PMCID: PMC9398038 DOI: 10.1007/s12560-022-09533-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/01/2022] [Indexed: 05/15/2023]
Abstract
The SARS-CoV-2 pandemic has accelerated the development of virus concentration and molecular-based virus detection methods, monitoring systems and overall approach to epidemiology. Early into the pandemic, wastewater-based epidemiology started to be employed as a tool for tracking the virus transmission dynamics in a given area. The complexity of wastewater coupled with a lack of standardized methods led us to evaluate each step of the analysis individually and see which approach gave the most robust results for SARS-CoV-2 monitoring in wastewater. In this article, we present a step-by-step, retrospective view on the method development and implementation for the case of a pilot monitoring performed in Slovenia. We specifically address points regarding the thermal stability of the samples during storage, screening for the appropriate sample concentration and RNA extraction procedures and real-time PCR assay selection. Here, we show that the temperature and duration of the storage of the wastewater sample can have a varying impact on the detection depending on the structural form in which the SARS-CoV-2 target is present. We found that concentration and RNA extraction using Centricon filtration units coupled with Qiagen RNA extraction kit or direct RNA capture and extraction using semi-automated kit from Promega give the most optimal results out of the seven methods tested. Lastly, we confirm the use of N1 and N2 assays developed by the CDC (USA) as the best performing assays among four tested in combination with Fast Virus 1-mastermix. Data show a realistic overall process for method implementation as well as provide valuable information in regards to how different approaches in the analysis compare to one another under the specific conditions present in Slovenia during a pilot monitoring running from the beginning of the pandemic.
Collapse
Affiliation(s)
- Olivera Maksimovic Carvalho Ferreira
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia.
- International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000, Ljubljana, Slovenia.
| | - Živa Lengar
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Zala Kogej
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Katarina Bačnik
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Irena Bajde
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Mojca Milavec
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Anže Županič
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Nataša Mehle
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
- School for Viticulture and Enology, University of Nova Gorica, Dvorec Lanthieri, Glavni trg 8, 5271, Vipava, Slovenia
| | - Denis Kutnjak
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Maja Ravnikar
- National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
6
|
Sabar MA, Honda R, Haramoto E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment. WATER RESEARCH 2022; 221:118827. [PMID: 35820313 DOI: 10.1016/j.watres.2022.118827] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 05/14/2023]
Abstract
Viral indicators of human-fecal contamination in wastewaters and environmental waters have been getting much attention in the past decade. Cross-assembly phage (crAssphage) is the most abundant DNA virus in human feces. Recently, the usefulness of crAssphage as a microbial source tracking and water quality monitoring tool for human-fecal contamination has been highlighted. Here, we conducted a comprehensive review on crAssphage in water, focusing on detection methodology, concentration range in various waters and wastewaters, specificity to human-fecal contamination, and reduction in wastewater treatment systems. This review highlights that crAssphage is globally distributed in wastewaters and various fecal-contaminated water bodies at high concentrations without seasonal fluctuations. CrAssphage is highly specific to human-fecal contamination and is rarely found in animal feces. It also has a good potential as a performance indicator to ensure virus reduction in wastewater treatment systems. Accordingly, crAssphage could be an effective tool for monitoring of human-fecal contamination and potential presence of fecal pathogenic microbes in environmental waters. Bridging the research gaps highlighted in this review would make crAssphage a powerful tool to support the control of water-related health risks.
Collapse
Affiliation(s)
| | - Ryo Honda
- Faculty of Geoscience and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Eiji Haramoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Japan
| |
Collapse
|
7
|
Forés E, Rusiñol M, Itarte M, Martínez-Puchol S, Calvo M, Bofill-Mas S. Evaluation of a virus concentration method based on ultrafiltration and wet foam elution for studying viruses from large-volume water samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154431. [PMID: 35278558 DOI: 10.1016/j.scitotenv.2022.154431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Assessing the presence of viruses in large-volume samples involves cumbersome methods that require specialized training and laboratory equipment. In this study, a large volume concentration (LVC) method, based on dead-end ultrafiltration (DEUF) and Wet Foam Elution™ technology, was evaluated in different type of waters and different microorganisms. Its recovery efficiency was evaluated through different techniques (infectivity assays and molecular detection) by spiking different viral surrogates (bacteriophages PhiX174 and MS2 and Coxsackie virus B5 (CVB5) and Escherichia coli (E. coli). Furthermore, the application of a secondary concentration step was evaluated and compared with skimmed milk flocculation. Viruses present in river water, seawater and groundwater samples were concentrated by applying LVC method and a centrifugal ultrafiltration device (CeUF), as a secondary concentration step and quantified with specific qPCR Human adenoviruses (HAdV) and noroviruses (NoVs). MS2 was used as process control, obtaining a mean viral recovery of 22.0 ± 12.47%. The presence of other viruses was also characterized by applying two different next-generation sequencing approaches. LVC coupled to a secondary concentration step based on CeUF allowed to detect naturally occurring viruses such as HAdV and NoVs in different water matrices. Using HAdV as a human fecal indicator, the highest viral pollution was found in river water samples (100% of positive samples), followed by seawater (83.33%) and groundwater samples (66.67%). The LVC method has also proven to be useful as a virus concentration method in the filed since HAdV and NoVs were detected in the river water and groundwater samples concentrated in the field. All in all, LVC method presents high concentration factor and a low limit of detection and provides viral concentrates useful for subsequent molecular analysis such as PCR and massive sequencing.
Collapse
Affiliation(s)
- Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Catalonia, Spain.
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miquel Calvo
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology & Statistics Department at the University of Barcelona (UB), Barcelona, Catalonia, Spain; The Water Research Institute (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Gholipour S, Ghalhari MR, Nikaeen M, Rabbani D, Pakzad P, Miranzadeh MB. Occurrence of viruses in sewage sludge: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153886. [PMID: 35182626 PMCID: PMC8848571 DOI: 10.1016/j.scitotenv.2022.153886] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 02/11/2022] [Indexed: 05/04/2023]
Abstract
Enteric viruses are of great importance in wastewater due to their high excretion from infected individuals, low removal in wastewater treatment processes, long-time survival in the environment, and low infectious dose. Among the other viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surveillance in wastewater systems has received particular attention as a result of the current COVID-19 epidemic. Viruses adhering to solid particles in wastewater treatment processes will end up as sewage sludge, and therefore insufficient sludge treatment may result in viral particles dissemination into the environment. Here, we review data on viruses' presence in sewage sludge, their detection and concentration methods, and information on human health issues associated with sewage sludge land application. We used combinations of the following keywords in the Scopus, Web of Science (WOS), and PubMed databases, which were published between 2010 and January 21th, 2022: sludge (sewage sludge, biosolids, sewage solids, wastewater solids) and virus (enteric virus, viral particles, viral contamination, SARS-CoV-2, coronavirus). The sources were searched twice, once with and then without the common enteric virus names (adenovirus, rotavirus, norovirus, enterovirus, hepatitis A virus). Studies suggest adenovirus and norovirus as the most prevalent enteric viruses in sewage sludge. Indeed, other viruses include rotavirus, hepatitis A virus, and enterovirus were frequently found in sewage sludge samples. Untreated biological sludge and thickened sludge showed more viral contamination level than digested sludge and the lowest prevalence of viruses was reported in lime stabilized sludge. The review reveals that land application of sewage sludge may pose viral infection risks to people due to accidently ingestion of sludge or intake of crops grown in biosolids amended soil. Moreover, contamination of groundwater and/or surface water may occur due to land application of sewage sludge.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davarkhah Rabbani
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Parichehr Pakzad
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagher Miranzadeh
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Wang Y, Zheng G, Wang D, Zhou L. Occurrence of bacterial and viral fecal markers in municipal sewage sludge and their removal during sludge conditioning processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114802. [PMID: 35228166 DOI: 10.1016/j.jenvman.2022.114802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Fecal contamination in wastewater treatment system may pose severe threats to human health, but the detailed contamination of fecal bacterial and viral pathogens in municipal sewage sludge remains unclear. In addition, it is also unclear how sludge conditioning treatments would impact the distribution of fecal markers in conditioned sewage sludge. Before addressing these two issues, the possible polymerase chain reaction (PCR) inhibition effect when determining the abundances of fecal markers in both sludge solids and sludge supernatants should be solved, and methods of effectively concentrating fecal markers from sludge supernatant should also be developed. In the present study, we found that the serial tenfold dilution effectively reduced the PCR inhibition effect when determining the abundances of fecal markers including cross-assembly phages (CrAssphage), JC polyomavirus (JCPyV), human-specific HF183 bacteroides (HF183), human BK polyomavirus (BKPyV), human adenovirus (HAdV) and Escherichia coli (EC), while the utilization of negatively charged HA membrane was effective to recover fecal markers from sludge supernatant. The results of a six-month monitoring revealed that gene markers of CrAssphage, JCPyV, HF183, BKPyV, HAdV, and EC can be detected in municipal sewage sludge collected from a local wastewater treatment plant. Among the investigated four chemical conditioning methods, i.e., chemical conditioning with polyacrylamide (PAM), Fe[III]/CaO, or Fenton's reagent, and chemical acidification conditioning, chemical conditioning with Fenton's reagent was much more effective than the other three conditioning methods to reduce the abundances of fecal markers in the supernatant and solid of conditioned sewage sludge. Furthermore, the investigated fecal markers in the conditioned sewage sludge can be simultaneously attenuated by employing suitable conditioning methods, consequently reducing the associated environmental risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
10
|
Pino NJ, Rodriguez DC, Cano LC, Rodriguez A. Detection of SARS-CoV-2 in wastewater is influenced by sampling time, concentration method, and target analyzed. JOURNAL OF WATER AND HEALTH 2021; 19:775-784. [PMID: 34665770 DOI: 10.2166/wh.2021.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of SARS-CoV in wastewater has been proposed as a tool for monitoring COVID-19 at the community level. Although many reports have been published about detecting viral RNA in wastewater and its presence has been linked to infected people, appropriate analytical methodologies to use this approach have not yet been established. In this study, we compared ultrafiltration, polyethylene glycol precipitation, flocculation using AlCl3, and flocculation with skim milk for the recovery of SARS-CoV-2, using RNA from patients with positive diagnoses for COVID-19 and Pseudomonas phage φ6 as the control. We also evaluated the primers for detecting the E, RdRp, and N genes of the virus, as well as different storage times. Differences in the recovery efficiencies were evident with the different concentration methods, the best being ultrafiltration and precipitation with aluminum, which had recovery rates of 42.0% and 30.0%, respectively, when virus was present at high levels. Significant differences were found between the recoveries using wastewater and deionized water and between different storage times, with better recoveries for 6 and 12 h samplings. The E gene was the only one detected in all the samples analyzed. The results show that although this approach can provide important data for studying the pandemic, clear protocols are necessary for investigations to be comparable.
Collapse
Affiliation(s)
- Nancy J Pino
- School of Microbiology, University of Antioquia, Cl 70 No. 52-21, Medellín, Colombia E-mail:
| | - Diana C Rodriguez
- Diagnostic and Pollution Control Research Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia, Cl 62# 52-59, Medellin, Colombia
| | - Laura Castrillón Cano
- School of Microbiology, University of Antioquia, Cl 70 No. 52-21, Medellín, Colombia E-mail:
| | - Alejandra Rodriguez
- CET Unit, Normalization and Laboratory, EPM, Cl. 66C No 34-93, Medellín, Colombia
| |
Collapse
|
11
|
Farkas K, Walker DI, Adriaenssens EM, McDonald JE, Hillary LS, Malham SK, Jones DL. Viral indicators for tracking domestic wastewater contamination in the aquatic environment. WATER RESEARCH 2020; 181:115926. [PMID: 32417460 PMCID: PMC7211501 DOI: 10.1016/j.watres.2020.115926] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 05/13/2023]
Abstract
Waterborne enteric viruses are an emerging cause of disease outbreaks and represent a major threat to global public health. Enteric viruses may originate from human wastewater and can undergo rapid transport through aquatic environments with minimal decay. Surveillance and source apportionment of enteric viruses in environmental waters is therefore essential for accurate risk management. However, individual monitoring of the >100 enteric viral strains that have been identified as aquatic contaminants is unfeasible. Instead, viral indicators are often used for quantitative assessments of wastewater contamination, viral decay and transport in water. An ideal indicator for tracking wastewater contamination should be (i) easy to detect and quantify, (ii) source-specific, (iii) resistant to wastewater treatment processes, and (iv) persistent in the aquatic environment, with similar behaviour to viral pathogens. Here, we conducted a comprehensive review of 127 peer-reviewed publications, to critically evaluate the effectiveness of several viral indicators of wastewater pollution, including common enteric viruses (mastadenoviruses, polyomaviruses, and Aichi viruses), the pepper mild mottle virus (PMMoV), and gut-associated bacteriophages (Type II/III FRNA phages and phages infecting human Bacteroides species, including crAssphage). Our analysis suggests that overall, human mastadenoviruses have the greatest potential to indicate contamination by domestic wastewater due to their easy detection, culturability, and high prevalence in wastewater and in the polluted environment. Aichi virus, crAssphage and PMMoV are also widely detected in wastewater and in the environment, and may be used as molecular markers for human-derived contamination. We conclude that viral indicators are suitable for the long-term monitoring of viral contamination in freshwater and marine environments and that these should be implemented within monitoring programmes to provide a holistic assessment of microbiological water quality and wastewater-based epidemiology, improve current risk management strategies and protect global human health.
Collapse
Affiliation(s)
- Kata Farkas
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK.
| | - David I Walker
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, DT4 8UB, UK
| | | | - James E McDonald
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Luke S Hillary
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
12
|
A novel method to purify adenovirus based on increasing salt concentrations in buffer. Eur J Pharm Sci 2019; 141:105090. [PMID: 31626964 DOI: 10.1016/j.ejps.2019.105090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023]
Abstract
With the rapid development of gene therapy, gene-based medicine with adenovirus as vectors has become a new method for disease treatment. However, there are still enormous challenges in the large-scale production of adenoviruses for clinical use. Recent reports show that ion-exchange chromatography (IEC) is an effective tool for the isolation and purification of adenovirus. However, during the separation and purification, host cell protein and DNA, as well as serum from the culture medium, can non-specifically occupy numerous binding sites of the chromatography packings, thereby reducing the binding between the adenovirus and packing media. We here report a novel method for highly efficient purification of adenoviruses by increasing the salt concentrations of the samples to be ultrafiltrated by tangential flow filtration, the diafiltration buffer, and the samples for IEC purification. This method could significantly remove a large amount of serum proteins and host cell proteins, increase the amount of sample loaded on the IEC column, and improve the binding of the adenovirus samples to the packing media. A purity of > 95% could be obtained after one chromatography operation, and the number of purification steps and the amount of used packing media were reduced. The method is simple, economical, and efficient, and has excellent applications.
Collapse
|
13
|
Assis ASF, Fumian TM, Miagostovich MP, Drumond BP, da Rosa E Silva ML. Adenovirus and rotavirus recovery from a treated effluent through an optimized skimmed-milk flocculation method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17025-17032. [PMID: 29633189 DOI: 10.1007/s11356-018-1873-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Sewage treatment may be insufficient for the complete removal of enteric viruses, such as human adenoviruses (HAdV) and group A rotavirus (RVA). The differences in the efficiency of the treatment methodologies used may interfere with the detection of these viruses. The objective of this study was to optimize a skimmed-milk flocculation technique for the recovery of HAdV and RVA in the samples of treated effluent. The treated effluent collected at the wastewater treatment plant (WWTP) was processed via four protocols including modifications in the initial centrifugation step and the final concentration of skimmed-milk. The viral load and recovery rate were determined by quantitative PCR TaqMan® System. The highest recovery rates of HAdV, RVA, and bacteriophage PP7 (internal control process) were obtained when the concentration of skimmed-milk was doubled and no centrifugation step was used for the sample clarification. The optimized protocol was assessed in a field study conducted with 24 treated effluent samples collected bi-monthly during 2015. HAdV and RVA were detected in 50.0% (12/24) and 33.3% (08/24) of the samples tested, respectively, throughout the year, without seasonal variation (p > 0.05). This study corroborates the use of the organic flocculation method for virus recovery in environmental samples with the adaptation of the protocols to different aquatic matrices.
Collapse
Affiliation(s)
- Andrêssa Silvino Ferreira Assis
- Laboratory of Virology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Betânia Paiva Drumond
- Laboratory of Virology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
- Laboratory of Virus, Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Luzia da Rosa E Silva
- Laboratory of Virology, Department of Parasitology, Microbiology and Immunology, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|