1
|
Costa S, Summa D, Radice M, Vertuani S, Manfredini S, Tamburini E. Lactic acid production by Lactobacillus casei using a sequence of seasonally available fruit wastes as sustainable carbon sources. Front Bioeng Biotechnol 2024; 12:1447278. [PMID: 39157446 PMCID: PMC11327009 DOI: 10.3389/fbioe.2024.1447278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: Lactic acid (LA) production from fossil resources is unsustainable owing to their depletion and environmental concerns. Thus, this study aimed to optimize the production of LA by Lactobacillus casei in a cultured medium containing fruit wastes (FWs) from agro-industries and second cheese whey (SCW) from dairy production, supplemented with maize steep liquor (MSL, 10% v/v) as the nitrogen source. Methods: The FWs were selected based on seasonal availability [early summer (early ripening peach), full summer (melon), late summer (pear), and early autumn (apple)] and SCW as annual waste. Small-scale preliminary tests as well as controlled fermenter experiments were performed to demonstrate the potential of using various food wastes as substrates for LA fermentation, except for apple pomace. Results and discussion: A 5-cycle repeated batch fermentation was conducted to optimize waste utilization and production, resulting in a total of 180.56 g/L of LA with a volumetric productivity of 0.88 g/L∙h. Subsequently, mechanical filtration and enzymatic hydrolysis were attempted. The total amount of LA produced in the 5-cycle repeated batch process was 397.1 g/L over 288 h, achieving a volumetric productivity of 1.32 g/L∙h. These findings suggest a promising biorefinery process for low-cost LA production from agri-food wastes.
Collapse
Affiliation(s)
- Stefania Costa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Daniela Summa
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Matteo Radice
- Faculty of Earth Sciences, Dep. Ciencia de La Tierra, Universidad Estatal Amazónica, Puyo, Ecuador
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Florio M, Cimini C, Bennato F, Ianni A, Grotta L, Martino G. Evaluation of Chemical and Nutritional Characteristics of Ricotta Cheese from Two Different Breeds: The Endangered Italian Teramana Goat and the Cosmopolitan Saneen Goat. Foods 2024; 13:1239. [PMID: 38672910 PMCID: PMC11048775 DOI: 10.3390/foods13081239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The present study aimed to compare the qualitative features of ricotta cheese produced by Teramana goats and Saanen goats raised in similar breeding systems and environmental conditions. The analyses were performed on ricotta after 0 (T0) and 5 (T5) days of storage at 4 °C. Ricotta cheese samples were subjected to chemical and physical analyses. The Teramana goat ricotta cheese was found to have a high-fat content characterized by a marked percentage of conjugates of linoleic acid (CLA). The reduction inketones and carboxylic acid revealed that Teramana goat ricotta cheese had greater oxidative stability during storage. According to the physical analyses, there are no differences between the two breeds in terms of color characteristics. Our findings underscore the importance of advocating for indigenous breeds, as evidenced by the compelling results observed in the production of ricotta cheese from Teramana goats.
Collapse
Affiliation(s)
| | | | | | | | | | - Giuseppe Martino
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.F.); (C.C.); (F.B.); (A.I.); (L.G.)
| |
Collapse
|
3
|
Lisandro Althaus R, Guillermo Nagel O, Eluk D. Inhibitory action of antibiotics on Kluyveromyces marxianus. Rev Argent Microbiol 2024; 56:134-139. [PMID: 38472028 DOI: 10.1016/j.ram.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/10/2023] [Accepted: 12/31/2023] [Indexed: 03/14/2024] Open
Abstract
A bioassay containing Kluyveromyces marxianus in microtiter plates was used to determine the inhibitory action of 28 antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, tetracyclines and sulfonamides) against this yeast in whey. For this purpose, the dose-response curve for each antibiotic was constructed using 16 replicates of 12 different concentrations of the antibiotic. The plates were incubated at 40°C until the negative samples exhibited their indicator (5-7h). Subsequently, the absorbances of the yeast cells in each plate were measured by the turbidimetric method (λ=600nm) and the logistic regression model was applied. The concentrations causing 10% (IC10) and 50% (IC50) of growth inhibition of the yeast were calculated. The results allowed to conclude that whey contaminated with cephalosporins, quinolones and tetracyclines at levels close to the Maximum Residue Limits inhibits the growth of K. marxianus. Therefore, previous inactivation treatments should be implemented in order to re-use this contaminated whey by fermentation with K. marxianus.
Collapse
Affiliation(s)
- Rafael Lisandro Althaus
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral - R.P.L. Kreder 2805, 3080 Esperanza, Argentina.
| | - Orlando Guillermo Nagel
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral - R.P.L. Kreder 2805, 3080 Esperanza, Argentina
| | - Dafna Eluk
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral - R.P.L. Kreder 2805, 3080 Esperanza, Argentina
| |
Collapse
|
4
|
Ventorim RZ, Germano VKDC, Fontes PP, da Silveira WB. Effect of carbon and nitrogen concentrations on lipid accumulation and regulation of acetyl-CoA carboxylase in Papiliotrema laurentii. Antonie Van Leeuwenhoek 2023; 116:1161-1170. [PMID: 37676572 DOI: 10.1007/s10482-023-01874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023]
Abstract
Biodiesel is an interesting alternative to petroleum diesel as it is renewable, biodegradable, and has a low pollutant content. Yeast oils can be used for biodiesel production instead of edible oils, mitigating the use of arable land and water for biodiesel production. Maximum lipid accumulation is reached at 48 h of cultivation by the oleaginous yeast Papiliotrema laurentii UFV-1. Nevertheless, the effects of carbon and nitrogen concentrations on lipid accumulation, as well as the regulation of lipid metabolism in this yeast are still not well-characterised. Therefore, this work evaluated the effects of carbon and nitrogen concentrations on the lipid accumulation in P. laurentti, the expression of the ACC gene, and the activity of the enzyme acetyl-CoA carboxylase (ACCase) in different carbon:nitrogen ratios (C:N) and glucose concentrations. The variation of ammonium sulfate concentration did not affect the growth and lipid accumulation in P. laurentii UFV-1. On the other hand, glucose concentration remarkably influenced biomass and lipid production by this yeast. Therefore, the carbon concentration is more important than the nitrogen concentration for lipid production by P. laurentii UFV-1. Importantly, the levels of both ACC gene expression and ACCase activity were maximum during the late-exponential growth phase and decreased after reaching the highest lipid contents, which was easier evidenced during the accumulation and maximum lipid levels. As such, the reduction of ACCase enzyme activity seems to be related to the decrease in the expression level of the ACC gene.
Collapse
|
5
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
6
|
Gutiérrez-Hernández CA, Hernández-Almanza A, Hernández-Beltran JU, Balagurusamy N, Hernández-Teran F. Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Papiliotrema laurentii: general features and biotechnological applications. Appl Microbiol Biotechnol 2022; 106:6963-6976. [PMID: 36197457 DOI: 10.1007/s00253-022-12208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Papiliotrema laurentii, previously classified as Cryptococcus laurentii, is an oleaginous yeast that has been isolated from soil, plants, and agricultural and industrial residues. This variety of habitats reflects the diversity of carbon sources that it can metabolize, including monosaccharides, oligosaccharides, glycerol, organic acids, and oils. Compared to other oleaginous yeasts, such as Yarrowia lipolytica and Rhodotorula toruloides, there is little information regarding its genetic and physiological characteristics. From a biotechnological point of view, P. laurentii can produce surfactants, enzymes, and high concentrations of lipids, which can be used as feedstock for fatty acid-derived products. Moreover, it can be applied for the biocontrol of phytopathogenic fungi, contributing to quality maintenance in post- and pre-harvest fruits. It can also improve mycorrhizal colonization, nitrogen nutrition, and plant growth. P. laurentii is also capable of degrading polyester and diesel derivatives and acting in the bioremediation of heavy metals. In this review, we present the current knowledge about the basic and applied aspects of P. laurentii, underscoring its biotechnological potential and future perspectives. KEY POINTS: • The physiological characteristics of P. laurentii confer a wide range of biotechnological applications. • The regulation of the acetyl-CoA carboxylase in P. laurentii is different from most other oleaginous yeasts. • The GEM is a valuable tool to guide the construction of engineered P. laurentii strains with improved features for bio-based products.
Collapse
|
8
|
Recycling Food Waste and Saving Water: Optimization of the Fermentation Processes from Cheese Whey Permeate to Yeast Oil. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the aim of developing bioprocesses for waste valorization and a reduced water footprint, we optimized a two-step fermentation process that employs the oleaginous yeast Cutaneotrichosporon oleaginosus for the production of oil from liquid cheese whey permeate. For the first step, the addition of urea as a cost-effective nitrogen source allowed an increase in yeast biomass production. In the second step, a syrup from candied fruit processing, another food waste supplied as carbon feeding, triggered lipid accumulation. Consequently, yeast lipids were produced at a final concentration and productivity of 38 g/L and 0.57 g/L/h respectively, which are among the highest reported values. Through this strategy, based on the valorization of liquid food wastes (WP and mango syrup) and by recovering not only nutritional compounds but also the water necessary for yeast growth and lipid production, we addressed one of the main goals of the circular economy. In addition, we set up an accurate and fast-flow cytometer method to quantify the lipid content, avoiding the extraction step and the use of solvents. This can represent an analytical improvement to screening lipids in different yeast strains and to monitoring the process at the single-cell level.
Collapse
|
9
|
Donzella S, Serra I, Fumagalli A, Pellegrino L, Mosconi G, Lo Scalzo R, Compagno C. Recycling industrial food wastes for lipid production by oleaginous yeasts Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:51. [PMID: 35568880 PMCID: PMC9107756 DOI: 10.1186/s13068-022-02149-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/05/2022] [Indexed: 04/16/2023]
Abstract
BACKGROUND Microbial lipids have been emerging as a sustainable alternative to vegetable oils and animal fat to produce biodiesel and industrial relevant chemicals. The use of wastes for microbial processes can represent a way for upgrading low value feedstock to high value products, addressing one of the main goals of circular economy, the reduction of wastes by recycling. Two oleaginous yeasts, Rhodosporidiobolus azoricus and Cutaneotrichosporon oleaginosum, were used in this study to demonstrate the feasibility of the proposed approach. RESULTS In this study wastes from industrial food processing, as pumpkin peels and syrup from candied fruits manufacture, were used for yeast cultivation and for lipids production. Evaluation of growth and sugar consumption revealed marked differences between the yeasts in capacity to utilize the main sugars present in the feedstock. In particular, we observed an unexpected limitation in glucose metabolism on mineral defined media by R. azoricus. Both species showed ability to grow and accumulate lipids on media exclusively composed by undiluted pumpkin peel hydrolysate, and R. azoricus was the best performing. By a two-stage process carried out in bioreactor, this species reached a biomass concentration of 45 g/L (dry weight) containing 55% of lipids, corresponding to a lipid concentration of 24 g/L, with a productivity of 0.26 g/L/h and yield of 0.24 g lipids per g of utilized sugar. CONCLUSIONS Wastes from industrial food processing were sufficient to completely support yeast growth and to induce lipid accumulation. This study provides strong evidence that the concept of valorisation through the production of lipids from the metabolism of nutrients present in agro-industrial wastes by oleaginous yeasts is promising for implementation of biotechnological processes in a circular economy contest.
Collapse
Affiliation(s)
- Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via L. Mangiagalli 25, 20133, Milan, Italy
| | - Immacolata Serra
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via L. Mangiagalli 25, 20133, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Andrea Fumagalli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via L. Mangiagalli 25, 20133, Milan, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via L. Mangiagalli 25, 20133, Milan, Italy
| | - Giacomo Mosconi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, via dell'Università 6, 26900, Lodi, Italy
| | - Roberto Lo Scalzo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria at Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), via G. Venezian 26, 20133, Milan, Italy
| | - Concetta Compagno
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via L. Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
10
|
Comprehensive utilisation of electro-activated whey-based media in cell growth, metabolite production and aroma compounds synthesis using a starter culture originated from kefir grains. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Usmani Z, Sharma M, Gaffey J, Sharma M, Dewhurst RJ, Moreau B, Newbold J, Clark W, Thakur VK, Gupta VK. Valorization of dairy waste and by-products through microbial bioprocesses. BIORESOURCE TECHNOLOGY 2022; 346:126444. [PMID: 34848333 DOI: 10.1016/j.biortech.2021.126444] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Waste is an inherent and unavoidable part of any process which can be attributed to various factors such as process inefficiencies, usability of resources and discarding of not so useful parts of the feedstock. Dairy is a burgeoning industry following the global population growth, resulting in generation of waste such as wastewater (from cleaning, processing, and maintenance), whey and sludge. These components are rich in nutrients, organic and inorganic materials. Additionally, the presence of alkaline and acidic detergents along with sterilizing agents in dairy waste makes it an environmental hazard. Thus, sustainable valorization of dairy waste requires utilization of biological methods such as microbial treatment. This review brings forward the current developments in utilization and valorization of dairy waste through microbes. Aerobic and anaerobic treatment of dairy waste using microbes can be a sustainable and green method to generate biofertilizers, biofuels, power, and other biobased products.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - James Gaffey
- Circular Bioeconomy Research Group, Shannon Applied Biotechnology Centre, Munster Technological University, Kerry, Ireland
| | - Monika Sharma
- Department of Botany, Shri Awadh Raz Singh Smarak Degree College, Gonda, Uttar Pradesh, India
| | - Richard J Dewhurst
- Dairy Research Centre, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Benoît Moreau
- Laboratoire de "Chimie verte et Produits Biobasés", Haute Ecole Provinciale du Hainaut- Département AgroBioscience et Chimie, 11, rue de la Sucrerie, 7800 Ath, Belgique
| | | | - William Clark
- Zero Waste Scotland, Moray House, Forthside Way, Stirling FK8 1QZ, UK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Uttar Pradesh 201314, India; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
12
|
CARVALHO CATHERINETDE, OLIVEIRA JÚNIOR SÉRGIODDE, LIMA WILDSONBDEBRITO, MEDEIROS FÁBIOGMACÊDODE, LEITÃO ANALAURAODESÁ, DANTAS JULIAM, SANTOS EVERALDOSDOS, MACÊDO GORETERDE, SOUSA JÚNIOR FRANCISCOCDE. Recovery of β-galactosidase produced by Kluyveromyces lactis by ion-exchange chromatography: Influence of pH and ionic strength parameters. AN ACAD BRAS CIENC 2022; 94:e20200752. [DOI: 10.1590/0001-3765202220200752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/28/2020] [Indexed: 11/22/2022] Open
|
13
|
|
14
|
Dimov SG, Gyurova A, Zagorchev L, Dimitrov T, Georgieva-Miteva D, Peykov S. NGS-Based Metagenomic Study of Four Traditional Bulgarian Green Cheeses from Tcherni Vit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Strategies for Improvement of Lipid Production by Yeast Trichosporon oleaginosus from Lignocellulosic Biomass. J Fungi (Basel) 2021; 7:jof7110934. [PMID: 34829221 PMCID: PMC8617694 DOI: 10.3390/jof7110934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022] Open
Abstract
Microbial lipids have similar fatty acid composition to plant oils, and therefore, are considered as an alternative feedstock for biodiesel production. Oleaginous yeasts accumulate considerable amounts of lipids intracellularly during growth on low-cost renewable feedstocks such as lignocellulosic biomass. In this study, we cultivated yeast Trichosporon oleaginosus on hydrolysate of alkaline pretreated corn cobs. Different process configurations were evaluated and compared, including separate hydrolysis and fermentation (SHF) with cellulase recycle and simultaneous saccharification and fermentation (SSF) in batch and fed-batch mode. At low enzyme loading, the highest lipid concentration of 26.74 g L−1 was reached in fed-batch SSF fed with 2.5% (g g−1) substrate. Batch SHF was conducted for four rounds with recycling the cellulase adsorbed on unhydrolyzed lignocellulosic biomass. Thirty percent of cellulase saving was achieved for rounds 2–4 without compromising productivity and lipid yield. The addition of Tween 80 to lignocellulosic slurry improved the hydrolysis rate of structural carbohydrates in pretreated lignocellulosic biomass. Furthermore, supplementing the growth medium with Tween 80 improved lipid yield and productivity without affecting yeast growth. Oleaginous yeast T. oleaginosus is a promising strain for the sustainable and efficient production of lipids from renewable lignocellulosic feedstock.
Collapse
|
16
|
Shahid MK, Batool A, Kashif A, Nawaz MH, Aslam M, Iqbal N, Choi Y. Biofuels and biorefineries: Development, application and future perspectives emphasizing the environmental and economic aspects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113268. [PMID: 34280865 DOI: 10.1016/j.jenvman.2021.113268] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The fossil fuel utilization adversely affected the environmental health due to the rising emission levels of greenhouse gases. Consequently, the challenges of climate change loaded great stress on renewable energy sources. It is noted that extreme consumption of fossil fuels increased the earth temperature by 1.9 °C that adversely influenced the life and biodiversity. Biorefinery is the sustainable process for the production of biofuels and other bio-products from biomass feedstock using different conversion technologies. Biofuel is an important component of renewable energy sources contributing to overall carbon-neutral energy system. Studies reported that on global scale, over 90% of petroleum goods could be produced from renewable resources by 2023, whereas, 33% chemicals, and 50% of the pharmaceutical market share is also expected to be bio-based. This study details the brief review of operation, development, application, limitations, future perspectives, circular bioeconomy, and life cycle assessment of biorefinery. The economic and environmental aspects of biofuels and biorefineries are briefly discussed. Lastly, considering the present challenges, the future perspectives of biofuels and biorefineries are highlighted.
Collapse
Affiliation(s)
- Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Daejeon, Republic of Korea.
| | - Ayesha Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ayesha Kashif
- Department of Senior Health Care, Graduate School, Eulji University, Uijeongbu, Republic of Korea
| | - Muhammad Haq Nawaz
- Department of Physics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Nafees Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Younggyun Choi
- Department of Environmental & IT Engineering, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Wang ZP, Zhang XY, Ma Y, Ye JR, Jiang J, Wang HY, Chen W. Whole conversion of agro-industrial wastes rich in galactose-based carbohydrates into lipid using oleaginous yeast Aureobasidium namibiae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:181. [PMID: 34526122 PMCID: PMC8442318 DOI: 10.1186/s13068-021-02031-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Raw materials composed of easily assimilated monosaccharides have been employed as carbon source for production of microbial lipids. Nevertheless, agro-industrial wastes rich in galactose-based carbohydrates have not been introduced as feedstocks for oleaginous yeasts. RESULTS In this study, Aureobasidium namibiae A12 was found to efficiently accumulate lipid from soy molasses and whey powder containing galactose-based carbohydrates, with lipid productions of 5.30 g/L and 5.23 g/L, respectively. Over 80% of the fatty acids was C16:0, C18:0, C18:1, and C18:2. All kinds of single sugar components in the two byproducts were readily converted into lipids, with yields ranging between 0.116 g/g and 0.138 g/g. Three α-galactosidases and five β-galactosidases in the strain were cloned and analyzed. Changes of transcriptional levels indicated GalB and GalC were key α-galactosidases, and GalG was key β-galactosidase. In 10 L fermentor, lipid production from SM and WP achieved 6.45 g/L and 6.13 g/L, respectively. β-galactosidase was responsible for lactose hydrolysis; sucrase and α-galactosidase both contributed to the efficient hydrolysis of raffinose and stachyose in a cooperation manner. CONCLUSIONS This is a new way to produce lipids from raw materials containing galactose-based carbohydrates. This finding revealed the significance of sucrase in the direct hydrolysis of galactose-based carbohydrates in raw materials for the first time and facilitated the understanding of the efficient utilization of galactose-based carbohydrates to manufacture lipid or other chemicals in bioprocess.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Yan Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jing-Run Ye
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Wei Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| |
Collapse
|
18
|
Gottardi D, Siroli L, Vannini L, Patrignani F, Lanciotti R. Recovery and valorization of agri-food wastes and by-products using the non-conventional yeast Yarrowia lipolytica. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Shesham V, Kelly AL, Burke W, Crouch A, Drake CA, Varaljay VA, Crookes-Goodson WJ, Barlow DE, Masthay MB, Biffinger JC. Comparison of two diphenyl polyenes as acid-sensitive additives during the biodegradation of a thermoset polyester polyurethane coating. J Appl Microbiol 2021; 132:351-364. [PMID: 34297452 DOI: 10.1111/jam.15228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
AIMS Biochemical hydrolysis and chemical catalysis are involved in the successful biodegradation of polymers. In order to evaluate the potential separation between biochemical and chemical catalysis during the biodegradation process, we report the use of two diphenylpolyenes (DPPs), all trans-1,4-diphenylbutadiene (DPB) and all trans-1,6-diphenylhexatriene (DPH), as potential acid-sensitive indicators in polymers. METHODS AND RESULTS 1,4-Diphenylbutadiene and DPH (0.1% w/w) were melt-cast successfully with poly(ethylene succinate) hexamethylene (PES-HM) polyurethane (thermoset polyester polyurethane) coatings above 80℃. When these two DPP/PES-HM coatings were exposed to a concentrated supernatant with significant esterase activity resulting from the growth of a recently isolated and identified strain of Tremellomycetes yeast (Naganishia albida 5307AI), the DPB coatings exhibited a measurable and reproducible localized decrease in the blue fluorescence emission in regions below where hydrolytic biodegradation was initiated in contrast with DPH blended coatings. The fluorescence changes observed in the biodegraded DPB coating were similar to exposing them to concentrated acids and not bases. CONCLUSIONS Our experiments resulted in (1) a method to blend DPP additives into thermoset coatings, (2) the first report of the biodegradation of polyester polyurethane coating by N. albida, and (3) demonstration that hydrolytic supernatants from this strain generate acidic region within degrading polyester coatings using DPB as the indicator. SIGNIFICANCE AND IMPACT OF THE STUDY Our experiments confirm that N. albida is an active polyester degrader and that DPB is a promising acid sensitive polymer coating additive.
Collapse
Affiliation(s)
| | - Abigail L Kelly
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | - William Burke
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.,UES, Inc, Dayton, Ohio, USA
| | - Audra Crouch
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.,UES, Inc, Dayton, Ohio, USA
| | - Carrie A Drake
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA.,UES, Inc, Dayton, Ohio, USA
| | - Vanessa A Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Wendy J Crookes-Goodson
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio, USA
| | - Daniel E Barlow
- Chemistry Division, US Naval Research Laboratory, Washington, District of Columbia, USA
| | - Mark B Masthay
- Chemistry Department, University of Dayton, Dayton, Ohio, USA
| | | |
Collapse
|
20
|
Pires AF, Marnotes NG, Rubio OD, Garcia AC, Pereira CD. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods 2021; 10:foods10051067. [PMID: 34066033 PMCID: PMC8151190 DOI: 10.3390/foods10051067] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
The search for new food products that promote consumers health has always been of great interest. The dairy industry is perhaps the best example regarding the emergence of new products with claimed health benefits. Cheese whey (CW), the by-product resulting from cheese production, and second cheese whey (SCW), which is the by-product of whey cheese manufacture, have proven to contain potential ingredients for the development of food products with improved nutritional characteristics and other functionalities. Nowadays, due to their nutritional quality, whey products have gained a prominent position among healthy food products. However, for a long time, CW and SCW were usually treated as waste or as animal feed. Due to their high organic content, these by-products can cause serious environmental problems if discarded without appropriate treatment. Small and medium size dairy companies do not have the equipment and structure to process whey and second cheese whey. In these cases, generally, they are used for animal feed or discarded without an appropriate treatment, being the cause of several constraints. There are several studies regarding CW valorization and there is a wide range of whey products in the market. However, in the case of SCW, there remains a lack of studies regarding its nutritional and functional properties, as well as ways to reuse this by-product in order to create economic value and reduce environmental impacts associated to its disposal.
Collapse
Affiliation(s)
- Arona Figueroa Pires
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal; (A.F.P.); (N.G.M.)
| | - Natalí Garcia Marnotes
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal; (A.F.P.); (N.G.M.)
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Sciences of Lugo, Food Technology Area, University of Santiago de Compostela, E-27002 Lugo, Spain; (O.D.R.); (A.C.G.)
| | - Olga Díaz Rubio
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Sciences of Lugo, Food Technology Area, University of Santiago de Compostela, E-27002 Lugo, Spain; (O.D.R.); (A.C.G.)
| | - Angel Cobos Garcia
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Sciences of Lugo, Food Technology Area, University of Santiago de Compostela, E-27002 Lugo, Spain; (O.D.R.); (A.C.G.)
| | - Carlos Dias Pereira
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal; (A.F.P.); (N.G.M.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
21
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|
22
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: Outlook and challenges. BIORESOURCE TECHNOLOGY 2021; 323:124612. [PMID: 33418352 DOI: 10.1016/j.biortech.2020.124612] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial lipids have recently drawn a lot of attention as renewable sources for biochemicals production. Strong research efforts have been addressed to efficiently use organic wastes as carbon source for microbial lipids, which would definitively increase the profitability of the production process and boost a bio-based economy. This review compiles interesting traits of oleaginous microorganisms and highlights current trends on microbial- and process-oriented approaches to maximize microbial oil production from inexpensive substrates like lignocellulosic sugars, volatile fatty acids and glycerol. Furthermore, downstream processes such as cell harvesting or lipid extraction, that are decisive for the cost-effectiveness of the process, are discussed. To underpin microbial oils within the so demanded circular economy, associated challenges, recent advances and possible industrial applications that are also identified in this review.
Collapse
Affiliation(s)
- E Tomás-Pejó
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain.
| | - S Morales-Palomo
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| | - C González-Fernández
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| |
Collapse
|
23
|
Raho S, Carofiglio VE, Montemurro M, Miceli V, Centrone D, Stufano P, Schioppa M, Pontonio E, Rizzello CG. Production of the Polyhydroxyalkanoate PHBV from Ricotta Cheese Exhausted Whey by Haloferax mediterranei Fermentation. Foods 2020; 9:foods9101459. [PMID: 33066448 PMCID: PMC7602231 DOI: 10.3390/foods9101459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022] Open
Abstract
In the last decade, the dairy industry underwent a rapid expansion due to the increasing demand of milk-based products, resulting in high quantity of wastewater, i.e., whey and ricotta cheese exhausted whey (RCEW). Although containing high content of nutritional compounds, dairy by-products are still disposed as waste rather being reintroduced in a new production chain, hence leading to environmental and economic issues. This study proposes a new biotechnological approach based on the combination of membrane filtration and fermentation to produce poly-hydroxyalkanoates (PHA), biodegradable bioplastics candidate as an alternative to petroleum-derived plastics. The protocol, exploiting the metabolic capability Haloferax mediterranei to synthesize PHA from RCEW carbon sources, was set up under laboratory and pilot scale conditions. A multi-step fractionation was used to recover a RCEW fraction containing 12.6% (w/v) of lactose, then subjected to an enzymatic treatment aimed at releasing glucose and galactose. Fermentation conditions (culture medium for the microorganism propagation, inoculum size, time, and temperature of incubation) were selected according to the maximization of polymer synthesis, under in-flasks experiments. The PHA production was then tested using a bioreactor system, under stable and monitored pH, temperature, and stirring conditions. The amount of the polymer recovered corresponded to 1.18 g/L. The differential scanning calorimetry (DSC) analysis revealed the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the polymer synthesized, with a relatively high presence of hydroxyvalerate (HV). Identity and purity of the polymer were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy analyses. By combining the fractionation of RCEW, one of the most abundant by-products from the agri-food industry, and the use of the halophile Hfx mediterranei, the production of PHBV with high purity and low crystallinity has successfully been optimized. The process, tested up to pilot scale conditions, may be further implemented (e.g., through fed-batch systems) and used for large-scale production of bioplastics, reducing the economical and environmental issues related the RCEW disposal.
Collapse
Affiliation(s)
- Susanna Raho
- EggPlant S.r.l., 70044 Polignano a Mare, Italy; (S.R.); (V.E.C.); (D.C.); (P.S.)
| | | | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (E.P.)
| | - Valerio Miceli
- ENEA Research Centre, Department for Sustainability, 72100 Brindisi, Italy; (V.M.); (M.S.)
| | - Domenico Centrone
- EggPlant S.r.l., 70044 Polignano a Mare, Italy; (S.R.); (V.E.C.); (D.C.); (P.S.)
| | - Paolo Stufano
- EggPlant S.r.l., 70044 Polignano a Mare, Italy; (S.R.); (V.E.C.); (D.C.); (P.S.)
| | - Monica Schioppa
- ENEA Research Centre, Department for Sustainability, 72100 Brindisi, Italy; (V.M.); (M.S.)
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (E.P.)
| | - Carlo Giuseppe Rizzello
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (E.P.)
- Correspondence:
| |
Collapse
|
24
|
Chan LG, Dias FFG, Saarni A, Cohen J, Block D, Taha AY, Moura Bell JMLN. Scaling up the Bioconversion of Cheese Whey Permeate into Fungal Oil by
Mucor circinelloides. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lauryn G. Chan
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Fernanda F. G. Dias
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Andrew Saarni
- Department of Chemical EngineeringUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Joshua Cohen
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - David Block
- Department of Chemical EngineeringUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
- Department of Viticulture and EnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| | - Juliana M. L. N. Moura Bell
- Department of Food Science and TechnologyUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
- Department of Biological and Agricultural EngineeringUniversity of California, Davis One Shields Avenue, Davis CA 95616 USA
| |
Collapse
|
25
|
de Carvalho CT, de Oliveira Júnior SD, de Brito Lima WB, de Medeiros FGM, de Sá Leitão ALO, Dos Santos ES, de Macedo GR, de Sousa Júnior FC. Potential of "coalho" cheese whey as lactose source for β-galactosidase and ethanol co-production by Kluyveromyces spp. yeasts. Prep Biochem Biotechnol 2020; 50:925-934. [PMID: 32496939 DOI: 10.1080/10826068.2020.1771731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study evaluated the co-production of β-galactosidase and ethanol by Kluyveromyces marxianus ATCC 36907 and Kluyveromyces lactis NRRL Y-8279 using as carbon source the lactose found on "coalho" cheese whey. Cheese whey was subjected to partial deproteinization, and physicochemical parameters were assessed. Cultivations were carried out in an shaker to evaluate two carbon/nitrogen (C:N) ratios. The best C:N ratio (1.5:1) was carried to 1.5-L bioreactor cultivation in order to increase co-production yields. The stability of β-galactosidase was assessed against different temperatures and pH, and in the presence of metal ions. Concerning the co-production of β-galactosidase and ethanol, K. lactis proved to be more efficient in both the C:N ratios, reaching 21.09 U·mL-1 of activity and 7.10 g·L-1 of ethanol in 16 h. This study describes the development of a viable and value-adding biotechnological process using a regional cheese by-product from Northeast Brazil for co-production of biomolecules of industrial interest.
Collapse
Affiliation(s)
- Catherine Teixeira de Carvalho
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
| | - Sérgio Dantas de Oliveira Júnior
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
| | - Wildson Bernardino de Brito Lima
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
| | | | - Ana Laura Oliveira de Sá Leitão
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
| | - Everaldo Silvino Dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
| | - Gorete Ribeiro de Macedo
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte - UFRN, Natal, Brazil
| | | |
Collapse
|
26
|
Orange peel waste-based liquid medium for biodiesel production by oleaginous yeasts. Appl Microbiol Biotechnol 2020; 104:4617-4628. [PMID: 32236680 DOI: 10.1007/s00253-020-10579-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
Orange peel waste (OPW), the primary byproduct of the juice extraction process, is annually generated in massive amounts (21 Mton), and its aqueous extraction in biorefining operations yields a liquid fraction, referred to as orange peel extract (OPE). Although OPE contains significant amounts of easily assimilable carbohydrates, such as fructose, glucose, and sucrose, no investigations have been conducted yet to assess its possible use in biodiesel production by oleaginous yeasts. Consequently, the objective of the present study was to assess whether OPE might act as the basis of a liquid medium for microbial lipid production. A screening conducted with 18 strains of oleaginous yeasts in shaken flask on the OPE-based medium showed that Rhodosporidium toruloides NRRL 1091 and Cryptococcus laurentii UCD 68-201 gave the best results in terms of lipid production (5.8 and 4.5 g L-1, respectively) and accumulation (77 and 47% on a dry matter basis, respectively). The subsequent scale transfer of the process to a 3-L STR operated in batch mode halved the time required to reach the lipid peak with the ensuing increase in volumetric productivities in R. toruloides NRRL 1091 (3646 mg L-1 day-1) and C. laurentii UCD 68-201 (2970.7 mg L-1 day-1). The biodiesel yields from the lipids of the former and the latter strain were 36.9 and 31.9%, respectively. Based on multivariate analysis of fatty acid methyl ester compositions, the lipids from the former and the latter strain were highly resembling those of Jatropha and palm oils, two commonly used feedstocks for biodiesel manufacturing.
Collapse
|
27
|
Influence of olive leaves feeding on chemical-nutritional quality of goat ricotta cheese. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03437-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
28
|
Rama GR, Kuhn D, Beux S, Maciel MJ, Volken de Souza CF. Potential applications of dairy whey for the production of lactic acid bacteria cultures. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Colombo B, Villegas Calvo M, Pepè Sciarria T, Scaglia B, Savio Kizito S, D'Imporzano G, Adani F. Biohydrogen and polyhydroxyalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:22-31. [PMID: 31351607 DOI: 10.1016/j.wasman.2019.05.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/10/2019] [Accepted: 05/27/2019] [Indexed: 05/11/2023]
Abstract
In this study a two-steps bioprocess approach aimed at biohydrogen production via dark-fermentation, and polyhydroxyalkanoates-PHA production by mixed microbial cultures, was proposed to valorise two dairy-waste streams coming from cheese whey deproteinization (i.e. Ricotta cheese production and ultrafiltration). During the first step, the increase of OLR was tested, resulting in higher daily H2 volume (3.47 and 5.07 NL H2 d-1 for second cheese whey-SCW and concentrated cheese whey permeate-CCWP) and organic acids production (14.6 and 12.6 g L-1 d-1 for SCW and CCWP) for both the substrates, keeping good conversion of sugars into H2 (1.37 and 1.93 mol H2 mol-1 sugars for SCW and CCWP). During the second step, the organic acids were used for PHA production reaching high conversion yields for both the fermented streams (as average 0.74 ± 0.14 mg CODPHA mg-1 CODOA-in), with a maximum polymer content of 62 ± 4.5 and 55.1 ± 1.3% (g PHA g-1 VSS) for fermented SCW and fermented CCWP respectively. For the results reported, this study could be taken into consideration for larger scale application.
Collapse
Affiliation(s)
- Bianca Colombo
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Mariana Villegas Calvo
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Tommy Pepè Sciarria
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Barbara Scaglia
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Simon Savio Kizito
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Giuliana D'Imporzano
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy
| | - Fabrizio Adani
- Gruppo Ricicla - DiSAA - Università degli Studi di Milano, via Celoria 2, 20133 Milan, Italy.
| |
Collapse
|
30
|
Amaro TMMM, Rosa D, Comi G, Iacumin L. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Front Microbiol 2019; 10:992. [PMID: 31143164 PMCID: PMC6520646 DOI: 10.3389/fmicb.2019.00992] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Plastic production and accumulation have devastating environmental effects, and consequently, the world is in need of environmentally friendly plastic substitutes. In this context, polyhydroxyalkanoates (PHAs) appear to be true alternatives to common plastics because they are biodegradable and biocompatible and can be biologically produced. Despite having comparable characteristics to common plastics, extensive PHA use is still hampered by its high production cost. PHAs are bacterial produced, and one of the major costs associated with their production derives from the carbon source used for bacterial fermentation. Thus, several industrial waste streams have been studied as candidate carbon sources for bacterial PHA production, including whey, an environmental contaminant by-product from the dairy industry. The use of whey for PHA production could transform PHA production into a less costly and more environmentally friendly process. However, the efficient use of whey as a carbon source for PHA production is still hindered by numerous issues, including whey pre-treatments and PHA producing strain choice. In this review, current knowledge on using whey for PHA production were summarized and new ways to overcome the challenges associated with this production process were proposed.
Collapse
Affiliation(s)
| | | | | | - Lucilla Iacumin
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
31
|
Vyas S, Chhabra M. Assessing oil accumulation in the oleaginous yeast Cystobasidium oligophagum JRC1 using dairy waste cheese whey as a substrate. 3 Biotech 2019; 9:173. [PMID: 30997310 DOI: 10.1007/s13205-019-1701-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/02/2019] [Indexed: 10/27/2022] Open
Abstract
This study assesses the potential for the lipid production by the oleaginous yeast Cystobasidium oligophagum JRC1 using dairy industry waste cheese whey as a substrate. Cheese whey was used either untreated (UCW) or deproteinized (DCW) at different concentrations (25-100%) to serve as the carbon and energy source. Both UCW and DCW supported high biomass and lipid productivities. The biomass productivity of 0.076 ± 0.0004 and 0.124 ± 0.0021 g/L h, lipid productivity of 0.0335 ± 0.0004 and 0.0272 ± 0.0008 g/L h, and the lipid content of 44.12 ± 0.84 and 21.79 ± 1.00% were achieved for 100% DCW and UCW, respectively. The soluble chemical oxygen demand (sCOD) removal rate was 8.049 ± 0.198 and 10.61 ± 0.0165 g/L day (84.91 ± 0.155 and 86.82 ± 0.067% removal) for 100% DCW and UCW, respectively. Fatty acid methyl ester (FAME) composition obtained using GC-FID studies revealed the presence of C16 and C18 fatty acid in the lipid extract and the biodiesel properties were found to be in accordance with ASTM and EN standards. The study presents a method for the valorization of cheese whey waste into a feasible feedstock for biodiesel.
Collapse
|
32
|
Chan LG, Cohen JL, Ozturk G, Hennebelle M, Taha AY, L. N. de Moura Bell JM. Bioconversion of cheese whey permeate into fungal oil by Mucor circinelloides. J Biol Eng 2018; 12:25. [PMID: 30473730 PMCID: PMC6237013 DOI: 10.1186/s13036-018-0116-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Oleaginous fungi are efficient tools to convert agricultural waste streams into valuable components. The filamentous fungus Mucor circinelloides was cultivated in whey permeate, a byproduct from cheese production, to produce an oil-rich fungal biomass. Response surface methodology was used to optimize the fermentation conditions such as pH and temperature for increased biomass yield and lipid accumulation. Quantification and characterization of the fungal biomass oil was conducted. RESULTS Upstream lactose hydrolysis of the whey permeate increased the biomass yield from 2.4 to 7.8 (g dry biomass/L) compared to that of non-hydrolyzed whey permeate. The combination of low pH (4.5) and pasteurization minimized microbial competition, thus favoring fungal growth. A central composite rotatable design was used to evaluate the effects of temperature (22.4-33.6 °C) and a lower pH range (3.6-4.7) on biomass yield and composition. The highest biomass yield and oil content was observed at high temperature (33.6 °C), while the pH range evaluated had a less pronounced effect. The predictive model was validated at the optimal conditions of 33.6 °C and pH 4.5. The fungal biomass yield plateaued at 9 g dry cell weight per liter, while the oil content and lipid yield reached a maximum of 24% dry biomass and 2.20 g/L, respectively, at 168 h. Triacylglycerides were the major lipid class (92%), which contained predominantly oleic (41%), palmitic (23%), linoleic (11%), and γ-linolenic acid (9%). CONCLUSIONS This study provided an alternative way of valorization of cheese whey permeate by using it as a substrate for the production of value-added compounds by fungal fermentation. The fatty acid profile indicates the suitability of M. circinelloides oil as a potential feedstock for biofuel production and nutraceutical applications.
Collapse
Affiliation(s)
- Lauryn G. Chan
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Joshua L. Cohen
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Gulustan Ozturk
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Marie Hennebelle
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Juliana Maria L. N. de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
- Department of Biological and Agricultural Engineering, Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
33
|
Monti L, Donati E, Zambrini AV, Contarini G. Application of membrane technologies to bovine Ricotta cheese exhausted whey (scotta). Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Bava L, Bacenetti J, Gislon G, Pellegrino L, D'Incecco P, Sandrucci A, Tamburini A, Fiala M, Zucali M. Impact assessment of traditional food manufacturing: The case of Grana Padano cheese. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1200-1209. [PMID: 29898527 DOI: 10.1016/j.scitotenv.2018.01.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The dairy sector is recognised as one of the most impacting agricultural activities. In Italy approximately 24% of cow's milk is destined to Grana Padano, a Protected Designation of Origin long ripening cheese. The Grana Padano production has increased by 10% in the last decade and approximately reached 183,000 t in 2015. Around 38% of this production is exported to Germany, US, France and to the rest of the world. This study evaluated the environmental impact of production of Grana Padano, through a "cradle to cheese factory gate" Life Cycle Assessment. The study involved an Italian cheese factory that produces about 3.6% of the total production of Grana Padano cheese and a group of 5 dairy farms, chosen among the farms that sold all milk produced to the cheese factory. The functional unit was 1 kg of Grana Padano cheese 12-month ripened. Environmental impacts of co-products: whey, cream, butter and buttermilk were also evaluated. Two sensitivity analyses were conducted: the first one had the aim to explore the effect of different allocation methods based on dry matter content, economic or nutritive value of cheese, respectively; the second one considered the variation of the impacts of milk production and its effect on cheese environmental impact. Milk production phase gave the most important contribution to the environmental impact of cheese, with a percentage of 93.5-99.6% depending on the impact category. Excluding milk production from the system boundary, milk transport and use of electricity were the main responsible of the environmental impact of cheese-making process. The climate change impact for the production of 1 kg Grana Padano was 10.3 kg of CO2 eq, using a dry matter allocation method, while 16.9 and 15.2 kg of CO2 eq adopting economic and nutritive value allocation methods, respectively.
Collapse
Affiliation(s)
- L Bava
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - J Bacenetti
- Department of Environmental Science and Policy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy.
| | - G Gislon
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - L Pellegrino
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - P D'Incecco
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - A Sandrucci
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - A Tamburini
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - M Fiala
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| | - M Zucali
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, Università degli Studi di Milano, via Giovanni Celoria 2, 20133 Milan, Italy
| |
Collapse
|
35
|
Amer NN, Elbahloul Y, Embaby AM, Hussein A. The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value added platform for renewable biodiesel. World J Microbiol Biotechnol 2017. [PMID: 28623565 DOI: 10.1007/s11274-017-2305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oleaginous microorganisms are regarded as efficient, renewable cell factories for lipid biosynthesis, a biodiesel precursor, to overwhelm the cosmopolitan energy crisis with affordable investment capital costs. Present research highlights production and characterization of lipids by a newly isolated oleaginous bacterium, Sphingomonas sp. EGY1 DSM 29616 through an eco-friendly approach. Only sweet whey [42.1% (v/v)] in tap water was efficiently used as a growth medium and lipid production medium to encourage cell growth and trigger lipid accumulation simultaneously. Cultivation of Sphingomonas sp. EGY1 DSM 29616 in shake flasks resulted in the accumulation of 8.5 g L-1 lipids inside the cells after 36 h at 30 °C. Triglycerides of C16:C18 saturated and unsaturated fatty acids showed a similar pattern to tripalmitin or triolein; deduced from gas chromatography (GC), thin layer chromatography (TLC), and Matrix-assisted laser desorption/ionization time-of-flight-mass spectra analysis (MALDI-TOF-MS) analyses. Batch cultivation 2.5 L in a laboratory scale fermenter led to 13.8 g L-1 accumulated lipids after 34 h at 30 °C. Present data would underpin the potential of Sphingomonas sp. EGY1 DSM 29616 as a novel renewable cell factory for biosynthesis of biodiesel.
Collapse
Affiliation(s)
- Nehad N Amer
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, 163 EL-Horreya Avenue, Alexandria, 21526, Egypt
| | - Yasser Elbahloul
- Faculty of Science, Botany and Microbiology Department, Alexandria University, Moharam Baik, Alexandria, 21511, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, 163 EL-Horreya Avenue, Alexandria, 21526, Egypt.
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, 163 EL-Horreya Avenue, Alexandria, 21526, Egypt.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|