1
|
Li J, Chang R, Li L, Zhang H, Li J. Spatiotemporal variation of polycyclic aromatic hydrocarbons in Tibetan lake sediment cores reveals the influence of forest fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176737. [PMID: 39383964 DOI: 10.1016/j.scitotenv.2024.176737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Despite declining anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) due to global control strategies, forest fire emissions have been increasing, significantly affecting PAH dynamics in global sinks. This study investigated the spatiotemporal variations of sedimentary PAHs in three Tibetan lakes-Yiong Tso, Yamdrok Yumtso, and Urru Tso-to determine the influence of forest fires on PAH levels and historical trends. Yiong Tso Lake, located in a fire-affected watershed, exhibited the highest PAH concentrations (average of 43.4 ± 25.7 ng/g) with significant fluctuations since the 1920s, peaking in the 1960s (46.3 ng/g) and 1980s (91.3 ng/g), corresponding to periods of intense forest fires. This pattern aligned with source contribution estimates using the modified Cohen's d (mcd), indicating the dominance of forest fires as a PAH source until the 1990s. PAH concentrations decreased with increasing distance from the southeastern Tibetan Forest, as observed in Yamdrok Yumtso (average of 36.1 ± 19.9 ng/g) and Urru Tso (average of 16.4 ± 6.9 ng/g). Temporal variations in PAH concentrations and mcd values from these lakes also reflected a response to forest fires during the 1960s, suggesting a widespread influence of forest-fire-derived PAHs across the plateau. The impact of forest fires on sedimentary PAHs was expected to persist for decades, with an estimated half-life of approximately 11-12 years. These findings highlight significant emissions of PAHs from forest fires in the Tibetan Plateau, potentially transforming regional PAH dynamics and influencing global cycling.
Collapse
Affiliation(s)
- Jiping Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lewei Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - He Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
2
|
Li L, Chang R, Li J, Zhang H, Du X, Li J, Yuan GL. Assessing the impact of mining on cyclic and linear methylsiloxane distribution in Tibetan soils: Source contribution and transport pattern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173542. [PMID: 38806123 DOI: 10.1016/j.scitotenv.2024.173542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
The pervasive presence of methylsiloxanes (MSs), comprising linear and cyclic congeners, in the environment poses significant ecological risks, yet the understanding of their transport mechanisms and deposition patterns remains limited. This study analyzed the concentrations of 12 linear-MSs (L3-L14) and 7 cyclic-MSs (D3-D9) in 29 surface soil samples collected across varying altitudes (3726 to 4863 m) near the Jiama mining sector in Tibet, aiming to investigate the distribution and transport dynamics of MSs from the emission source. The distribution of total MS concentration (ranging from 50.1 to 593 ng/g) showed a remarkable correlation with proximity to the mining site, suggesting the emergent source of mining activities for the MSs in the remote environment of the Tibetan Plateau. Employing the innovative model of robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR), the analysis predicted that the mining operations contributing 57.1 % of the total soil MSs, would significantly surpass contributions from traffic emissions (14.7 %), residential activities (13.2 %), and the environmental factor of total organic matter content (14.9 %). The Boltzmann equation effectively modeled the distribution pattern of soil MSs, highlighting atmospheric transport and gravitational settling as key distribution mechanisms. However, linear-MSs exhibited longer transport distances than cyclic-MSs and were more profoundly affected by prevailing wind directions, suggesting their differential environmental behaviors and risks. Our study underscored that the mining sector possibly emerged as a significant source of Tibetan MSs, and provided insights into the transport and fate of MSs in remote, high-altitude environments. The findings emphasize the need for targeted pollution control strategies to mitigate the environmental footprint of mining activities in Tibet and similar regions.
Collapse
Affiliation(s)
- Lewei Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jiping Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - He Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xinyu Du
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Guo-Li Yuan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
3
|
Fu L, Sun Y, Li H, Chen Y, Du H, Liang SX. Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from Baiyang Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1035. [PMID: 37572161 DOI: 10.1007/s10661-023-11607-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
The issue of polycyclic aromatic hydrocarbons (PAHs) has been an environmental focus worldwide. In this study, the contents, sources, and ecological risks of sixteen PAHs in the sediment of Baiyang Lake were estimated, and a list of priority pollutants was established. The total PAH contents ranged from 114 to 1010 ng·g-1. The composition of PAHs indicated that 4- to 6-ring PAHs predominated in the sediment samples. The diagnostic ratio analysis showed that combustion sources were predominant for PAHs in Baiyang Lake. Specifically, the positive matrix factorization model indicated that diesel engine emissions, gasoline engine emissions, wood combustion sources, and coal combustion sources contributed 22, 32, 24, and 22% of ∑PAHs, respectively. Based on the sediment quality guidelines, mean effects range median quotient, ecological risk quotient, and toxicity equivalent quotient methods, the comprehensive assessment results of PAHs in Baiyang Lake sediments indicated that the ecological risks were at medium and low levels. The priority pollutant list showed that benzo[b]fluoranthene and benzo[a]pyrene were the highest-priority pollutants and thus should be given more attention.
Collapse
Affiliation(s)
- Liguo Fu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Yaxue Sun
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hongbo Li
- Baiyangdian Basin Eco-environmental Support Center, Shijiazhuang, 050056, China
| | - Yan Chen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Hui Du
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Shu-Xuan Liang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, People's Republic of China.
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
4
|
Qiao P, Wang S, Li J, Shan Y, Wei Y, Zhang Z, Lei M. Quantitative analysis of the contribution of sources, diffusion pathways, and receptor attributes for the spatial distribution of soil heavy metals and their nested structure analysis in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163647. [PMID: 37088387 DOI: 10.1016/j.scitotenv.2023.163647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Investigation of heavy metal pollution degree, pollution sources, and spatial distribution structure is crucial for the country's soil pollution prevention, but relevant research is lacking. In this study, As, Cd, Cr, Cu, Pb and Zn in the national scope are taken as research objects. Among them, Cd has the highest pollution level. Four sources were quantitatively allocated as soil type, mining and dressing industry, GDP, and NDVI, which accounted for 92.93, 97.81, 99.30 and 96.24 % of Cr, Cd, Zn and As contamination, respectively. In addition, according to the geographical detector, the spatial distribution of As was affected by three diffusion pathways, whose influence degree were 0.822-0.947, especially the slope. Cadmium was primarily affected by both receptor attributes and diffusion pathways, with an influence degree of 0.010-0.175, especially soil water content and slope; Cr and Pb were affected by receptor attributes, with an influence degree of 0.886-0.986 and 0.007-0.288, respectively, especially for soil water content and soil organic carbon; Cu and Zn were affected by receptor attributes, with an influence degree of 0.182-0.823 and 0.002-0.150, respectively, especially for soil texture. There are two spatial distribution structures with nested scales in east-west and north-south directions. The large spatial structure has a more significant impact on the spatial distribution of heavy metals, especially in the east-west direction. Overall, the mining and dressing industry is the main source in Hunan, Yunnan, and Liaoning, where many mines exist and mining activities are frequent. GDP was the main source in Shanghai and Zhejiang areas, where the economy is developed. NDVI was the main source in Guangdong and Anhui areas, where agriculture is relatively developed. These results provide a basis for determining remediation and prevention objectives in soil pollution remediation and prevention in the national scope.
Collapse
Affiliation(s)
- Pengwei Qiao
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China.
| | - Shuo Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Jiabin Li
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Yue Shan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Yan Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Beijing 100089, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Wei L, Yu Z, Zhu C, Chen Y, Pei Z, Li Y, Yang R, Zhang Q, Jiang G. An evaluation of the impact of traffic on the distribution of PAHs and oxygenated PAHs in the soils and moss of the southeast Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160938. [PMID: 36526168 DOI: 10.1016/j.scitotenv.2022.160938] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Contaminants in high-altitude mountains such as the Tibetan Plateau (TP) have attracted extensive attention due to their potential impact on fragile ecosystems. Rapid development of the economy and society has promoted pollution caused by local traffic emissions in the TP. Among the pollutants emitted by traffic, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) are of particular concern due to their high toxicity. The TP provides an environment to explore the degree and range of contribution for traffic-induced PAHs and OPAHs. In this study, soils and moss were collected at different altitudes and distances from the G318 highway in the southeast TP. The total concentrations of PAHs (∑16PAHs) and OPAHs (∑6OPAHs) in soils were in the range of 3.29-119 ng/g dry weight (dw) and 0.54-9.65 ng/g dw, respectively. ∑16PAH and ∑6OPAH concentrations decreased logarithmically with increasing distance from traffic. A significantly positive correlation between ∑16PAHs and altitude was found at sampling points closest to traffic. Dominant PAHs constituents in soil and moss included chrysene (CHR), benzo[g,h,i]perylene (BghiP), and benzo[b]fluoranthene (BbF); prevalent OPAH compounds were 9-fluorenone (9-FO) and 9,10-anthraquinone (ATQ). These compounds were related to characteristics of traffic emissions. The multiple diagnosis ratio and correlation analysis showed that exhaust emissions were the main source of the PAHs and OPAHs in the studied environment. PMF modeling quantification of the relative contribution of traffic emissions to PAHs in roadside soils was 45 % on average. The present study characterized the extent and range of traffic-induced PAH and OPAH emissions, providing valuable information for understanding the environmental behaviors and potential risks of traffic-related contaminants in high-altitude areas.
Collapse
Affiliation(s)
- Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhigang Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chengcheng Zhu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Chaplygin V, Dudnikova T, Chernikova N, Fedorenko A, Mandzhieva S, Fedorenko G, Sushkova S, Nevidomskaya D, Minkina T, Sathishkumar P, Rajput VD. Phragmites australis cav. As a bioindicator of hydromorphic soils pollution with heavy metals and polyaromatic hydrocarbons. CHEMOSPHERE 2022; 308:136409. [PMID: 36108759 DOI: 10.1016/j.chemosphere.2022.136409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The work is devoted to evaluation of the ability of Phragmites australis Сav. to indicate the soil pollution with heavy metals (HMs) and priority polycyclic aromatic hydrocarbons (PAHs) by studying changes in the plant's ultrastructure. The concentration of Mn, Cu, Cr, Cd, Pb, Zn, Ni as well as 16 priority PAHs in hydromorphic soils and macrophyte plants (Phragmites australis Cav.) were increasing with distance decreasing to the power station and approaching to the direction of prevailing wind (northwest). The analyze of distribution of the studied pollutants in plants showed that the highest concentration have prevailed in the roots. A decrease in the diameter of the roots, and an increase in the thickness of the leaf blade was established. The transmission electron microscopy analysis showed that the ultrastructure of P. australis chloroplasts changed affected by accumulation of HMs and PAHs: a rise in the number of plastoglobules; a drop in the number of lamellae in granules, as well as changes in the shape, size, and electron density of mitochondria and peroxisomes. The most serious destructive violations of the main cellular organelles were noted for plants from the site within a 2.5 km from the emissions source and located on the predominant wind rose (north-west) direction. These macrophytes reflect spatial variations of pollutants metals in hydromorphic soils, therefore they are of potential use as bioindicators of environmental pollution.
Collapse
Affiliation(s)
| | | | | | | | | | - Grigorii Fedorenko
- Federal Research Centre the Southern Scientific Centre of the Russian Academy of Sciences, Rostov-on-Don, Russian Federation
| | | | | | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation
| | - Palanivel Sathishkumar
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India
| | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, Russian Federation.
| |
Collapse
|
7
|
Li J, Xu L, Zhou Y, Yin G, Wu Y, Yuan GL, Du X. Short-chain chlorinated paraffins in soils indicate landfills as local sources in the Tibetan Plateau. CHEMOSPHERE 2021; 263:128341. [PMID: 33297267 DOI: 10.1016/j.chemosphere.2020.128341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 05/22/2023]
Abstract
Background contamination levels of contemporary persistent organic pollutants (POPs) may be elevated due to local discharges, and hence it is of high importance to assess and monitor them in alpine and Polar Regions. This study investigated the role of waste disposal in the Tibetan plateau as the local source of short-chain chlorinated paraffins (SCCPs). SCCPs were determined in soils from the urban landfill and rural dumpsites, with a concentration range of 56.8-1348 ng/g dw. The gradient descent of SCCP levels from Lhasa landfill to the surrounding soils with increasing distances suggested a significant SCCP release from waste disposal. The transport pattern was well fitted by the Boltzmann equation after normalization in terms of soil organic carbon contents. Compared to the landfill cells closed in early years, the recently closed cells contained higher concentrations but lower proportions of the short-chain congener groups, likely reflecting the SCCP use history in Tibet. In open-burning dumpsites, higher SCCP levels and dominance of lighter congener groups indicates that such crude waste treatment process might cause an extra release of volatile SCCPs. This study elucidates local SCCP inputs to the background environment, and demonstrates that both urbanization and badly-managed landfill have been contributing to the presence of contemporary POPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Liang Xu
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Zhang Y, Wang F, Hudson-Edwards KA, Blake R, Zhao F, Yuan Z, Gao W. Characterization of Mining-Related Aromatic Contaminants in Active and Abandoned Metal(loid) Tailings Ponds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15097-15107. [PMID: 33167623 DOI: 10.1021/acs.est.0c03368] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports on the compositional diversity of organic compounds in metal(loid)-bearing tailings samples from both active and abandoned tailings ponds. Tailings samples were qualitatively analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). In addition, the priority PAHs (16), PAEs (6), and phenols (2) were quantitatively analyzed using gas chromatography-mass spectrometry (GC-MS). We attribute the presence of some of aromatic organics in studied tailings ponds to particular sources. Mineral floatation reagents are likely the major sources of small-ring aromatics in tailings ponds, and products from metallurgical processing and burning of fossil fuels in the mining area or further afield are also possible contributors and might be the main source of large-ring aromatics. We found that tailings ponds abandoned for decades can still have organics concentrations at levels of concern. Large-ring aromatics are generally more toxic than other contaminants, and these were more abundant in abandoned tailings ponds. This suggests that these large-ring organics do not readily decompose or biodegrade into less toxic byproducts, as do volatiles and many other organic compounds. Our aromatic contaminants database provides an important starting point for researchers to investigate and compare similar contaminants that might be also present in other tailings ponds and emphasizes the necessity of considering their transformations over time.
Collapse
Affiliation(s)
- Yiyue Zhang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fei Wang
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Karen A Hudson-Edwards
- Environment and Sustainability Institute and Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9FE, U.K
| | - Ruth Blake
- The Department of Earth & Planetary Sciences, Yale University, 210 Whitney Avenue, 06511 New Haven, Connecticut United States
| | - Furong Zhao
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Zhimin Yuan
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Wei Gao
- School of Energy & Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| |
Collapse
|
9
|
Li J, Wang AT, Ye TR, Wang Q, Qiu JL, Fang B, Yuan GL. Unraveling the behaviors and significances of waste biomass ashes as underlying emission sources of soil polycyclic aromatic hydrocarbons in Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115217. [PMID: 32707351 DOI: 10.1016/j.envpol.2020.115217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Domestic consumption of biomass fuels has been found as a leading source of polycyclic aromatic hydrocarbons (PAHs) in pristine regions. The biomass ashes would serve as both source and vector for PAHs, which may threaten residents' health. However, research focusing on the behaviors of waste biomass ashes acting as emission resources of PAHs is still lacking. In present study, occurrence and fate of PAHs released from disposal biomass ashes in the Tibetan Plateau were investigated by evaluating their patterns and levels in soils at different distances from the Lhasa landfill. Concentrations of 16 PAHs averaged at 1009 ng/g dry weight and 103 ng/g dry weight in landfill cover soils and surrounding soils, respectively. The spatial distributions of PAHs evidenced the local source of biomass ashes in landfill, while the fractionations of PAHs in soils profiles emphasized the post-deposal leaching. Since PAH compositions altered significantly during their transport and sequestration, the rectification factors were suggested to adjust the source diagnostic ratios. In study area, the emission flux of PAHs from waste biomass ashes to soils was 0.93 ton/year; extended to the Tibetan Plateau, the flux was estimated to be 13.1-32.5 ton/year. This study confirmed that waste biomass ashes would represent significant contributions of PAH emissions in this pristine region, which might remarkably exacerbate the total emissions of PAHs in Tibet by more than 25%.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - An-Ting Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Tian-Rui Ye
- Beijing No.4 High School International Campus, Beijing, 100031, China
| | - Qi Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Jun-Lang Qiu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bin Fang
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
10
|
Ma WL, Zhu FJ, Liu LY, Jia HL, Yang M, Li YF. PAHs in Chinese atmosphere Part II: Health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110774. [PMID: 32460055 DOI: 10.1016/j.ecoenv.2020.110774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in atmosphere, which attracted more attentions due to their influence on human health. In this study, a national scale cancer risk (CR) assessment with atmospheric PAHs were conducted based on one year monitoring program at 11 cities across China. The annual mean concentrations of benzo[a]pyrene (BaP) and BaP equivalency (BaPeq) were 4.56 ± 7.78 ng/m3 and 8.45 ± 14.1 ng/m3, respectively, which were both higher than the new ambient air quality standards of China (GB 3095-2012, 1 ng/m3). Concentrations of BaP and BaPeq in northern Chinese cities were almost 2 times higher than those in southern Chinese cities. The CR values induced by the dermal contact exposure were two orders of magnitude higher than that by the inhalation exposure. Children and adults were the most sensitive age groups with the dermal contact exposure and the inhalation exposure to atmospheric PAHs, respectively. For the total CR values, 99.7% of its values were higher than the reference level of 10-6. No significant difference of the total CR values was observed between northern Chinese and southern Chinese cities for children and adults. In order to quantify the uncertainties of CR assessment, Monte Carlo Simulation was applied based on the specific distributions of the exposure factors cited from the Exposure Factors Handbook of Chinese Population. The results indicated that almost 90% probability of the total CR values were higher than 10-6, indicating potential cancer risk. Sensitive analysis indicated that atmospheric concentration, outdoor exposure fraction, particle amount adhered to skin, and cancer slope factor should be carefully considered in order to increase the accuracy of CR assessment with PAHs in atmosphere.
Collapse
Affiliation(s)
- Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Fu-Jie Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong-Liang Jia
- IJRC-PTS, Dalian Maritime University, Dalian, 116026, China
| | - Meng Yang
- IJRC-PTS, Dalian Maritime University, Dalian, 116026, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
11
|
Ma X, Wan H, Zhou J, Luo D, Huang T, Yang H, Huang C. Sediment record of polycyclic aromatic hydrocarbons in Dianchi lake, southwest China: Influence of energy structure changes and economic development. CHEMOSPHERE 2020; 248:126015. [PMID: 32032874 DOI: 10.1016/j.chemosphere.2020.126015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Sixteen polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Dianchi Lake, southwest China, were analysed. The influence of changes in China's energy structure for 2-6 ringed PAHs was investigated to assess sources and the impact of socioeconomic development on temporal changes in concentrations. The concentration of the ΣPAH16 ranged from 746 to 2293 ng g-1. Prior to the 1960s relatively low concentrations of the ΣPAH16 and a larger proportion of 2-3-ring PAHs indicated that biomass combustion was the main source of PAHs. A rapid increase in the concentrations of 2-3 ring PAHs between 1975 and 2004 was attributed to population growth and coal consumption. A declining trend since 2004 was interpreted as being due to local changes in household energy usage. Increased concentrations of 4-ring PAH between 1975-2005 and 5-6-ring PAHs between the 1980s to 2004 showed correlations with increased coal consumption and the number of motor vehicles, respectively. These were caused by rapid urbanization and industrialization in the Dianchi watershed following the implementation of the Reform and Open Policy in 1978. A subsequent decline in the concentrations of 4-ring and 5-6-ring PAHs may have been due to decreased coal consumption and improvements in emission standards, respectively. Source apportionment by a PMF model revealed that coal combustion (29.2%), vehicle emissions (24.2%), petrogenic sources (21.8%), and biomass combustion (24.9%) were the sources of PAHs in the lake sediment core, and that coal combustion was the most important regional source of PAHs pollution.
Collapse
Affiliation(s)
- Xiaohua Ma
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China
| | - Hongbin Wan
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China
| | - Juan Zhou
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China
| | - Duan Luo
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, PR China
| | - Hao Yang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, PR China
| | - Changchun Huang
- School of Geography Science, Nanjing Normal University, Nanjing, 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, 210023, PR China; State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, 210023, PR China.
| |
Collapse
|
12
|
Ji X, Abakumov E, Polyako V, Xie X, Dongyang W. The ecological impact of mineral exploitation in the Russian Arctic: A field-scale study of polycyclic aromatic hydrocarbons (PAHs) in permafrost-affected soils and lichens of the Yamal-Nenets autonomous region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113239. [PMID: 31542666 DOI: 10.1016/j.envpol.2019.113239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Forty soil and lichen samples and sixteen soil horizon samples were collected in the mining and surrounding areas of the Yamal-Nenets autonomous region (Russian Arctic). The positive matrix factorization (PMF) model was used for the source identification of PAHs. The results of the source identification showed that the mining activity was the major source of PAHs in the area, and that the mining influenced the surrounding natural area. The 5+6-ring PAHs were most abundant in the mining area. The lichen/soil (L/S) results showed that 2+3-ring and 4-ring PAHs could be transported by air and accumulated more in lichens than in the soil, while 5+6-ring PAHs accumulated more in the soil. Strong relationships between the quotient of soil/lichen (QSL) and Log KOA and Log PL and between the quotient of lichen/histic horizon soil and KOW were observed. In addition, hydrogeological conditions influenced the downward transport of PAHs. Particularly surprising is the discovery of the high levels of 5 + 6 rings in the permafrost table (the bottom of the active layer). One hypothesis is given that the global climate change may lead to further depth of active layer so that PAHs may migrate to the deeper permafrost. In the impact area of mining activities, the soil inventory for 5+6-ring PAHs was estimated at 0.14 ± 0.017 tons on average.
Collapse
Affiliation(s)
- Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, PR China; Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg, 199178, Russian Federation
| | - Evgeny Abakumov
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg, 199178, Russian Federation
| | - Vyacheslav Polyako
- Department of Applied Ecology, Saint Petersburg State University, Saint Petersburg, 199178, Russian Federation; Arctic and Antarctic Research Institute, Saint Petersburg, 199397, Russian Federation; Department of Soil Science and Agrochemistry, Saint-Petersburg State Agrarian University, Pushkin, Saint Petersburg, 19660, Russian Federation
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, PR China.
| | - Wei Dongyang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection Guangzhou, 510530, PR China
| |
Collapse
|
13
|
Wang Q, Li J, Duan XC, Yuan GL, Fang B, Wang AT. The sedimentary record of polycyclic aromatic hydrocarbons in Yamzho Yumco Lake: evolution of local sources and adsorption dynamic in the Tibetan Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18674-18686. [PMID: 31055747 DOI: 10.1007/s11356-019-05182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
With the rapid increase in anthropogenic activities, the local emissions of polycyclic aromatic hydrocarbons (PAHs) in background regions, such as the Tibetan Plateau (TP), have attracted great attention. The deposition of PAHs in lake sediments provides a historical evolutionary record of such compounds in these regions. To investigate the evolution of PAHs in the TP, two sedimentary cores from Yamzho Yumco Lake were collected and dated at high resolution, and the concentrations of 16 PAHs and sediment properties were also analyzed. The total concentrations of the 16 PAHs ranged from 6.52 to 57.97 ng/g (dry weight) in YC1 and from 0.91 to 4.57 ng/g (dry weight) in YC2. According to the methods of principal component analysis (PCA) followed by multilinear regression analysis (MLRA), four sources of PAHs in the sediments were qualitatively and quantitatively identified, such as petroleum combustion, petrogenic, coal combustion, and biomass burning. Thus, the historical evolution of PAHs was summarized. In addition, the transported distance from local PAH emission sources was found to greatly affect the composition and concentration of PAHs in sites YC1 and YC2. Specifically, local sources contributed a greater proportion of heavy molecular weight (HMW) PAHs in YC1 and a higher proportion of light-molecular-weight (LMW) PAHs in YC2. Moreover, fine particles (size < 20 μm) were found to play a significant role in adsorbing PAHs in sediments. Furthermore, ∑16PAHs in sediments were linearly correlated with the percentage of fine particles (size < 20 μm). This study provides a first example to investigate the historical evolution of PAH local emission in background regions by using lake sedimentary records, especially in the TP. Specifically, different local sources were identified using the methods of PCA followed by MLRA, and PAHs in TP sediments were predominantly adsorbed by fine particles rather than by total organic carbon (TOC) because the amount of TOC was limited.
Collapse
Affiliation(s)
- Qi Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Jun Li
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Xu-Chuan Duan
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Guo-Li Yuan
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
| | - Bin Fang
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| | - An-Ting Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
14
|
Wang X, Wang C, Zhu T, Gong P, Fu J, Cong Z. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:191-208. [PMID: 30784838 DOI: 10.1016/j.envpol.2019.01.093] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/15/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Due to their low temperatures, the Arctic, Antarctic and Tibetan Plateau are known as the three polar regions of the Earth. As the most remote regions of the globe, the occurrence of persistent organic pollutants (POPs) in these polar regions arouses global concern. In this paper, we review the literatures on POPs involving these three polar regions. Overall, concentrations of POPs in the environment (air, water, soil and biota) have been extensively reported, with higher levels of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) detected on the Tibetan Plateau. The spatial distribution of POPs in air, water and soil in the three polar regions broadly reflects their distances away from source regions. Based on long-term data, decreasing trends have been observed for most "legacy POPs". Observations of transport processes of POPs among multiple media have also been carried out, including air-water gas exchange, air-soil gas exchange, emissions from melting glaciers, bioaccumulations along food chains, and exposure risks. The impact of climate change on these processes possibly enhances the re-emission processes of POPs out of water, soil and glaciers, and reduces the bioaccumulation of POPs in food chains. Global POPs transport model have shown the Arctic receives a relatively small fraction of POPs, but that climate change will likely increase the total mass of all compounds in this polar region. Considering the impact of climate change on POPs is still unclear, long-term monitoring data and global/regional models are required, especially in the Antarctic and on the Tibetan Plateau, and the fate of POPs in all three polar regions needs to be comprehensively studied and compared to yield a better understanding of the mechanisms involved in the global cycling of POPs.
Collapse
Affiliation(s)
- Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chuanfei Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Tingting Zhu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ping Gong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China
| | - Jianjie Fu
- State Key Laboratory for Environmental Chemistry and Ecotoxicology, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhiyuan Cong
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Li J, Yuan GL, Li P, Duan XC, Yu HH, Qiu JL, Wang GH. Insight into the local source of polybrominated diphenyl ethers in the developing Tibetan Plateau: The composition and transport around the Lhasa landfill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1-9. [PMID: 29466769 DOI: 10.1016/j.envpol.2018.02.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
In the background region of the Tibetan Plateau (TP), the rapid urbanization probably results in the massive generation of persistent organic pollutants (POPs), which lacks monitoring and evaluation. Since landfill could serve as an important sink of the locally used POPs, the analysis of POPs in the Tibetan landfill area might help us to understand the source composition and their transport in the TP. In this study, the concentration variations of polybrominated diphenyl ethers (PBDEs) in five soil profiles and seven surficial sediments around the largest Tibetan landfill were investigated. The total concentrations of PBDEs ranged from 128 to 1219 ng/kg in soils, and from 447 to 7295 ng/kg in sediments. The dominance of nona- and deca-BDEs possibly indicated the wide usage of deca-BDE as flame retardant in the TP. The vertical and spatial distribution patterns of PBDEs within soils plausibly revealed their main transport pathways by atmospheric dispersion and leachate seepage from landfill. Based on principal components analysis and multiple linear regression, these two pathways were estimated to account for 61% and 39% of the total concentrations, respectively. Additionally, the spatial and vertical distributions of octa-to deca-BDEs within soils were significantly influenced by soil particle size. Although the PBDEs inventory in the study area was comparatively low, the rapid urbanization in the TP might dramatically accelerate the PBDE emissions in the future. This study firstly introduced the presence of local PBDEs in the TP, and the inventory already influenced the surrounding environment. Once involved in the regional cycle of the TP, the local source of PBDEs from waste might significantly serve to raise background level resulting otherwise primarily from long-range atmospheric transport.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Ping Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xu-Chuan Duan
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Hong-Hui Yu
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun-Lang Qiu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gen-Hou Wang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
16
|
Kong FX, Sun GD, Liu ZP. Degradation of polycyclic aromatic hydrocarbons in soil mesocosms by microbial/plant bioaugmentation: Performance and mechanism. CHEMOSPHERE 2018; 198:83-91. [PMID: 29421764 DOI: 10.1016/j.chemosphere.2018.01.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
In order to study the degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged and highly contaminated soil, four bioremediation strategies (indigenous microorganisms, microbial bioaugmentation with a PAH-degrading and bioemulsifier-producing strain, Rhodococcus ruber Em1, plant bioaugmentation with Orychophragmus violaceus and their combination) were compared and the enhanced degradation mechanism was investigated in soil mesocosms. Degradation rates over a period of 175 days showed that Em1 combined with Orychophragmus violaceus promoted a significant enhancement of PAHs degradation. In inoculated microcosms with Rhodococcus ruberEm1, mineralization reached a lower level in the absence than in the presence of plants. Elimination of PAHs was significantly enhanced (increased by 54.45%) in the bioaugmented mesocosms. Quantitative PCR indicated that copy numbers of linA and RHD-like gene (encoding PAH-ring hydroxylating dioxygenase) in the mesocosm with plant were three and five times higher than those in the mesocosm without plant, respectively. Transcript copy numbers of RHD-like gene and 16S rRNA gene of strain Em1 in mesocosm with plant were two and four times higher than those in the mesocosm without plant, respectively. Taken together, the results of this study show that plants or Rhodococcus ruber Em1 enhance total PAHs removal, moreover their effects are necessarily cumulative by combined strains and plants.
Collapse
Affiliation(s)
- Fan-Xin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Guang-Dong Sun
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research Beijing, 100038, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|