1
|
Li M, Zhang J, Tan C, Liu H, He Q. Predicting the impact of climate change on crop water footprint using CMIP6 in the Shule River Basin, China. Sci Rep 2024; 14:17843. [PMID: 39090385 PMCID: PMC11294594 DOI: 10.1038/s41598-024-68845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Quantitatively predicting the impacts of climate change on water demands of various crops is essential for developing measures to ensure food security, sustainable agriculture, and water resources management, especially in arid regions. This study explored the water footprints (WFs) of nine major crops in the middle and downstream areas of Shule River Basin, Northwest China, from 1989 to 2020 using the WF theory and CROPWAT model and predicted the future WFs of these crops under four emission and socio-economic pathway (SSPs-RCPs) scenarios, which provides scientific support for actively responding to the negative impacts of climate change in arid regions. Results indicated: (1) an increasing trend of the overall crop WF, with blue WF accounting for 80.31-99.33% of the total WF in the last 30 years. Owing to differences of planting structure, water-conservation technologies, and other factors, the multi-year average WF per unit area of crops was 0.75 × 104 m3 hm-2 in downstream area, which was higher than that in midstream area (0.57 × 104 m3 hm-2) in the last 30 years; therefore agricultural water use efficiency in the downstream area was lower than that in the midstream area, implying that the midstream area has more efficient agricultural water utilization. (2) an initial increase and then decrease of crop WFs in the study area under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios by the end of the century, reaching their peak in 2030s which was higher than that from 1989 to 2020; with the maximum growth rates in the midstream area ranging from -0.85% in SSP5-8.5 to 5.33% in SSP2-4.5 and 29.74% in SSP5-8.5 to 34.71% in SSP2-4.5 in the downstream area. The local agricultural water demand would continue to increase and water scarcity issues would be more severe in the next 10-20 years, affecting downstream areas more. Under the SSP3-7.0 scenario, crop WF values of the midstream and downstream regions will be 2.63 × 108 m3 and 4.22 × 108 m3 in 2030, respectively, which is significantly higher than those of other scenarios and show a long-term growth trend. The growth rate of the midstream and downstream regions will reach 44.71% and 81.12%, respectively, by the end of this century, so the local agricultural water use would be facing more strain if this scenario materializes in the future. Therefore, the Shule River Basin should encourage development of water-saving irrigation technologies, adjust the planting ratio of high water consuming crops, and identify other measures to improve water resource utilization efficiency to cope with future water resource pressures.
Collapse
Affiliation(s)
- Man Li
- College of Geographical Sciences, Shanxi Normal University, Taiyuan, 030031, China
| | - Junjie Zhang
- College of Geographical Sciences, Shanxi Normal University, Taiyuan, 030031, China
| | - Chunping Tan
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, 610200, China.
| | - Huancai Liu
- College of Geographical Sciences, Shanxi Normal University, Taiyuan, 030031, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710062, China
| | - Qiaofeng He
- College of Geographical Sciences, Shanxi Normal University, Taiyuan, 030031, China
| |
Collapse
|
2
|
Cheng H, Jiang X, Wang M, Zhu T, Wang L, Miao L, Chen X, Qiu J, Shu J, Cheng J. Optimal allocation of agricultural water and land resources integrated with virtual water trade: A perspective on spatial virtual water coordination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119189. [PMID: 37793293 DOI: 10.1016/j.jenvman.2023.119189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Agricultural production consumes the majority of global freshwater resources. The worsening water scarcity has imposed significant stress on agricultural production when regions seek food self-sufficiency. To seek optimal allocation of spatial agricultural water and land resources in each water function zone of the objective region, a multi-objective optimization model was developed to tackle the trade-offs between the water-saving objective and the economic benefit objective considering virtual water trade (VWT). The cultivated area of each crop in each water function zone was taken into account as the decision variable, while a set of strong constraints were used to restrict land resources and water availability. Then, a decomposition-simplex method aggregation algorithm (DSMA) was proposed to solve this nonlinear, bounding-constrained, and multi-objective optimization model. Based on the quantitative analysis of the spatial blue and green virtual water in each agricultural product, the proposed methodology was applied to a real-world, provincial-scale region in China (i.e., Jiangsu Province). The optimized results provided 18 Pareto solutions to reallocate the land resources in the 21 IV-level water function zones of Jiangsu Province, considering four major rainy-season crops and two dry-season crops. Compared to the actual scenario, the superior scheme increased by 7.95% (5.6 × 109 RMB) for economic trade and decreased by 1.77% (2.0 × 109 m3) for agricultural water consumption. It was mainly because the potential of spatial blue and green virtual water in Jiangsu was fully exploited by improving spatial land resource allocation. The food security of Jiangsu could be guaranteed by achieving self-sufficiency in the superior scheme, and the total VWT in the optimal scheme was 2.2 times more than the actual scenario. The results provided a systematic decision-support methodology from the perspective of spatial virtual water coordination, yet, the methodology is widely applicable.
Collapse
Affiliation(s)
- Haomiao Cheng
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Xuecheng Jiang
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Menglei Wang
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China; Shanghai Construction No.2 (Group) Co., Ltd, Shanghai, 200080, China
| | - Tengyi Zhu
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Liang Wang
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xin Chen
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jinxian Qiu
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Ji Shu
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Jilin Cheng
- School of Environmental Science and Engineering, School of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
3
|
Virtual Water Trade in the Yellow River Economic Belt: A Multi-Regional Input-Output Model. WATER 2021. [DOI: 10.3390/w13060748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.
Collapse
|
4
|
A Three-Stage Hybrid Model for Space-Time Analysis of Water Resources Carrying Capacity: A Case Study of Jilin Province, China. WATER 2020. [DOI: 10.3390/w12020426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water shortage, water pollution, shrinking water area and water mobility are the main contents of the water resources crisis, which are widespread in the social and economic development of Jilin Province. In this paper, a three-stage hybrid model integrating evaluation, prediction and regulation is constructed by combining the load-balance method and the system dynamics method. Using this model, the current states of water resources carrying capacity (WRCC) in 2017 and the trend of water demand/available from 2018 to 2030 were obtained. Using the orthogonal test method, the optimal combination program of agricultural and industrial water efficiency regulation and water resources allocation was selected. The results show that the pressure of the human–water resources system in Changchun, Liaoyuan and Baicheng is greater than the support, and the other six cities are not overloaded. The water demand in Jilin Province and its nine cities will increase from 2018 to 2030, if the current socio-economic development pattern is maintained. Therefore, we change the water quantity carrying capacity index by controlling agriculture, industrial water efficiency and trans-regional water transfer. Compared with 2015, among the optimal program obtained, the change range of the water use per 10,000 RMB of agricultural output is (−5%, 25%), and the water use per 10,000 RMB of industrial added value is (−45%, −35%), and the maximum water transfer is 1.5 billion m3 per year in 2030. This study analyzes the development pattern of WRCC in the process of water conservancy modernization in Jilin Province and provides reference for other provinces to make the similar plan.
Collapse
|
5
|
Evaluation Methods of Water Environment Safety and Their Application to the Three Northeast Provinces of China. SUSTAINABILITY 2019. [DOI: 10.3390/su11185135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Focusing on the topic of water environment safety of China, this paper has selected the three northeast provinces of China as the research object due to their representativeness in economic development and resource security. By using the Entropy Weight Method, the Grey Correlation Analysis Method, and the Principal Component Analysis Method, this paper has first constructed a water environment safety evaluation system with 17 indicators from the economic, environmental, and ecological aspects. Furthermore, this paper has screened the initially selected indicators by the Principal Component Analysis Method and finally determined 11 indicators as the evaluation indicators. After indicator screening, this paper has adopted the improved Fuzzy Comprehensive Evaluation Method to evaluate the water environment safety of the three northeast provinces of China and obtained the change in water environment safety of different provinces from 2009 to 2017. The results show that the overall water environment safety of the region had improved first but worsened afterward, and that in terms of water safety level, Jilin Province ranked first, followed by Heilongjiang Province and Liaoning Province. The three factors that have the greatest impact on the water environment safety of the three provinces are: Liaoning—Chemical Oxygen Demand (score: 17.10), Per Capita Disposable Income (score: 13.50), and Secondary Industry Output (score: 11.50); Heilongjiang—Chemical Oxygen Demand (score: 18.64), Per Capita Water Resources (score: 12.75), and Concentration of Inhalable Particles (score: 10.89); Jilin—Per Capita Water Resources (score: 15.75), Chemical Oxygen Demand (score: 14.87), and Service Industry Output (score: 11.55). Based on analysis of the evaluation results, this paper has proposed corresponding policy recommendations to improve the water environment safety and promote sustainable development in the northeast provinces of China.
Collapse
|
6
|
Abstract
As water security becomes an increasingly important issue, the analysis of the conflict between water supply and demand has gained significance in China. This paper details a bibliometric review of papers published between 2003 and 2018 on the water footprint in China, one of the global hotspots of water resource research. The tendencies and key points of water footprint research were systematically analyzed based on 1564 articles, comprising 1170 original publications in Chinese from the China National Knowledge Infrastructure database and 394 publications in English from the Web of Science database. The results show that the literature associated with water footprint research has expanded significantly. The number of papers published increased from 104 in 2003–2006 to 735 in 2015–2018. Water footprint research has been applied to agricultural, industrial, and regional water resource management to quantify the impact of human activities on water resources and the environment. Water footprint metrics were extracted for regional comparisons. There are obvious regional characteristics of the water footprint in China, but the uncertainty of results makes further investigation necessary. Further water footprint modeling and field experimental research is needed to explore the water–ecological environment under complex systems.
Collapse
|
7
|
Masud MB, Wada Y, Goss G, Faramarzi M. Global implications of regional grain production through virtual water trade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:807-820. [PMID: 31096411 DOI: 10.1016/j.scitotenv.2018.12.392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Crop yields (Y) and virtual water content (VWC) of agricultural production are affected by climate variability and change, and are highly dependent on geographical location, crop type, specific planting and harvesting practice, soil property and moisture, hydro-geologic and climate conditions. This paper assesses and analyzes historical (1985-2009) and future (2040-2064) Y and VWC of three cereal crops (i.e., wheat, barley, and canola) with high spatial resolution in the highly intensive agricultural region of Alberta, Canada, using the Soil and Water Assessment Tool (SWAT). A calibrated and validated SWAT hydrological model is used to supplement agricultural (rainfed and irrigation) models to simulate Y and crop evapotranspiration (ET) at the sub-basin scales. The downscaled climate projections from nine General Climate Models (GCMs) for RCP 2.6 and RCP 8.5 emission scenarios are fed into the calibrated SWAT model. Results from an ensemble average of GCMs show that Y and VWC are projected to change drastically under both RCPs. The trade (export-import) of wheat grain from Alberta to more than a hundred countries around the globe led to the annual saving of ~5 billion m3 of virtual water (VW) during 1996-2005. Based on the weighted average of VWC for both rainfed and irrigated conditions, future population and consumption, our projections reveal an annual average export potential of ~138 billion m3 of VW through the flow of these cereal crops in the form of both grain and other processed foods. This amount is expected to outweigh the total historical provincial water yield of 66 billion m3 and counts for 47% of total historical precipitation and 61% of total historical actual ET. The research outcome highlights the importance of local high-resolution inputs in regional modeling and understanding the local to global water-food trade policy for sustainable agriculture.
Collapse
Affiliation(s)
- M Badrul Masud
- Watershed Science & Modelling Laboratory, Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Alberta, Canada
| | - Yoshihide Wada
- International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 - A-2361, Laxenburg, Austria
| | - Greg Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Alberta, Canada
| | - Monireh Faramarzi
- Watershed Science & Modelling Laboratory, Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Alberta, Canada.
| |
Collapse
|
8
|
Zhai M, Huang G, Liu L, Xu X, Li J. Transfer of virtual water embodied in food: A new perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:872-883. [PMID: 31096417 DOI: 10.1016/j.scitotenv.2018.12.433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Food and water are inextricably linked. With the increase of water consumption in irrigation and food growth, water shortage has become an urgent issue. Irrational cross-regional transfer of water embodied in food exacerbates water scarcity and restrict China's sustainable development. Given that, a Virtual Water-Food Nexus Model is developed to quantify the inter-provincial transfer of water embodied in food and to identify the complicated interactions between different provinces. In detail, Environmental Input-Output Analysis is applied to quantitatively estimate the inter-provincial water transfer embodied in food trades. Based on the network constructed by interrelated nature of nexus, the mutual interactions, control situation, and the dominant and weak pathways are examined through the combination of Ecological Network Analysis and Principal Component Analysis. Two new indictors water consumption intensity and water supply capacity are first performed to measure the role of each province from the supply and consume side respectively. It is revealed that interregional food transactions failed to realize water resources dispatching management. Many water-deficient regions suffered from massive virtual water losses through food exports, but water-rich areas still import large quantities of food containing virtual water. Results show that exploitation and competition dominate the ecological relationships between provinces. Agricultural GDP ratio is the indicator which most affect water consumption intensity and water supply capacity. Network-based research contributes more insights into the recognition of water management responsibilities across provinces and municipalities. These findings will provide a scientific support to adjust unreasonable allocation of water resources in China in an attempt to addressing the contradiction between food demand and water shortages.
Collapse
Affiliation(s)
- Mengyu Zhai
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| | - Guohe Huang
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing 100875, China.
| | - Lirong Liu
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Xinli Xu
- Center for Energy, Environment and Ecology Research, UR-BNU, Beijing Normal University, Beijing 100875, China
| | - Jizhe Li
- Sino-Canada Resources and Environmental Research Academy, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
9
|
Comprehensive Assessment of Water Footprints and Water Scarcity Pressure for Main Crops in Shandong Province, China. SUSTAINABILITY 2019. [DOI: 10.3390/su11071856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid economic development has posed pressure on water resources, and the potential for a water crisis has become an important obstacle to the sustainable development of society. Water footprint theory and its applications in agriculture provide an important strategic basis for the rational utilization and sustainable development of water resources. Based on the monthly meteorological observations and agricultural data of Shandong Province, CROPWAT 8.0 and Geographic Information System (GIS) technology, the green, blue and grey water footprints of wheat, maize, cotton and groundnut from 1989 to 2016 were calculated and the spatial variations of water footprints for crops in different rainfall years were analyzed. Additionally, assessment of water stress for agricultural productions was conducted in this study. The results showed that the average water footprints of wheat, maize, cotton and groundnut were 2.02 m3/kg, 1.24 m3/kg, 7.29 m3/kg and 1.75 m3/kg, respectively in Shandong Province. A large amount of the average total water footprint was calculated for wheat (420.59 × 108 m3/yr), maize (222.16 × 108 m3/yr), cotton (72.70 × 108 m3/yr) and groundnut (50.07 × 108 m3/yr). The average total water footprint of the four crops was 765.52 × 108 m3/yr (29.98% blue) and exhibited a gradual decreasing trend over time. Specifically, the total water footprint of wheat was the highest among four main crops in Shandong Province and exhibited a decreasing trend during 1989–2016. The maize was ranked in the second place, and was the only crop still increasing rapidly. The spatial and temporal changes of water footprints for crops were obvious in different rainfall years. Additionally, agricultural productions in most regions were facing the threat of water scarcity. Therefore, the scientific planning of crop planting structures and rational control of sown areas of crops with large water footprints should be implemented in severely water-scarce regions. This study can give some suggestions on the adjustment of planting structure for the sustainable development of agriculture and the realization of efficient utilization of water resources.
Collapse
|
10
|
Assessing Temporal and Spatial Inequality of Water Footprint Based on Socioeconomic and Environmental Factors in Jilin Province, China. WATER 2019. [DOI: 10.3390/w11030521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Freshwater resources are limited and uneven in their spatiotemporal distribution, and substantial increases in water demand from rapidly developing economies and concentrated populations place pressure on the available water. Research on the inequality of water footprint (WF) could provide countermeasures for the rational use and allocation of water resources. We evaluated the temporal and spatial inequality of WF using the Gini coefficient and imbalance index based on socioeconomic and environmental factors in Jilin Province. The results showed that from 2008 to 2015, the overall inequality of WF in Jilin Province was “relative equality”, and the inequalities between the WF and population, cultivated area were “high equality”; between the WF and gross domestic product (GDP) was “relative equality”; and between the WF and natural water endowment was “high inequality”. With respect to space, the differences of WF inequality were significant. In the west, the WF inequality changed greatly, from “relative equality” to “relative inequality” driven by population, GDP, cultivated area, and natural water endowment. In the middle, the WF inequality showed large internal differences with “high inequality” or “high equality” caused by GDP and natural water endowment. In the east, the WF inequality was relatively stable, at “high equality” or “neutral” affected by natural water endowment and population. The varied impact factors reflected the differences in natural resources and socioeconomic conditions in the various regions, and the results might provide a theoretical basis for guiding the rational allocation of water resources.
Collapse
|
11
|
Li H, Qin L, He H. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3001-3013. [PMID: 29193107 DOI: 10.1002/jsfa.8799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/29/2017] [Accepted: 11/23/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Rice is a special crop, and its production differs from that of other crops because it requires a thin layer of water coverage for a long period. The calculation of the water footprint of rice production should differ from that of other crops owing to the rice growing process. This study improved the calculation of blue and grey water footprints of rice production and analyzed the variations in the water footprints for rice production under different rainfall years in Jilin Province. RESULTS In the drought year, the green water footprint was the lowest and the blue water footprint was the highest among the three years, while in the humid year, the green water footprint was the highest and the blue water footprint was not the lowest. The areas with higher water footprints were found in the east and west regions of Jilin Province, while the areas with lower water footprints were found in the middle east and middle regions of Jilin Province. CONCLUSION Blue water was the primary water resource for rice production, although more precipitation provided the highest green water in the humid year; also, the spatial distributions of water footprints were not the same under different rainfall years. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongying Li
- School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Lijie Qin
- School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Hongshi He
- School of Geographical Sciences, Northeast Normal University, Changchun, China
- School of Natural Resources, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Masud MB, McAllister T, Cordeiro MRC, Faramarzi M. Modeling future water footprint of barley production in Alberta, Canada: Implications for water use and yields to 2064. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:208-222. [PMID: 29112843 DOI: 10.1016/j.scitotenv.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
Despite the perception of being one of the most agriculturally productive regions globally, crop production in Alberta, a western province of Canada, is strongly dependent on highly variable climate and water resources. We developed agro-hydrological models to assess the water footprint (WF) of barley by simulating future crop yield (Y) and consumptive water use (CWU) within the agricultural region of Alberta. The Soil and Water Assessment Tool (SWAT) was used to develop rainfed and irrigated barley Y simulation models adapted to sixty-seven and eleven counties, respectively through extensive calibration, validation, sensitivity, and uncertainty analysis. Eighteen downscaled climate projections from nine General Circulation Models (GCMs) under the Representative Concentration Pathways 2.6 and 8.5 for the 2040-2064 period were incorporated into the calibrated SWAT model. Based on the ensemble of GCMs, rainfed barley yield is projected to increase while irrigated barley is projected to remain unchanged in Alberta. Results revealed a considerable decrease (maximum 60%) in WF to 2064 relative to the simulated baseline 1985-2009 WF. Less water will also be required to produce barley in northern Alberta (rainfed barley) than southern Alberta (irrigated barley) due to reduced water consumption. The modeled WF data adjusted for water stress conditions and found a remarkable change (increase/decrease) in the irrigated counties. Overall, the research framework and the locally adapted regional model results will facilitate the development of future water policies in support of better climate adaptation strategies by providing improved WF projections.
Collapse
Affiliation(s)
- Mohammad Badrul Masud
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, 1-26, Earth Sciences Building, Edmonton, T6G 2E3, Alberta, Canada.
| | - Tim McAllister
- Science and Technology Branch, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1 Avenue South, P.O. Box 3000, Lethbridge, T1J 4B1, Alberta, Canada
| | - Marcos R C Cordeiro
- Science and Technology Branch, Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403-1 Avenue South, P.O. Box 3000, Lethbridge, T1J 4B1, Alberta, Canada
| | - Monireh Faramarzi
- Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, 1-26, Earth Sciences Building, Edmonton, T6G 2E3, Alberta, Canada
| |
Collapse
|