1
|
Rodrigues JGP, Arias S, Pacheco JGA, Dias ML. Structure and thermal behavior of biobased vitrimer of lactic acid and epoxidized canola oil. RSC Adv 2023; 13:33613-33624. [PMID: 38019990 PMCID: PMC10652253 DOI: 10.1039/d3ra06272d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Biobased vitrimers were obtained from epoxidized canola oil (ECO) and lactic acid (LA) using zinc acetate (ZnAc) and ZnAl-layered double hydroxide (ZnAl) in the proportions of 1 and 2 wt% as transesterification catalysts. Reactions containing ECO and LA showed an average enthalpy of cure of approximately 85 mJ mg-1 and materials cured in the presence of the catalysts showed lower enthalpies of cure and decrease in the material gel content. ECO-LA reaction generated materials with rubber-like properties with Tg ranging from -15 °C to -23 °C, where the material without a catalyst showed the higher Tg value. The presence of catalysts gave the material vitrimer properties, with the softening point associated with transesterification reactions and topology freezing temperature transition at temperatures (Tv) between 195-235 °C.
Collapse
Affiliation(s)
- João Gabriel P Rodrigues
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro Brazil
| | - Santiago Arias
- Chemistry Institute, Federal University of Pernambuco Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro Brazil
| |
Collapse
|
2
|
Ferraz-Caetano J, Teixeira F, Cordeiro MNDS. Systematic Development of Vanadium Catalysts for Sustainable Epoxidation of Small Alkenes and Allylic Alcohols. Int J Mol Sci 2023; 24:12299. [PMID: 37569673 PMCID: PMC10418365 DOI: 10.3390/ijms241512299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The catalytic epoxidation of small alkenes and allylic alcohols includes a wide range of valuable chemical applications, with many works describing vanadium complexes as suitable catalysts towards sustainable process chemistry. But, given the complexity of these mechanisms, it is not always easy to sort out efficient examples for streamlining sustainable processes and tuning product optimization. In this review, we provide an update on major works of tunable vanadium-catalyzed epoxidations, with a focus on sustainable optimization routes. After presenting the current mechanistic view on vanadium catalysts for small alkenes and allylic alcohols' epoxidation, we argue the key challenges in green process development by highlighting the value of updated kinetic and mechanistic studies, along with essential computational studies.
Collapse
Affiliation(s)
- José Ferraz-Caetano
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| | - Filipe Teixeira
- CQUM, Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
| | - Maria Natália Dias Soeiro Cordeiro
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal;
| |
Collapse
|
3
|
Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts 2022. [DOI: 10.3390/catal12030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent knowledge in chemistry has enabled the material utilization of greenhouse gas (CO2) for the production of organic carbonates using mild reaction conditions. Organic carbonates, especially cyclic carbonates, are applicable as green solvents, electrolytes in batteries, feedstock for fine chemicals and monomers for polycarbonate production. This review summarizes new developments in the ring opening of epoxides with subsequent CO2-based formation of cyclic carbonates. The review highlights recent and major developments for sustainable CO2 conversion from 2000 to the end of 2021 abstracted by Web of Science. The syntheses of epoxides, especially from bio-based raw materials, will be summarized, such as the types of raw material (vegetable oils or their esters) and the reaction conditions. The aim of this review is also to summarize and to compare the types of homogeneous non-metallic catalysts. The three reaction mechanisms for cyclic carbonate formation are presented, namely activation of the epoxide ring, CO2 activation and dual activation. Usually most effective catalysts described in the literature consist of powerful sources of nucleophile such as onium salt, of hydrogen bond donors and of tertiary amines used to combine epoxide activation for facile epoxide ring opening and CO2 activation for the subsequent smooth addition reaction and ring closure. The most active catalytic systems are capable of activating even internal epoxides such as epoxidized unsaturated fatty acid derivatives for the cycloaddition of CO2 under relatively mild conditions. In case of terminal epoxides such as epichlorohydrin, the effective utilization of diluted sources of CO2 such as flue gas is possible using the most active organocatalysts even at ambient pressure.
Collapse
|
4
|
Milocco F, Chiarioni G, Pescarmona PP. Heterogeneous catalysts for the conversion of CO2 into cyclic and polymeric carbonates. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Zhang YL, Wang WZ, Wang L, Li LL, Zhang KY, Zhao SD. Poly(propylene carbonate) networks with excellent properties: Terpolymerization of carbon dioxide, propylene oxide, and 4,4ʹ-(hexafluoroisopropylidene) diphthalic anhydride. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(propylene carbonate) (PPC) is an emerging low-cost biodegradable plastic with potential application in many fields. However, compared with polyolefin plastics, the major limitations of PPC are its poor mechanical and thermal properties. Herein, a thermoplastic PPC containing cross-linked networks, one-pot synthesized by the copolymerization of carbon dioxide, propylene oxide, and 4,4ʹ-(hexafluoroisopropylidene) diphthalic anhydride, had excellent thermal and mechanical properties and dimensional stability. The weight-average molecular weight and the polymer yield of the PPC5 were up to 212 kg mol−1 and 104 gpolym gcat
−1, respectively. The 5% thermal weight loss temperature reached 320°C, and it could withstand a tensile force of 52 MPa. This cross-linked PPC has excellent properties and is expected to be used under extreme conditions, as the material can withstand strong tension and will not deform.
Collapse
Affiliation(s)
- Yi-Le Zhang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Wen-Zhen Wang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Li Wang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Lei-Lei Li
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Kai-Yue Zhang
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| | - Sai-Di Zhao
- School of Chemistry and Chemical Engineer , Xi’an Shiyou University , Xi’an 710065 , China
| |
Collapse
|
6
|
Alarcon RT, Lamb KJ, Bannach G, North M. Opportunities for the Use of Brazilian Biomass to Produce Renewable Chemicals and Materials. CHEMSUSCHEM 2021; 14:169-188. [PMID: 32975380 DOI: 10.1002/cssc.202001726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This Review highlights the principal crops of Brazil and how their harvest waste can be used in the chemicals and materials industries. The Review covers various plants; with grains, fruits, trees and nuts all being discussed. Native and adopted plants are included and studies on using these plants as a source of chemicals and materials for industrial applications, polymer synthesis, medicinal use and in chemical research are discussed. The main aim of the Review is to highlight the principal Brazilian agricultural resources; such as sugarcane, oranges and soybean, as well as secondary resources, such as andiroba brazil nut, buriti and others, which should be explored further for scientific and technological applications. Furthermore, vegetable oils, carbohydrates (starch, cellulose, hemicellulose, lignocellulose and pectin), flavones and essential oils are described as well as their potential applications.
Collapse
Affiliation(s)
- Rafael T Alarcon
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Katie J Lamb
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| | - Gilbert Bannach
- School of Sciences, Department of Chemistry, UNESP- São Paulo State University, Bauru, 17033-260, SP, Brazil
| | - Michael North
- Green Chemistry Centre of Excellence, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
7
|
Liu N, Gu C, Wang Q, Zhu L, Yan H, Lin Q. Fabrication and characterization of the ternary composite catalyst system of ZnGA/RET/DMC for the terpolymerization of CO 2, propylene oxide and trimellitic anhydride. RSC Adv 2021; 11:8782-8792. [PMID: 35423387 PMCID: PMC8695205 DOI: 10.1039/d0ra09630j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/28/2021] [Indexed: 11/25/2022] Open
Abstract
To achieve the poly(propylene carbonate trimellitic anhydride) (PPCTMA) with excellent performance, high molecular weight, enhanced yield and good thermal stability, the ternary composite catalyst system of zinc glutarate/rare earth ternary complex/double metal cyanide (ZnGA/RET/DMC) was proposed to perform the terpolymerization of CO2, propylene oxide and trimellitic anhydride. Since the crystallinity and surface activity point of Zn–Co DMC could significantly influence the catalytic ability, mechanical ball milling was applied to increase the surface area of the Zn–Co DMC catalyst with better surface activity point. Moreover, the ZnGA/RET/DMC composite catalytic system and polycarbonate products were comparatively evaluated by XRD, SEM, FT-IR, TGA, NMR, XPS and TEM. Experimental results showed that the ZnGA/RET/DMC composite catalyst system displayed outstanding synergistic effect on the terpolymerization of CO2, PO and TMA with better selectivity, activity, and higher molecular weight (Mw) tercopolymer than those of the individual catalyst. According to optimum reaction conditions, the Mw of PPCTMA could be up to 8.29 × 104 g mol−1, and the yield could be up to 66 gpolym/gcat. The alternating tercopolymer, PPCTMA, showed wonderful thermal stability and high decomposition temperature (TGA10% = 313 °C). A possible synergistic catalytic mechanism of the ZnGA/RET/DMC ternary composite catalyst system was also conjectured. For poly(propylene carbonate trimellitic anhydride) with good yield, thermal stability and high molecular weight, a catalyst of zinc glutarate/rare earth ternary complex/double metal cyanide was used for terpolymerization of CO2, propylene oxide and trimellitic anhydride.![]()
Collapse
Affiliation(s)
- Ningzhang Liu
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou
- P. R. China
- Key Laboratory of Pollution Control of Hainan Province
| | - Chuanhai Gu
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou
- P. R. China
- Key Laboratory of Pollution Control of Hainan Province
| | - Qinghe Wang
- Venturepharm (Hainan) Co., Ltd
- Haikou
- P. R. China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou
- P. R. China
- Key Laboratory of Pollution Control of Hainan Province
| | - Huiqiong Yan
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou
- P. R. China
- Key Laboratory of Pollution Control of Hainan Province
| | - Qiang Lin
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou
- P. R. China
- Key Laboratory of Pollution Control of Hainan Province
| |
Collapse
|
8
|
Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. SUSTAINABILITY 2020. [DOI: 10.3390/su12208360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in 1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste, 79% is either in landfills or the environment. The purpose of the review is to establish the current global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable plastics. This integrative and consolidated review thus builds on previous studies that have focused either on one or a few of the aspects considered in this paper. Three broad items to strongly consider are: Biodegradable plastics and other alternatives are not always environmentally superior to fossil-based plastics; less investment has been made in plastic waste management than in plastics production; and there is no single solution to plastic waste management. Some strategies to push for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one has its own challenges, and country-specific scientific evidence is necessary to justify any suggested solutions. In conclusion, governments from all countries and stakeholders should work to strengthen waste management infrastructure in low- and middle-income countries while extended producer responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in plastic waste management, as they have been found to be effective in Australia, France, Germany, and Ecuador.
Collapse
|
9
|
de la Cruz-Martínez F, Martínez de Sarasa Buchaca M, Martínez J, Tejeda J, Fernández-Baeza J, Alonso-Moreno C, Rodríguez AM, Castro-Osma JA, Lara-Sánchez A. Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorg Chem 2020; 59:8412-8423. [PMID: 32452688 DOI: 10.1021/acs.inorgchem.0c00835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Novel bimetallic zinc acetate complexes supported by heteroscorpionate ligands have been developed for the ring-opening copolymerization of cyclohexene oxide and CO2 and the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2. Heteroscorpionate ligands precursors L1-L3 were reacted with two equivalents of zinc acetate to afford the dinuclear zinc complexes [{Zn(κ3-bpzappe)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (1), [{Zn(κ3-bpzbdmape)}(μ-O2CCH3)3-{Zn(HO2CCH3)}] (2), and [{Zn(κ3-bpzbdeape)}(μ-O2CCH3)3{Zn(HO2CCH3)}] (3) in excellent yields. The molecular structure of these compounds was determined spectroscopically and confirmed by X-ray diffraction analysis. Zinc acetate complexes 1-3 were screened as catalysts for the copolymerization of cyclohexene oxide and CO2 to produce poly(cyclohexene)carbonate, and complex 3 was found to be the most active catalyst for this process in the absence of a cocatalyst. Furthermore, the terpolymerization of cyclohexene oxide, phthalic anhydride, and CO2 was studied using the combination of complex 3 and 4-dimethylaminopyridine as catalyst system yielding the corresponding polyester-polycarbonate materials.
Collapse
Affiliation(s)
- Felipe de la Cruz-Martínez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Marc Martínez de Sarasa Buchaca
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Javier Martínez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain.,Laboratorio de Quı́mica Inorgánica, Facultad de Quı́mica, Universidad Católica de Chile Casilla 306, Santiago-22 6094411, Chile
| | - Juan Tejeda
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Juan Fernández-Baeza
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - Carlos Alonso-Moreno
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Ana M Rodríguez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| | - José A Castro-Osma
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071-Albacete, Spain
| | - Agustín Lara-Sánchez
- Departamento de Quı́mica Inorgánica, Orgánica y Bioquı́mica-Centro de Innovación en Quı́mica Avanzada (ORFEO-CINQA), Facultad de Ciencias y Tecnologı́as Quı́micas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain
| |
Collapse
|
10
|
Green Pathway in Utilizing CO2 via Cycloaddition Reaction with Epoxide—A Mini Review. Processes (Basel) 2020. [DOI: 10.3390/pr8050548] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dioxide (CO2) has been anticipated as an ideal carbon building block for organic synthesis due to the noble properties of CO2, which are abundant renewable carbon feedstock, non-toxic nature, and contributing to a more sustainable use of resources. Several green and proficient routes have been established for chemical CO2 fixation. Among the prominent routes, this review epitomizes the reactions involving cycloaddition of epoxides with CO2 in producing cyclic carbonate. Cyclic carbonate has been widely used as a polar aprotic solvent, as an electrolyte in Li-ion batteries, and as precursors for various forms of chemical synthesis such as polycarbonates and polyurethanes. This review provides an overview in terms of the reaction mechanistic pathway and recent advances in the development of several classes of catalysts, including homogeneous organocatalysts (e.g., organic salt, ionic liquid, deep eutectic solvents), organometallic (e.g., mono-, bi-, and tri-metal salen complexes and non-salen complexes) and heterogeneous supported catalysts, and metal organic framework (MOF). Selection of effective catalysts for various epoxide substrates is very important in determining the cycloaddition operating condition. Under their catalytic systems, all classes of these catalysts, with regard to recent developments, can exhibit CO2 cycloaddition of terminal epoxide substrates at ambient temperatures and low CO2 pressure. Although highly desired conversion can be achieved for internal epoxide substrates, higher temperature and pressure are normally required. This includes fatty acid-derived terminal epoxides for oleochemical carbonate production. The production of fully renewable resources by employment of bio-based epoxy with biorefinery concept and potential enhancement of cycloaddition reactions are pointed out as well.
Collapse
|
11
|
Influence of supercritical carbon dioxide treatment on the physicochemical properties of cellulose extracted from cassava pulp waste. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Recent advances of “soft” bio-polycarbonate plastics from carbon dioxide and renewable bio-feedstocks via straightforward and innovative routes. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
In vitro release and antioxidative potential of Pequi oil-based biopolymers (Caryocar brasiliense Cambess). JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1836-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Chen G, Zhang R, Ma W, Liu B, Li X, Yan B, Cheng Z, Wang T. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1611-1622. [PMID: 29727985 DOI: 10.1016/j.scitotenv.2018.03.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C6-C8 aromatic hydrocarbons, C2-C4 olefins, C1-C5 alkanes, CO and CO2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Science, Tibet University, Lhasa 850012, China; Tianjin Engineering Research Center of Bio Gas/Oil Technology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Qingdao Institute for Ocean Engineering, Tianjin University, Qingdao 266235, China
| | - Ruixue Zhang
- Tianjin Engineering Research Center of Bio Gas/Oil Technology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Ma
- Tianjin Engineering Research Center of Bio Gas/Oil Technology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Bin Liu
- Qingdao Institute for Ocean Engineering, Tianjin University, Qingdao 266235, China
| | - Xiangping Li
- Qingdao Institute for Ocean Engineering, Tianjin University, Qingdao 266235, China
| | - Beibei Yan
- Tianjin Engineering Research Center of Bio Gas/Oil Technology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- Tianjin Engineering Research Center of Bio Gas/Oil Technology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|