1
|
Su S, Ju J, Ding Y, Yuan J, Cui P. A Comprehensive Dynamic Life Cycle Assessment Model: Considering Temporally and Spatially Dependent Variations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14000. [PMID: 36360878 PMCID: PMC9657249 DOI: 10.3390/ijerph192114000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Life cycle assessment (LCA) is a widely-used international environmental evaluation and management method. However, the conventional LCA is in a static context without temporal and spatial variations considered, which fails to bring accurate evaluation values and hinders practical applications. Dynamic LCA research has developed vigorously in the past decade and become a hot topic. However, systematical analysis of spatiotemporal dynamic variations and comprehensive operable dynamic models are still lacking. This study follows LCA paradigm and incorporates time- and space-dependent variations to establish a spatiotemporal dynamic LCA model. The dynamic changes are classified into four types: dynamic foreground elementary flows, dynamic background system, dynamic characterization factors, and dynamic weighting factors. Their potential dynamics and possible quantification methods are analyzed. The dynamic LCA model is applied to a residential building, and significant differences can be observed between dynamic and static assessment results from both temporal and spatial perspectives. This study makes a theoretical contribution by establishing a comprehensive dynamic model with both temporal and spatial variations involved. It is expected to provide practical values for LCA practitioners and help with decision-making and environmental management.
Collapse
Affiliation(s)
- Shu Su
- Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Jingyi Ju
- Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yujie Ding
- Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Jingfeng Yuan
- Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Peng Cui
- Department of Engineering Management, School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Continuous Systems Bioremediation of Wastewaters Loaded with Heavy Metals Using Microorganisms. Processes (Basel) 2022. [DOI: 10.3390/pr10091758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution is a serious concern of the modern era due to its widespread negative effects on human health and to the environment. Conventional technologies applied for the uptake of this category of persistent pollutants are complex, often expensive, and inefficient at low metal concentrations. In the last few years, non-conventional alternatives have been studied in search of better solutions in terms of costs and sustainability. Microbial adsorbents are one of the biomass-based sorbents that have extensively demonstrated excellent heavy metals removal capacity even at low concentrations. However, most of the carried-out research regarding their application in wastewater treatment has been performed in discontinuous systems. The use of microorganisms for the uptake of metal ions in continuous systems could be an important step for the upscale of the remediation processes since it facilitates a faster remediation of higher quantities of wastewaters loaded with heavy metals, in comparison with batch systems removal. Thus, the current research aims to analyze the available studies focusing on the removal of metal ions from wastewaters using microorganisms, in continuous systems, with a focus on obtained performances, optimized experimental conditions, and the sustainability of the bioremoval process. The present work found that microbial-based remediation processes have demonstrated very good performances in continuous systems. Further sustainability analyses are required in order to apply the bioremediation technology in an optimized environmentally friendly way in large-scale facilities.
Collapse
|
3
|
Dynamic Versus Static Life Cycle Assessment of Energy Renovation for Residential Buildings. SUSTAINABILITY 2022. [DOI: 10.3390/su14116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, a life cycle assessment is mostly used in a static way to assess the environmental impacts of the energy renovation of buildings. However, various aspects of energy renovation vary in time. This paper reports the development of a framework for a dynamic life cycle assessment and its application to assess the energy renovation of buildings. To investigate whether a dynamic approach leads to different decisions than a static approach, several renovation options of a residential house were compared. To identify the main drivers of the impact and to support decision-making for renovation, a shift of the reference study period—as defined in EN 15643-1 and EN 15978—is proposed (from construction to renovation). Interventions related to the energy renovation are modelled as current events, while interventions and processes that happen afterwards are modelled as future events, including dynamic parameters, considering changes in the operational energy use, changes in the energy mix, and future (cleaner) production processes. For a specific case study building, the dynamic approach resulted in a lower environmental impact than the static approach. However, the dynamic approach did not result in other renovation recommendations, except when a dynamic parameter for electricity production was included.
Collapse
|
4
|
Rashid SS, Liu YQ. Comparison of life cycle toxicity assessment methods for municipal wastewater treatment with the inclusion of direct emissions of metals, PPCPs and EDCs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143849. [PMID: 33248794 DOI: 10.1016/j.scitotenv.2020.143849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 05/20/2023]
Abstract
The occurrence of various micropollutants such as pharmaceuticals personal care products, endocrine disrupting chemicals (PPCPs/EDCs) and metals in municipal wastewater, and their poor removal efficiencies can lead to toxicity impact on humans, and freshwater and terrestrial ecosystems. Life cycle assessment is an efficient and effective tool to evaluate the environmental impact of wastewater treatment plants, but guidelines for toxicity assessment are lacking due to the complexity. This study aims to evaluate both life cycle inventory by including metals and PEC, and life cycle toxicity assessment (LCIA) methods namely CML-IA, Recipe, USEtox, EDIP 2003 and IMPACT 2002+ in midpoint category with a large centralised wastewater treatment plant in Malaysia as a case study. The removal efficiencies of metals and PPCPs/EDCs in the wastewater ranged from 9% to 99% and no clear patterns were found about occurrence and removal efficiencies of metals and PPCPs/EDCs in developing and developed countries. The inclusion of metals and PPCPs/EDCs in effluent resulted in 76% increase in freshwater ecotoxicity potential (FEP) and 88% increase in terrestrial ecotoxicity potential (TEP) while only 4% increase in human toxicity potential (HTP). The results indicate the importance of including direct emissions such as metals and PPCPs/EDCs even in low-strength municipal wastewater for environmental toxicity assessment. The comparison of five LCIA methods suggests that HTP assessment is more challenging due to inconsistency between five LCIA methods while CML-IA, Recipe, and IMPACT 2002+ achieved consistent human toxicity and ecotoxicity assessment results in the WWTP. The results highlight the importance of sampling and inclusion of metals and PPCPs/EDCs data especially prioritised micropollutants for life cycle toxicity assessment and recommends LCIA methods for ecotoxicity assessment of WWTPs in the current scientific development situation on toxicity studies, which can provide guidance to researchers for life cycle toxicity assessment of wastewater treatment.
Collapse
Affiliation(s)
- Siti Safirah Rashid
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom.
| |
Collapse
|
5
|
Beloin-Saint-Pierre D, Albers A, Hélias A, Tiruta-Barna L, Fantke P, Levasseur A, Benetto E, Benoist A, Collet P. Addressing temporal considerations in life cycle assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140700. [PMID: 32758829 DOI: 10.1016/j.scitotenv.2020.140700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 07/01/2020] [Indexed: 05/27/2023]
Abstract
In life cycle assessment (LCA), temporal considerations are usually lost during the life cycle inventory calculation, resulting in an aggregated "snapshot" of potential impacts. Disregarding such temporal considerations has previously been underlined as an important source of uncertainty, but a growing number of approaches have been developed to tackle this issue. Nevertheless, their adoption by LCA practitioners is still uncommon, which raises concerns about the representativeness of current LCA results. Furthermore, a lack of consistency can be observed in the used terms for discussions on temporal considerations. The purpose of this review is thus to search for common ground and to identify the current implementation challenges while also proposing development pathways. This paper introduces a glossary of the most frequently used terms related to temporal considerations in LCA to build a common understanding of key concepts and to facilitate discussions. A review is also performed on current solutions for temporal considerations in different LCA phases (goal and scope definition, life cycle inventory analysis and life cycle impact assessment), analysing each temporal consideration for its relevant conceptual developments in LCA and its level of operationalisation. We then present a potential stepwise approach and development pathways to address the current challenges of implementation for dynamic LCA (DLCA). Three key focal areas for integrating temporal considerations within the LCA framework are discussed: i) define the temporal scope over which temporal distributions of emissions are occurring, ii) use calendar-specific information to model systems and associated impacts, and iii) select the appropriate level of temporal resolution to describe the variations of flows and characterisation factors. Addressing more temporal considerations within a DLCA framework is expected to reduce uncertainties and increase the representativeness of results, but possible trade-offs between additional data collection efforts and the increased value of results from DLCAs should be kept in mind.
Collapse
Affiliation(s)
| | - Ariane Albers
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| | - Arnaud Hélias
- ITAP, Irstea, Montpellier SupAgro, Univ Montpellier, ELSA Research Group, Montpellier, France
| | | | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Annie Levasseur
- École de technologie supérieure, Construction Engineering Department, 1100 Notre-Dame West, Montréal, Québec, Canada
| | - Enrico Benetto
- Environmental Sustainability Assessment and Circularity Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch/Alzette, Luxembourg
| | | | - Pierre Collet
- IFP Energies Nouvelles, 1 et 4 Avenue de Bois-Préau, 92852 Rueil-Malmaison, France
| |
Collapse
|
6
|
Yang K, Lv B, Shen H, Jing G, Zhou Z. Coupling life cycle assessment with scenario analysis for sustainable management of Disperse blue 60. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25197-25208. [PMID: 32347496 DOI: 10.1007/s11356-020-08958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sustainable management of dyeing industry is of paramount importance in order to minimize resource consumption and reduce related environmental impacts. Herein, an environmental study is conducted wherein life cycle assessment (LCA) is applied to a two-scenario process for Disperse blue 60 production with short and long processing chains with different (a) material types, (b) consumptions, (c) processes, and (d) functional units with yields of 300 t/a. The most important influenced substances of the two scenarios were sodium cyanide and electricity next. Results proved that the largest damage of the dye production was attributed to resources and reached 46 and 62 kPt in the two scenarios. Compared with the conventional coal-fired power generation, damaged values of electricity from nature gas (NG) could reduce from 102 to 86 kPt in scenarios 1 and from 123 to 104 kPt in scenarios 2, respectively. When the electricity switched from NG to solar power, the values of the two scenarios could further decrease by 17 and 27 kPt, respectively. Therefore, the process of scenario 1 with the short process chain was more environmentally friendly for the production of Disperse blue 60 owing to the more efficient process and lower resource consumption. Graphic abstract.
Collapse
Affiliation(s)
- Kexuan Yang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Bihong Lv
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Huazhen Shen
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Guohua Jing
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Zuoming Zhou
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| |
Collapse
|
7
|
Pradinaud C, Northey S, Amor B, Bare J, Benini L, Berger M, Boulay AM, Junqua G, Lathuillière MJ, Margni M, Motoshita M, Niblick B, Payen S, Pfister S, Quinteiro P, Sonderegger T, Rosenbaum RK. Defining freshwater as a natural resource: A framework linking water use to the area of protection natural resources. THE INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 2019; 24:960-974. [PMID: 31501640 PMCID: PMC6733276 DOI: 10.1007/s11367-018-1543-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
PURPOSE While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. METHOD Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions and land use) and their potential to cause long-term freshwater depletion or degradation. RESULTS AND DISCUSSION Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g. hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e. affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. CONCLUSION This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future.
Collapse
Affiliation(s)
- Charlotte Pradinaud
- ITAP, Irstea, Montpellier SupAgro, Univ Montpellier, ELSA-PACT Industrial Chair, Montpellier, France
- LGEI, IMT Mines Ales, Univ Montpellier, Ales, France
| | - Stephen Northey
- Department of Civil Engineering, Monash University, Clayton, Australia
| | - Ben Amor
- LIRIDE, Sherbrooke University, Sherbrooke (QC) Canada
| | - Jane Bare
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | - Lorenzo Benini
- European Environment Agency, Kongens Nytorv 6, 1400 Copenhagen, Denmark
| | - Markus Berger
- Technische Universität Berlin, Chair of Sustainable Engineering, Berlin, Germany
| | - Anne-Marie Boulay
- LIRIDE, Sherbrooke University, Sherbrooke (QC) Canada
- CIRAIG, Polytechnique Montreal, Montreal (QC) Canada
| | | | - Michael J Lathuillière
- Institute for Resources, Environment and Sustainability, Vancouver, B.C., V6T 1Z4, Canada
- Stockholm Environment Institute, Stockholm, Sweden
| | | | - Masaharu Motoshita
- National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, 3058569 Tsukuba, Japan
| | - Briana Niblick
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268, USA
| | - Sandra Payen
- AgResearch Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Stephan Pfister
- ETH Zurich, Chair of Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Paula Quinteiro
- Centre for Environmental and Marine Studies, University of Aveiro, Portugal
| | - Thomas Sonderegger
- ETH Zurich, Chair of Ecological Systems Design, John-von-Neumann-Weg 9, 8093 Zurich, Switzerland
| | - Ralph K Rosenbaum
- ITAP, Irstea, Montpellier SupAgro, Univ Montpellier, ELSA-PACT Industrial Chair, Montpellier, France
| |
Collapse
|
8
|
Fantke P, Aylward L, Bare J, Chiu WA, Dodson R, Dwyer R, Ernstoff A, Howard B, Jantunen M, Jolliet O, Judson R, Kirchhübel N, Li D, Miller A, Paoli G, Price P, Rhomberg L, Shen B, Shin HM, Teeguarden J, Vallero D, Wambaugh J, Wetmore BA, Zaleski R, McKone TE. Advancements in Life Cycle Human Exposure and Toxicity Characterization. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:125001. [PMID: 30540492 PMCID: PMC6371687 DOI: 10.1289/ehp3871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND The Life Cycle Initiative, hosted at the United Nations Environment Programme, selected human toxicity impacts from exposure to chemical substances as an impact category that requires global guidance to overcome current assessment challenges. The initiative leadership established the Human Toxicity Task Force to develop guidance on assessing human exposure and toxicity impacts. Based on input gathered at three workshops addressing the main current scientific challenges and questions, the task force built a roadmap for advancing human toxicity characterization, primarily for use in life cycle impact assessment (LCIA). OBJECTIVES The present paper aims at reporting on the outcomes of the task force workshops along with interpretation of how these outcomes will impact the practice and reliability of toxicity characterization. The task force thereby focuses on two major issues that emerged from the workshops, namely considering near-field exposures and improving dose–response modeling. DISCUSSION The task force recommended approaches to improve the assessment of human exposure, including capturing missing exposure settings and human receptor pathways by coupling additional fate and exposure processes in consumer and occupational environments (near field) with existing processes in outdoor environments (far field). To quantify overall aggregate exposure, the task force suggested that environments be coupled using a consistent set of quantified chemical mass fractions transferred among environmental compartments. With respect to dose–response, the task force was concerned about the way LCIA currently characterizes human toxicity effects, and discussed several potential solutions. A specific concern is the use of a (linear) dose–response extrapolation to zero. Another concern addresses the challenge of identifying a metric for human toxicity impacts that is aligned with the spatiotemporal resolution of present LCIA methodology, yet is adequate to indicate health impact potential. CONCLUSIONS Further research efforts are required based on our proposed set of recommendations for improving the characterization of human exposure and toxicity impacts in LCIA and other comparative assessment frameworks. https://doi.org/10.1289/EHP3871.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lesa Aylward
- National Centre for Environmental Toxicology, University of Queensland, Brisbane, Australia
| | - Jane Bare
- U.S. EPA (Environmental Protection Agency), Cincinnati, Ohio, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Robin Dodson
- Silent Spring Institute, Newton, Massachusetts, USA
| | - Robert Dwyer
- International Copper Association, New York, New York, USA
| | | | | | - Matti Jantunen
- Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Olivier Jolliet
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Nienke Kirchhübel
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dingsheng Li
- School of Community Health Sciences, University of Nevada, Reno, Nevada, USA
| | - Aubrey Miller
- National Institute of Environmental Health Sciences, Bethesda, Maryland, USA
| | - Greg Paoli
- Risk Sciences International, Ottawa, Ontario, Canada
| | - Paul Price
- U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Beverly Shen
- School of Public Health, University of California, Berkeley, California, USA
| | | | - Justin Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - John Wambaugh
- U.S. EPA, Research Triangle Park, North Carolina, USA
| | | | - Rosemary Zaleski
- ExxonMobil Biomedical Sciences, Inc., Annandale, New Jersey, USA
| | - Thomas E McKone
- School of Public Health, University of California, Berkeley, California, USA
| |
Collapse
|
9
|
Fantke P, Aurisano N, Bare J, Backhaus T, Bulle C, Chapman PM, De Zwart D, Dwyer R, Ernstoff A, Golsteijn L, Holmquist H, Jolliet O, McKone TE, Owsianiak M, Peijnenburg W, Posthuma L, Roos S, Saouter E, Schowanek D, van Straalen NM, Vijver MG, Hauschild M. Toward harmonizing ecotoxicity characterization in life cycle impact assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2955-2971. [PMID: 30178491 PMCID: PMC7372721 DOI: 10.1002/etc.4261] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 05/03/2023]
Abstract
Ecosystem quality is an important area of protection in life cycle impact assessment (LCIA). Chemical pollution has adverse impacts on ecosystems on a global scale. To improve methods for assessing ecosystem impacts, the Life Cycle Initiative hosted by the United Nations Environment Programme established a task force to evaluate the state-of-the-science in modeling chemical exposure of organisms and the resulting ecotoxicological effects for use in LCIA. The outcome of the task force work will be global guidance and harmonization by recommending changes to the existing practice of exposure and effect modeling in ecotoxicity characterization. These changes will reflect the current science and ensure the stability of recommended practice. Recommendations must work within the needs of LCIA in terms of 1) operating on information from any inventory reporting chemical emissions with limited spatiotemporal information, 2) applying best estimates rather than conservative assumptions to ensure unbiased comparison with results for other impact categories, and 3) yielding results that are additive across substances and life cycle stages and that will allow a quantitative expression of damage to the exposed ecosystem. We describe the current framework and discuss research questions identified in a roadmap. Primary research questions relate to the approach toward ecotoxicological effect assessment, the need to clarify the method's scope and interpretation of its results, the need to consider additional environmental compartments and impact pathways, and the relevance of effect metrics other than the currently applied geometric mean of toxicity effect data across species. Because they often dominate ecotoxicity results in LCIA, we give metals a special focus, including consideration of their possible essentiality and changes in environmental bioavailability. We conclude with a summary of key questions along with preliminary recommendations to address them as well as open questions that require additional research efforts. Environ Toxicol Chem 2018;37:2955-2971. © 2018 SETAC.
Collapse
Affiliation(s)
- Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116, 2800 Kgs. Lyngby, Denmark
- Corresponding author: Tel.: +45 45254452, fax: +45 45933435.
| | - Nicolo Aurisano
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116, 2800 Kgs. Lyngby, Denmark
| | - Jane Bare
- United States Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Cécile Bulle
- Department of Strategy and Corporate Social Responsibility, CIRAIG, ESG UQAM, C.P. 8888, Succ. Centre Ville, Montréal (QC), H3C 3P8, Canada
| | - Peter M. Chapman
- Chapema Environmental Strategies Ltd, 1324 West 22nd Avenue, North Vancouver, BC, Canada
| | | | - Robert Dwyer
- International Copper Association, 10016 New York, United States
| | - Alexi Ernstoff
- Quantis, EPFL Innovation Park, Bât. D, 1015 Lausanne, Switzerland
| | - Laura Golsteijn
- PRé Sustainability, Stationsplein 121, 3818 Amersfoort, The Netherlands
| | - Hanna Holmquist
- Department of Technology Management and Economics, Chalmers University of Technology, SE- 412 96 Gothenburg, Sweden
| | - Olivier Jolliet
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Thomas E. McKone
- School of Public Health, University of California, Berkeley, CA 94720, United States
| | - Mikołaj Owsianiak
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116, 2800 Kgs. Lyngby, Denmark
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment, 3720 Bilthoven, The Netherlands
| | - Leo Posthuma
- National Institute for Public Health and the Environment, 3720 Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Sandra Roos
- Swerea IVF AB, P. O. Box 104, 431 22 Mölndal, Sweden
| | - Erwan Saouter
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, 21027 Ispra, Italy
| | - Diederik Schowanek
- Procter & Gamble, Brussels Innovation Center, 1853 Strombeek-Bever, Belgium
| | - Nico M. van Straalen
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherland
| | - Martina G. Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, Leiden, The Netherlands
| | - Michael Hauschild
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark, Bygningstorvet 116, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Shimako AH, Tiruta-Barna L, Bisinella de Faria AB, Ahmadi A, Spérandio M. Sensitivity analysis of temporal parameters in a dynamic LCA framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:1250-1262. [PMID: 29929238 DOI: 10.1016/j.scitotenv.2017.12.220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 06/08/2023]
Abstract
Including the temporal dimension in the Life Cycle Assessment (LCA) method is a very recent research subject. A complete framework including dynamic Life Cycle Inventory (LCI) and dynamic Life Cycle Impact Assessment (LCIA) was proposed with the possibility to calculate temporal deployment of climate change and ecotoxicity/toxicity indicators. However, the influence of different temporal parameters involved in the new dynamic method was not still evaluated. In the new framework, LCI and LCIA results are obtained as discrete values in function of time (vectors and matrices). The objective of this study is to evaluate the influence of the temporal profile of the dynamic LCI and calculation time span (or time horizon in conventional LCA) on the final LCA results. Additionally, the influence of the time step used for the impact dynamic model resolution was analysed. The range of variation of the different time steps was from 0.5day to 1year. The graphical representation of the dynamic LCA results shown important features such as the period in time and the intensity of the worst or relevant impact values. The use of a fixed time horizon as in conventional LCA does not allow the proper consideration of essential information especially for time periods encompassing the life time of the studied system. Regarding the different time step sizes used for the dynamic LCI definition, they did not have important influence on the dynamic climate change results. At the contrary, the dynamic ecotoxicity and human toxicity impacts were strongly affected by this parameter. Similarly, the time step for impact dynamic model resolution had no influence on climate change calculation (step size up to 1year was supported), while the toxicity model resolution requires adaptive time step definition with maximum size of 0.5day.
Collapse
Affiliation(s)
- Allan Hayato Shimako
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Ligia Tiruta-Barna
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077 Toulouse, France.
| | | | - Aras Ahmadi
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Mathieu Spérandio
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, F-31077 Toulouse, France
| |
Collapse
|
11
|
Winter L, Pflugmacher S, Berger M, Finkbeiner M. Biodiversity impact assessment (BIA+) - methodological framework for screening biodiversity. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2018; 14:282-297. [PMID: 29125898 DOI: 10.1002/ieam.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/21/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
For the past 20 years, the life cycle assessment (LCA) community has sought to integrate impacts on biodiversity into the LCA framework. However, existing impact assessment methods still fail to do so comprehensively because they quantify only a few impacts related to specific species and regions. This paper proposes a methodological framework that will allow LCA practitioners to assess currently missing impacts on biodiversity on a global scale. Building on existing models that seek to quantify the impacts of human activities on biodiversity, the herein proposed methodological framework consists of 2 components: a habitat factor for 14 major habitat types and the impact on the biodiversity status in those major habitat types. The habitat factor is calculated by means of indicators that characterize each habitat. The biodiversity status depends on parameters from impact categories. The impact functions, relating these different parameters to a given response in the biodiversity status, rely on expert judgments. To ensure the applicability for LCA practitioners, the components of the framework can be regionalized on a country scale for which LCA inventory data is more readily available. The weighting factors for the 14 major habitat types range from 0.63 to 1.82. By means of area weighting of the major habitat types in a country, country-specific weighting factors are calculated. In order to demonstrate the main part of the framework, examples of impact functions are given for the categories "freshwater eutrophication" and "freshwater ecotoxicity" in 1 major habitat type. The results confirm suitability of the methodological framework. The major advantages are the framework's user-friendliness, given that data can be used from LCA databases directly, and the complete inclusion of all levels of biodiversity (genetic, species, and ecosystem). It is applicable for the whole world and a wide range of impact categories. Integr Environ Assess Manag 2018;14:282-297. © 2017 SETAC.
Collapse
Affiliation(s)
- Lisa Winter
- Department of Sustainable Engineering, Technical University Berlin, Germany
| | | | - Markus Berger
- Department of Sustainable Engineering, Technical University Berlin, Germany
| | | |
Collapse
|