1
|
Métais I, Perrein-Ettajani H, Mouloud M, Roman C, Le Guernic A, Revel M, Tramoy R, Caupos E, Boudahmane L, Lagarde F, Le Bihanic F, Gasperi J, Châtel A. Effect of an environmental microplastic mixture from the Seine River and one of the main associated plasticizers, dibutylphthalate, on the sentinel species Hediste diversicolor. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106159. [PMID: 37683560 DOI: 10.1016/j.marenvres.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg-1 sediment), DBP (38 μg kg-1 sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers. After 21 days, worms exposed to MPs showed an increasing aerobic metabolism, an enhancement of both antioxidant and neuroimmune responses. Energy-related biomarkers demonstrated that the energy reallocated to the defence system may come from proteins. A similar impact was depicted after DBP exposure, except for neurotoxicity. Our results provide a better understanding of the ecotoxicological effects of environmental MPs and their associated-contaminants on H. diversicolor.
Collapse
Affiliation(s)
- Isabelle Métais
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France.
| | | | - Mohammed Mouloud
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Coraline Roman
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Antoine Le Guernic
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Messika Revel
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France; UniLaSalle - Ecole des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, F-35170, Bruz, France
| | - Romain Tramoy
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | - Emilie Caupos
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | - Lila Boudahmane
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | | | | | - Johnny Gasperi
- Université Gustave Eiffel, GERS-LEE, F-44344, Bouguenais, France
| | - Amélie Châtel
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| |
Collapse
|
2
|
Pires A, Cuccaro A, Sole M, Freitas R. Micro(nano)plastics and plastic additives effects in marine annelids: A literature review. ENVIRONMENTAL RESEARCH 2022; 214:113642. [PMID: 35724725 DOI: 10.1016/j.envres.2022.113642] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Plastic debris are dispersed in the marine environment and are consequently available to many organisms of different trophic levels, including sediment-dwelling organisms such as polychaetae. Plastic degradation generates micro (MPs) and nanoplastics (NPs) and as well as releases bounded plastic additives, increasing the ecotoxicological risk for marine organisms. Therefore, this review summarizes current knowledge on the accumulation and effects of MPs and NPs and plastic additives in polychaetes, derived from laboratory and field evidences. Thirty-six papers (from January 2011 to September 2021) were selected and analysed: about 80% of the selected works were published since 2016, confirming the emerging role of this topic in environmental sciences. The majority of the analysed manuscripts (68%) were carried out in the laboratory under controlled conditions. These studies showed that polychaetes accumulate and are responsive to this contaminant class, displaying behavioural, physiological, biochemical and immunological alterations. The polychaetes Hediste diversicolor and Arenicola marina were the most frequent used species to study MPs, NPs and plastic additive effects. The consideration of field studies revealed that MP accumulation was dependent on the plastic type present in the sediments and on the feeding strategy of the species. Polychaetes are known to play an important role in coastal and estuarine food webs and exposure to MPs, NPs and plastic additives may impair their behavioural, physiological, biochemical and immunological responses. Thus, the estimated global increase of these contaminants in the marine environment could affect the health of these benthic organisms, with consequences at population and ecosystem levels.
Collapse
Affiliation(s)
- Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Alessia Cuccaro
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Sole
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Hourdez S, Boidin-Wichlacz C, Jollivet D, Massol F, Rayol MC, Bruno R, Zeppilli D, Thomas F, Lesven L, Billon G, Duperron S, Tasiemski A. Investigation of Capitella spp. symbionts in the context of varying anthropic pressures: First occurrence of a transient advantageous epibiosis with the giant bacteria Thiomargarita sp. to survive seasonal increases of sulfides in sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149149. [PMID: 34375231 DOI: 10.1016/j.scitotenv.2021.149149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Capitella spp. is considered as an important ecological indicator of eutrophication due to its high densities in organic-rich, reduced, and sometimes polluted coastal ecosystems. We investigated whether such ability to cope with adverse ecological contexts might be a response to the microorganisms these worms are associated with. In populations from the French Atlantic coast (Roscoff, Brittany), we observed an epibiotic association covering the tegument of 20-30% specimens from an anthropized site while individuals from a reference, non-anthropized site were devoid of any visible epibionts. Using RNAseq, molecular and microscopic analyses, we described and compared the microbial communities associated with the epibiotic versus the non-epibiotic specimens at both locations. Interestingly, data showed that the epibiosis is characterized by sulfur-oxidizing bacteria among which the giant bacterium Thiomargarita sp., to date only described in deep sea habitats. Survey of Capitella combined with the geochemical analysis of their sediment revealed that epibiotic specimens are always found in muds with the highest concentration of sulfides, mostly during the summer. Concomitantly, tolerance tests demonstrated that the acquisition of epibionts increased survival against toxic level of sulfides. Overall, the present data highlight for the first time a peculiar plastic adaptation to seasonal variations of the habitat based on a transcient epibiosis allowing a coastal species to survive temporary harsher conditions.
Collapse
Affiliation(s)
- Stéphane Hourdez
- Observatoire Océanologique de Banyuls-sur-Mer, UMR 8222 CNRS-SU, avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Céline Boidin-Wichlacz
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Didier Jollivet
- Sorbonne Université, CNRS UMR 7144 'Adaptation et Diversité en Milieux Marins' (AD2M), Team 'Dynamique de la Diversité Marine' (DyDiv), Station biologique de Roscoff, Place G. Teissier, 29680 Roscoff, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maria Claudia Rayol
- Centro Interdisciplinar em Energia e Ambiente - CIEnAm, Universidade Federal da Bahia, 40170-115 Salvador, BA, Brazil
| | - Renato Bruno
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Daniela Zeppilli
- IFREMER, Centre Brest, REM/EEP/LEP, ZI de la Pointe du Diable, CS10070, 29280 Plouzané, France
| | - Frédéric Thomas
- CREEC/CREES, UMR IRD-Université de Montpellier, Montpellier, France
| | - Ludovic Lesven
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Gabriel Billon
- Univ. Lille, CNRS, UMR 8516 - LASIRE, Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Sébastien Duperron
- Muséum National d'Histoire Naturelle, CNRS UMR7245 Mécanismes de Communication et Adaptation des Micro-organismes, 12 rue Buffon, 75005 Paris, France
| | - Aurélie Tasiemski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France; Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France.
| |
Collapse
|
4
|
Bhuiyan KA, Rodríguez BM, Pires A, Riba I, Dellvals Á, Freitas R, Conradi M. Experimental evidence of uncertain future of the keystone ragworm Hediste diversicolor (O.F. Müller, 1776) under climate change conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142031. [PMID: 33182219 DOI: 10.1016/j.scitotenv.2020.142031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
It is currently assumed that climate change related factors pose severe challenges to biodiversity maintenance. This paper assesses the multi-stressor effects of elevated temperature (15 °C as control, 25 °C as elevated) and CO2 levels (pH 8.1 as control, 7.5 and 7.0 representing acidifying conditions) on the physiological (survival and regenerative capacity), behavioral (feeding and burrowing activities), and biochemical changes (metabolic capacity, oxidative status and biotransformation mechanisms) experienced by the keystone polychaete Hediste diversicolor. Temperature rise enlarged the adverse effect of marine acidification on the survival of H. diversicolor, delayed the beginning of the excavation activity, enhancing the negative effects that pH decrease had in the burrowing behavior of this polychaete. Additionally, regardless of the temperature, exposure of H. diversicolor to acidification results in a reduction in the feeding rate. It is the first time that this decreased feeding capacity is found related to seawater acidification in this species. The healing of the wound and the blastemal formation were retarded due to these two climatic factors which hinder the regenerative process of polychaetes. These vital physiological functions of H. diversicolor can be related to the oxidative stress induced by climate change conditions since free radicals overproduced will impair cells functioning, affecting species biochemical and physiological performance, including feeding and tissue regeneration. The present results also demonstrated that although polychaetes' metabolic capacity was enhanced under stress conditions, organisms were still able to increase or maintain their energy reserves. Our findings are of major environmental relevance considering that predicted climate change conditions will affect species vital and ecological and physiological capacities. These can be translated into shrinking not only at the individual and population level but also in microbial and endofaunal diversities, in the detritus processing in estuaries and biogeochemical cycles at the ecosystem level. Thus the conservation of H. diversicolor populations is vital for the normal functioning of estuarine mudflat ecosystems.
Collapse
Affiliation(s)
- Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | - Belén Marín Rodríguez
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Adilia Pires
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Inmaculada Riba
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Polígono Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain
| | - Ángel Dellvals
- Department of Ecotoxicology, Santa Cecília University (UNISANTA), Santos, São Paulo 11000, Brazil
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mercedes Conradi
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain.
| |
Collapse
|
5
|
Bernier C, Boidin-Wichlacz C, Tasiemski A, Hautekèete N, Massol F, Cuvillier-Hot V. Transgenerational Immune Priming in the Field: Maternal Environmental Experience Leads to Differential Immune Transfer to Oocytes in the Marine Annelid Hediste diversicolor. Genes (Basel) 2019; 10:genes10120989. [PMID: 31805627 PMCID: PMC6947409 DOI: 10.3390/genes10120989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Transgenerational immune priming (TGIP) is an intriguing form of parental care which leads to the plastic adjustment of the progeny’s immunity according to parental immune experience. Such parental effect has been described in several vertebrate and invertebrate taxa. However, very few empirical studies have been conducted from the field, with natural host-parasite systems and real ecological settings, especially in invertebrates. We investigated TGIP in wild populations of the marine annelid Hediste diversicolor. Females laid eggs in a mud tube and thus shared the local microbial threats with the first developmental stages, thus meeting expectations for the evolution of TGIP. We evidenced that a maternal bacterial challenge led to the higher antibacterial defense of the produced oocytes, with higher efficiency in the case of Gram-positive bacterial challenge, pointing out a prevalent role of these bacteria in the evolutionary history of TGIP in this species. Underlying mechanisms might involve the antimicrobial peptide hedistin that was detected in the cytoplasm of oocytes and whose mRNAs were selectively stored in higher quantity in mature oocytes, after a maternal immune challenge. Finally, maternal immune transfer was significantly inhibited in females living in polluted areas, suggesting associated costs and the possible trade-off with female’s protection.
Collapse
Affiliation(s)
- Clémentine Bernier
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - Céline Boidin-Wichlacz
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - Aurélie Tasiemski
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nina Hautekèete
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
| | - François Massol
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019–UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Virginie Cuvillier-Hot
- University Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France; (C.B.); (C.B.W.); (A.T.); (N.H.); (F.M.)
- Correspondence:
| |
Collapse
|
6
|
Mdaini Z, El Cafsi M, Tremblay R, Pharand P, Gagné JP. Spatio-temporal variability of biomarker responses and lipid composition of Marphysa sanguinea, Montagu (1813) in the anthropic impacted lagoon of Tunis. MARINE POLLUTION BULLETIN 2019; 144:275-286. [PMID: 31179997 DOI: 10.1016/j.marpolbul.2019.04.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
In this study the Polychaeta Marphysa sanguinea, was tested to investigate the impact of metal pollution on the environmental state of a coastal Mediterranean lagoon, Tunis Lagoon (Tunisia). A multi-biomarker approach comprising glutathione-stransferase, cyclooxygenase, lysozyme activity, and lipid class composition of the Polychaeta was employed on a seasonal basis in the present investigation. The multivariate statistical approach (principal component analysis and Pearson correlation) clearly demonstrated different spatial patterns in biomarker values and lipid class concentrations. The phospholipids were the dominant lipid class in M. sanguinea, with the highest value found at the control station. The impact of pollution was most clearly observed on the main storage lipid class, triacylglycerol, which was lowest in the most impacted sites. Our work suggests that M. sanguinea can be used in warmer Mediterranean costal habitats as a sentinel species of contaminated ecosystems.
Collapse
Affiliation(s)
- Zied Mdaini
- Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis, Université Tunis El Manar, Campus El Manar, 2092 Tunis, Tunisie; Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - M'hamed El Cafsi
- Faculté des Sciences Mathématiques, Physiques et Naturelles de Tunis, Université Tunis El Manar, Campus El Manar, 2092 Tunis, Tunisie
| | - Rejean Tremblay
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Pamela Pharand
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Jean-Pierre Gagné
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
7
|
González-Costa JJ, Reigosa-Roger MJ, Matías JM, Fernández-Covelo E. Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25551-25564. [PMID: 29959735 DOI: 10.1007/s11356-018-2101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, the neural networks are used to predict and explain the behavior of different edaphological variables in the adsorption and retention of heavy metals, both isolated and competing. A comparison with the results obtained using multiple regression, stepwise analysis, and regression trees is performed. In the neural network technique, CEC amorphous and crystallized oxides and kaolinite in the clay fraction are the most selected variables for making the optimal models, while mica and, to a lesser extent, plagioclase, are the next variables selected. Additionally, a competitive model has been considered, using simultaneously different metals. In the competitive model, the model predicts a more intense competence between Pb and Ni for the adsorption process and between Cr and Ni for the retention process.
Collapse
Affiliation(s)
| | | | - José M Matías
- Department of Statistics and Operational Research, Universidad de Vigo, Vigo, Spain
| | | |
Collapse
|