1
|
Fernández J, Lorenzo D, Net J, Cano E, Saez P, Herranz C, Domínguez CM, Cotillas S, Santos A. Sustainable lindane waste remediation: Surfactant-driven residual DNAPL extraction and oxidation in a real landfill (LIFE SURFING). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173260. [PMID: 38761933 DOI: 10.1016/j.scitotenv.2024.173260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The LIFE SURFING Project was carried out at the Bailin Landfill in Sabiñánigo, Spain (2020-2022), applying Surfactant Enhanced Aquifer Remediation (SEAR) and In Situ Chemical Oxidation (S-ISCO) in a 60-meter test cell beneath the old landfill, to remediate a contaminated aquifer with dense non-aqueous phase liquid (DNAPL) from nearby lindane production. The project overcame traditional extraction limitations, successfully preventing groundwater pollution from reaching the river. In spring 2022, two SEAR interventions involved the injection of 9.3 m3 (SEAR-1) and 6 m3 (SEAR-2) of aqueous solutions containing 20 g/L of the non-ionic surfactant E-Mulse 3®, with bromide (around 150 mg/L) serving as a conservative tracer. 7.1 and 6.0 m3 were extracted in SEAR-1 and SEAR-2, respectively, recovered 60-70 % of the injected bromide and 30-40 % of the surfactant, confirming surfactant adsorption by the soil. Approximately 130 kg of DNAPL were removed, with over 90 % mobilized and 10 % solubilized. A surfactant-to-DNAPL recovery mass ratio of 2.6 was obtained, a successful value for a fractured aquifer. In September 2022, the S-ISCO phase entailed injecting 22 m3 of a solution containing persulfate (40 g/L), E-Mulse 3® (4 g/L), and NaOH (8.75 g/L) in pulses over 48 h, oxidizing around 20 kg of DNAPL and ensuring low toxicity levels after that. Preceding the SEAR and S-ISCO trials, 2020 and 2021 were dedicated to detailed groundwater flow characterizations, including hydrological and tracer studies. These preliminary investigations allowed the design of a barrier zone between 317 and 557 m from the test cell and the river, situated 900 m away. This zone, integrating alkali dosing, aeration, vapor extraction, and oxidant injection, effectively prevented the escape of fluids to the river. Neither surfactants nor contaminants were detected in river waters post-treatment. The absence of residual phase in test cell wells and reduction of chlorinated compound levels in groundwater were noticed till one year after S-ISCO.
Collapse
Affiliation(s)
- Jesús Fernández
- Department of Environment and Tourism, Government of Aragon, Spain
| | - David Lorenzo
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Jorge Net
- Department of Environment and Tourism, Government of Aragon, Spain
| | - Elena Cano
- Department of Environment and Tourism, Government of Aragon, Spain
| | - Patricia Saez
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Carlos Herranz
- Sociedad Aragonesa de Gestión Agroambiental SARGA, Zaragoza, Spain
| | - Carmen M Domínguez
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Salvador Cotillas
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain
| | - Aurora Santos
- Chemical Engineering and Materials Department, University Complutense of Madrid, Spain.
| |
Collapse
|
2
|
Mo Y, Dong J, Zhao H. Field demonstration of in-situ microemulsion flushing for enhanced remediation of multiple chlorinated solvents contaminated aquifer. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132772. [PMID: 37844517 DOI: 10.1016/j.jhazmat.2023.132772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The remediation of in-situ microemulsion flushing for multiple chlorinated solvents contaminated groundwater is challenging, because different chlorinated solvent has major influence on microemulsion formation and solubilization behaviors. This work was conducted to evaluate the remediation effectiveness for various chlorinated solvents contaminated site and monitor the disturbance of groundwater during in-situ microemulsion flushing process. Groundwater at this site was contaminated with chlorobenzene (MCB), chloroaniline and nitrochlorobenzene. The medium layer was mainly composed of fine and silty sand, with average hydraulic conductivity of 4.97 m/d. Results of this field-scale test indicated in-situ microemulsion flushing successfully enhanced the apparent solubility of various chlorinated solvents. Post-flushing concentration of various chlorinated solvents were 1.33-71.6-fold the concentration of pre-flushing values at 10 sampling locations within the test zone. This field was flushed with 16.8 m3 microemulsion, removing approximately 18.49 kg chlorinated solvents. Besides, a trend in the desorption order of various chlorinated solvents was observed. The least hydrophobic pollutant was flushed first, followed by contaminants of increasing hydrophobicity. In addition, during remediation process, the indexes of groundwater fluctuated insignificantly, indicating the reagent had little disturbance to aquifer. This field work demonstrated the feasibility of in-situ microemulsion enhanced remediation via increasing apparent solubility of multiple chlorinated solvents.
Collapse
Affiliation(s)
- Yanyang Mo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Chang Chun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Chang Chun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| | - Haifeng Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Chang Chun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
He Z, Liang F, Meng J. Effects of injection directions and boundary exchange times on adaptive pumping in heterogeneous porous media: Pore-scale simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161427. [PMID: 36623650 DOI: 10.1016/j.scitotenv.2023.161427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Adaptive pumping, changing pumping rates or exchanging injection and extraction wells, is an enhancement of traditional Pump-and-Treat (P&T) technology. Since most previous studies on adaptive pumping are conducted through field-scale simulations, the mechanism behind it is not fully understood. An in-depth investigation of the pore-scale remediation mechanism of adaptive pumping is undoubtedly helpful in combining it with other decontamination methods to further enhance the remediation efficiency. In this study, coupling the Cahn-Hilliard phase field method and the Navier-Stokes equations, the dynamic displacement process in a heterogeneous porous medium is obtained. The effects of initial injection direction, boundary exchange times, and displacement regimes on the interface evolution and the remediation efficiency are systematically investigated. The results present that a significant increase in phase interface area is the most critical remediation mechanism for adaptive pumping. The effects of injection directions and boundary exchange times on remediation performance are mainly determined by the differences in pore connectivity and flow parameters. Higher pore connectivity under high and low viscosity ratios inhibits and promotes remediation performance, respectively. At high viscosity ratios, the residual oil morphology in the matrix after adaptive pumping is similar to that obtained by positive pumping with the opposite initial injection direction. The improvement in remediation performance of adaptive pumping is more significant under low viscosity ratio conditions. These results provide new pore-scale insights into the remediation mechanism of adaptive pumping, which contribute to the design and application of innovative remediation methods.
Collapse
Affiliation(s)
- Zhennan He
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fachun Liang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China; Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety, Qingdao 266580, China.
| | - Jia Meng
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Lin Q, Hong M. The effect of sand fractional wettability on SDBS-enhanced PCE immiscible mobilization in porous media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20006-20019. [PMID: 36243790 DOI: 10.1007/s11356-022-23570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fractional wettability is common in the dense non-aqueous phase liquids (DNAPL) contaminated sites. However, it is still unclear how fractional wettability affects surfactant-enhanced DNAPL immiscible mobilization in saturated porous media. The macro-contact angle of the fractional wettability media was measured. The results of column experiments showed that the entrapped tetrachloroethene (PCE) saturations after sodium dodecyl benzene sulfonate (SDBS) flooding were lower in the media where NAPL-wet sand was present compared with those in water-wet media. In the media which contained 25% octadecyltrichlorosilane (OTS)-treated sand, the entrapped PCE saturations decreased to the minimum, and the decrease was much larger in fine sand media. The SDBS-enhanced PCE recoveries were jointly affected by fractional wettability, particle size, and interfacial tension (IFT). When NAPL-wet sand was present and SDBS concentration was just 0.125 g⋅L-1, the SDBS-enhanced PCE recoveries increased significantly. As the SDBS concentration continues to increase to 0.5 g⋅L-1, they only increased slightly. In the fine sand media, the SDBS-enhanced PCE recoveries were higher, and they increased more obviously with the increase of NAPL-wet sand fractions. The influence weight of fractional wettability on SDBS-enhanced PCE recoveries was the largest (47.09%) under the experimental conditions. These findings indicate that it is important to consider fractional wettability characteristics when establishing a DNAPL immiscible mobilization strategy, because it is not sufficient to consider only IFT reduction, especially in media with finer pore structures.
Collapse
Affiliation(s)
- Qinghua Lin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Fitzhenry E, Martel R, Robert T. Foam injection for enhanced recovery of diesel fuel in soils: Sand column tests monitored by CT scan imagery. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128777. [PMID: 35462124 DOI: 10.1016/j.jhazmat.2022.128777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The use of surfactant foam for the remediation of diesel fuel, a Light Non-Aqueous Phase Liquid (LNAPL), was investigated in sand column experiments using X-ray Computed Tomography (CT). A preliminary series of tests were carried out on six surfactant candidates in order to measure their physical properties, including critical micelle concentrations and interfacial tensions (IFT) with the LNAPL. Batch tests for foam stability were carried out with and without added LNAPL, in order to measure the half-life of foam columns produced with each surfactant candidate. Foam flow-rate co-injection tests were carried out for each surfactant candidate in 405 cm3 sand columns contaminated with LNAPL at residual saturation. These tests revealed that a 1:1 mixture of sodium dodecyl sulfate and cocamidopropyl betaine, injected at a total volumetric flow-rate (Qfoam) of 45 mL/min, resulted in successful generation and propagation of foam within the contaminated porous medium. Finally, two sand column tests, carried out respectively under high- and low-pressure conditions, were imaged with a CT-scanner in order to compare and contrast foam morphology evolution as well as the LNAPL desaturation dynamics involved in both scenarios. The saturation profiles extracted from CT images provided valuable new insights.
Collapse
Affiliation(s)
- Emily Fitzhenry
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Richard Martel
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec, QC G1K 9A9, Canada.
| | - Thomas Robert
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), 490 rue de la Couronne, Québec, QC G1K 9A9, Canada
| |
Collapse
|
6
|
Dual-energy CT scan protocol optimization to monitor transient fluid saturation distributions during three-phase flow in sand columns. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Bouzid I, Fatin-Rouge N. Assessment of shear-thinning fluids and strategies for enhanced in situ removal of heavy chlorinated compounds-DNAPLs in an anisotropic aquifer. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128703. [PMID: 35316641 DOI: 10.1016/j.jhazmat.2022.128703] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The removal of chlorinated organic hydrocarbons (COHs) -DNAPLs was studied in permeability-contrasted sandboxes with an egg-box shaped substratum. Aqueous solutions were compared to viscous shear-thinning fluids (xanthan solution and foam). Interfacial and viscous effects were compared by increasing the capillary number of injected fluids. Non-spatially targeted DNAPL recovery (NSTR) where the driving force was the injection pressure, was compared to spatially targeted DNAPL recovery (STR) where a pumping system allowed the controlled flow. A historical contamination made of a complex mixture of COHs and hexachlorobutadiene (HCBD) as a model were used. NSTR results showed that DNAPL recovery with non-viscous liquids did not exceed 40%. The best results were obtained for xanthan solutions with surfactant ~ 1.3 ×CMC for which pure phase recovery amounted to 88% and 93% for HCBD and for the historical DNAPL, respectively. The STR strategy showed similar recovery yields, whereas xanthan concentrations were 10-times lower. Mass balances on DNAPL showed that at most, 0.15% of COHs was dissolved in the aqueous effluents. NZVI (1 g.l-1) were delivered in xanthan in view of the chemical degradation of residual COHs and showed a 65% transmission through the low permeability soil.
Collapse
Affiliation(s)
- Iheb Bouzid
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, route de Gray, 25030 Besançon, France
| | - Nicolas Fatin-Rouge
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, route de Gray, 25030 Besançon, France; Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR-CNRS 7285, F-86073 Poitiers, France.
| |
Collapse
|
8
|
Synthetic and Natural Surfactants for Potential Application in Mobilization of Organic Contaminants: Characterization and Batch Study. WATER 2022. [DOI: 10.3390/w14081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, we investigated the abilities of five sugar-based synthetic surfactants and biosurfactants from three different families (i.e., alkyl polyglycoside (APG), sophorolipid (SL), and rhamnolipid (RL)) to dissolve and mobilize non-aqueous phase liquid (NAPL) components, i.e., toluene and perchloroethylene (PCE), adsorbed on porous matrices. The objective of this study was to establish a benchmark for the selection of suitable surfactants for the flushing aquifer remediation technique. The study involved a physicochemical characterization of the surfactants to determine the critical micelle concentration (CMCs) and interfacial properties. Subsequently, a batch study, through the construction of adsorption isotherms, made it possible to evaluate the surfactants’ capacities in contaminant mobilization via the reduction of their adsorptions onto a reference adsorbent material, a pine wood biochar (PWB). The results indicate that a synthetic surfactant from the APG family with a long fatty acid chain and a di-rhamnolipid biosurfactant with a shorter hydrophobic group offered the highest efficiency values; they reduced water surface tension by up to 54.7% and 52%, respectively. These two surfactants had very low critical micelle concentrations (CMCs), 0.0071 wt% and 0.0173 wt%, respectively; this is critical from an economical point of view. The batch experiments showed that these two surfactants, at concentrations just five times their CMCs, were able to reduce the adsorption of toluene on PWB by up to 74% and 65%, and of PCE with APG and RL by up to 65% and 86%, respectively. In general, these results clearly suggest the possibility of using these two surfactants in surfactant-enhanced aquifer remediation technology.
Collapse
|
9
|
Colombano S, Davarzani H, van Hullebusch ED, Huguenot D, Guyonnet D, Deparis J, Lion F, Ignatiadis I. Comparison of thermal and chemical enhanced recovery of DNAPL in saturated porous media: 2D tank pumping experiments and two-phase flow modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143958. [PMID: 33341615 DOI: 10.1016/j.scitotenv.2020.143958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Pumping experiments were performed in a 2D tank in order to estimate the recovery yield of pure heavy chlorinated organic compounds (DNAPL; dense non-aqueous phase liquids) by varying different parameters: permeability of the saturated zone, pumping flow rates, addition of surfactant and heating. Surfactant was added to decrease capillary forces involved in the entrapment of DNAPL in porous media while temperature was increased to reduce DNAPL viscosity (and hence increase its mobility). Chemical enhancement was performed with the addition of Sodium Dodecyl Benzene Sulfonate (SDBS) (at its Critical Micelle Concentration, to avoid DNAPL dissolution) and thermal enhancement was performed at 50 °C (to avoid DNAPL volatilization). The experiments were monitored with photography allowing, on the basis of image interpretation, to convert optical densities (OD) into water saturations (Sw). Image interpretations were compared with modelling results. The two-phase flow modelling was performed with the pressure-pressure formulation using capillary pressure and relative permeability functions based on the van Genuchten-Mualem equations. Measured volumes of DNAPL recovered as well as the displacement of the DNAPL-water interface (radius and height of the cone of depression) are consistent with the modelling results. Furthermore, chemical enhancement results in a significant increase in the recovery rates of DNAPL. The observed improvement in the recovery of DNAPL with chemical enhancement is due to the fact that: (i) the residual saturation inside the cone of depression is lower and (ii) the cone of depression radius and height increase. Thermal enhancement had no beneficial effect on DNAPL recovery rate or yield. This study shows that it is possible to accurately determine water and DNAPL saturations by image interpretation during pumping tests in a 2D tank in the laboratory. For field-scale applications, the two-phase flow model allows to determine remediation yields as well as the volumes of the cone of depression according to the different operating conditions.
Collapse
Affiliation(s)
| | | | - E D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - D Huguenot
- Laboratoire Géomatériaux et Environnement, Université Gustave-Eiffel, France
| | | | - J Deparis
- BRGM (French Geological Survey), France
| | - F Lion
- BRGM (French Geological Survey), France
| | | |
Collapse
|
10
|
Bouzid I, Pino Herrera D, Dierick M, Pechaud Y, Langlois V, Klein PY, Albaric J, Fatin-Rouge N. A new foam-based method for the (bio)degradation of hydrocarbons in contaminated vadose zone. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123420. [PMID: 32763708 DOI: 10.1016/j.jhazmat.2020.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
An innovative foam-based method for Fenton reagents (FR) and bacteria delivery was assessed for the in situ remediation of a petroleum hydrocarbon-contaminated unsaturated zone. The surfactant foam was first injected, then reagent solutions were delivered and propagated through the network of foam lamellae with a piston-like effect. Bench-scale experiments demonstrated the feasibility of the various treatments with hydrocarbon (HC) removal efficiencies as high as 96 %. Compared to the direct injection of FR solutions, the foam-based method led to larger radii of influence and more isotropic reagents delivery, whereas it did not show any detrimental effect regarding HC oxidation. Despite 25 % of HCs were expelled from the treated zone because of high foam viscosity, average degradation rates were increased by 20 %. At field-scale, foam and reagent solutions injections in soil were tracked both using visual observation and differential electric resistivity tomography. The latter demonstrated the controlled delivery of the reactive solutions using the foam-based method. Even if the foam-based method duration is about 5-times longer than the direct injection of amendment solutions, it provides important benefits, such as the confinement of harmful volatile hydrocarbons during Fenton treatments, the enhanced reagents delivery and the 30 % lower consumption of the latter.
Collapse
Affiliation(s)
- I Bouzid
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, route de Gray, 25030, Besançon, France
| | - D Pino Herrera
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA4508, UPEM, 77454, Marne-la-Vallée, France
| | - M Dierick
- REMEA, 22 Rue Lavoisier, 92000 Nanterre, France
| | - Y Pechaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA4508, UPEM, 77454, Marne-la-Vallée, France
| | - V Langlois
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA4508, UPEM, 77454, Marne-la-Vallée, France
| | - P Y Klein
- REMEA, 22 Rue Lavoisier, 92000 Nanterre, France
| | - J Albaric
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne, Franche-Comté, France
| | - N Fatin-Rouge
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, route de Gray, 25030, Besançon, France.
| |
Collapse
|
11
|
Bouzid I, Maire J, Laurent F, Broquaire M, Fatin-Rouge N. Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115678. [PMID: 33007599 DOI: 10.1016/j.envpol.2020.115678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Xanthan gels were assessed to control the reductive dechlorination of hexachlorocyclohexanes (HCHs) and trichlorobenzenes (TCBs) in a strong permeability contrast and high velocity sedimentary aquifer. An alkaline degradation was selected because of the low cost of NaOH and Ca(OH)2. The rheology of alkaline xanthan gels and their ability to deliver alkalinity homogeneously, while maintaining the latter, were studied. Whereas the xanthan gels behaved like non-Newtonian shear-thinning fluids, alkalinity and Ca(OH)2 microparticles had detrimental effects, yet, the latter decreased with the shear-rate. Breakthrough curves for the NaOH and Ca(OH)2 in xanthan solutions, carried out in the lowest permeability soil (9.9 μm2), demonstrated the excellent transmission of alkalinity, while moderate pressure gradients were applied. Injection velocities ranging from 1.8 to 3.8 m h-1 are anticipated in the field, given the permeability range from 9.9 to 848.7 μm2. Despite a permeability contrast of 8.7 in an anisotropic aquifer model, the NaOH and the Ca(OH)2 both in xanthan gels spread only 5- and 7-times faster in the higher permeability zone, demonstrating that the delivery was enhanced. Moreover, the alkaline gels which were injected into a high permeability layer under lateral water flow, showed a persistent blocking effect and longevity (timescale of weeks), in contrast to the alkaline solution in absence of xanthan. Kinetics of alkaline dechlorination carried out on the historically contaminated soil, using the Ca(OH)2 suspension in xanthan solution, showed that HCHs were converted in TCBs by dehydrodechlorination, whereas the latter were then degraded by reductive hydrogenolysis. Degradation kinetics were achieved within 30 h for the major and most reactive fraction of HCHs.
Collapse
Affiliation(s)
- Iheb Bouzid
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Julien Maire
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Fabien Laurent
- SOLVAY, Centre de Recherche et Innovation de Lyon, DRP-ERA, 85 Rue des Frères Perret, 69192, Saint Fons, France
| | - Mathias Broquaire
- SOLVAY, Direction Réhabilitation Environnement, Parc Everest, 54 Rue Marcel Dassault, 69740, Genas, France
| | - Nicolas Fatin-Rouge
- Université de Bourgogne Franche-Comté-Besançon, Institut UTINAM-UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France.
| |
Collapse
|
12
|
Huo L, Liu G, Yang X, Ahmad Z, Zhong H. Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures. CHEMOSPHERE 2020; 252:126620. [PMID: 32443278 DOI: 10.1016/j.chemosphere.2020.126620] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
In recent years, surfactant-enhanced aquifer remediation (SEAR) has attracted increasing interest duo to the high efficiency of removing non-aqueous phase liquids (NAPLs) from aquifer. A thorough understanding of SEAR is necessary for its successful implementation in field remediation. This paper reviewed the SEAR technology in a comprehensive way based on the recent research advances. Firstly, an overview of the basic processes and mechanisms underlying the technology was presented. Secondly, applications of SEAR and the factors that influence the performance were summarized. Thirdly, the key limitations of SEAR, which are downward migration of dense-NAPLs, secondary pollution of surfactants, adsorptive, precipitative and partitioning loss of surfactants, and heterogeneity of the aquifer, were reviewed. Finally, the recent advances in modifying SEAR to overcome the limitations were discussed in detail. The review will promote our understanding of SEAR technology and provide some useful information to improve the performance of SEAR in applications.
Collapse
Affiliation(s)
- Lili Huo
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Xin Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Zulfiqar Ahmad
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
13
|
Surfactant-Enhanced Solubilization of Chlorinated Organic Compounds Contained in DNAPL from Lindane Waste: Effect of Surfactant Type and pH. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124494. [PMID: 32585799 PMCID: PMC7345101 DOI: 10.3390/ijerph17124494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/30/2022]
Abstract
Application of surfactants in the remediation of polluted sites with dense nonaqueous phase liquid (DNAPL) still requires knowledge of partitioning between surfactants and pollutants in the organic and aqueous phases and the time necessary to reach this balance. Two real DNAPLs, generated as wastes in the lindane production and taken from the polluted sites from Sabiñanigo (Spain), were used for investigating the solubilization of 28 chlorinated organic compounds (COCs) applying aqueous surfactant solutions of three nonionic surfactants (E-Mulse® 3 (E3), Tween®80 (T80), and a mixture of Tween®80-Span®80 (TS80)) and an anionic surfactant (sodium dodecyl sulfate (SDS)). The initial concentrations of surfactants were tested within the range of 3–17 g·L−1. The pH was also modified from 7 to >12. The uptake of nonionic surfactants into the organic phase was higher than the anionic surfactants. Solubilization of COCs with the nonionic surfactants showed similar molar solubilization ratios (MSR = 4.33 mmolCOCs·g−1surf), higher than SDS (MSR = 0.70 mmolCOCs·g−1SDS). Furthermore, under strong alkaline conditions, the MSR value of the nonionic surfactants was unchanged, and the MSR of SDS value increased (MSR = 1.32 mmolCOCs·g−1SDS). The nonionic surfactants did not produce preferential solubilization of COCs; meanwhile, SDS preferentially dissolved the more polar compounds in DNAPL. The time required to reach phase equilibrium was between 24 and 48 h, and this contact time should be assured to optimize the effect of the surfactant injected on COC solubilization.
Collapse
|
14
|
Cheng Y, Zhou W, Zhu L. Enhanced reactivity and mechanisms of mesoporous carbon supported zero-valent iron composite for trichloroethylene removal in batch studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137256. [PMID: 32086086 DOI: 10.1016/j.scitotenv.2020.137256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Ordered mesoporous carbon (CMK-3) supported nanoscale zero-valent iron (nZVI) composites were synthesized and used for the removal of trichloroethylene (TCE). The nZVI/CMK-3 composites exhibited high TCE removal efficiency in a batch study, which was 2.5 times that of nZVI alone. They also displayed excellent reusability, with 65.2% removal efficiency after three treatments. Dechlorination dominated the process of TCE removal (75.3%-79.4%), whereas adsorption accounted for 20.6%-24.7%. CMK-3 enhanced the dechlorination rate and efficiency of TCE by nZVI, and the enhancement was favored with the increase in CMK-3 content. The Tafel analysis and H2 evolution experiments indicated the mechanisms of CMK-3 action in nZVI/CMK-3 composites for TCE removal. CMK-3 serves as a direct electron transfer, whereas CO was identified as the functional group involved; the other involved the acceleration of redox reaction of atomic hydrogen owing to the superior hydrogen adsorption capacity of CMK-3. The present study provides new perspectives for seeking more efficient nZVI to reinforce the dechlorination process; however, more studies are warranted in the long-term performance of nZVI/CMK-3 in the aquifer condition.
Collapse
Affiliation(s)
- Ye Cheng
- Department of Environmental Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, China.
| |
Collapse
|
15
|
Colombano S, Davarzani H, van Hullebusch ED, Huguenot D, Guyonnet D, Deparis J, Ignatiadis I. Thermal and chemical enhanced recovery of heavy chlorinated organic compounds in saturated porous media: 1D cell drainage-imbibition experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135758. [PMID: 31818577 DOI: 10.1016/j.scitotenv.2019.135758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Chemical and thermal enhanced recovery of pure heavy chlorinated organic compounds (DNAPL; dense non-aqueous phase liquids) was investigated by using lab-scale 1D cells. Temperature was increased to reduce DNAPL viscosity (and hence increase its mobility), while surfactant was added to decrease capillary forces involved in the entrapment of DNAPL in porous media. Laboratory scale experiments, based on mass balance and indirect monitoring methods (i.e., permittivity, electrical resistivity and optical density), were conducted to quantify the effects of these enhancements. Heating the DNAPL up to 50 °C decreased its viscosity by a factor of two. The addition of a surfactant; i.e., Sodium Dodecyl Benzene Sulfonate (SDBS), at its Critical Micelle Concentration (to prevent DNAPL solubilization), decreased interfacial tensions by a factor of 12. Drainage-imbibition experiments performed in 1D cells provided retention curves (capillary pressure as a function of water saturation) of a two-phase (DNAPL-water) system in experimental glass bead porous media. The observed reduction of residual saturation (Srn) obtained with SDBS was 28% for 0.5 mm-diameter glass beads (GB) and 46% for 0.1 mm GB. No significant decrease in Sm was observed with thermal enhancement. The van Genuchten - Mualem model was found to satisfactorily reproduce the measured retention curves. Indirect measurements of water saturations (Sw) showed that: i. measured permittivities were very close to values modeled with the Complex Refractive Index Model (CRIM); ii. Archie's Law was less successful in reproducing measured electrical resistivities; iii. optical densities provide accurate estimations of Sw. At field scale, the combined monitoring of electrical resistivity (which provides a global picture) and permittivity (which yields locally precise but spatially limited information) is expected to significantly improve the collection of information on residual saturations Srn.
Collapse
Affiliation(s)
- S Colombano
- Bureau de Recherches Géologiques et Minières (BRGM), France.
| | - H Davarzani
- Bureau de Recherches Géologiques et Minières (BRGM), France
| | - E D van Hullebusch
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France
| | - D Huguenot
- Laboratoire Géomatériaux et Environnement, Université Paris-Est Marne-la-Vallée, France
| | - D Guyonnet
- Bureau de Recherches Géologiques et Minières (BRGM), France
| | - J Deparis
- Bureau de Recherches Géologiques et Minières (BRGM), France
| | - I Ignatiadis
- Bureau de Recherches Géologiques et Minières (BRGM), France
| |
Collapse
|
16
|
Soil flushing pilot test in a landfill polluted with liquid organic wastes from lindane production. Heliyon 2019; 5:e02875. [PMID: 31768444 PMCID: PMC6872847 DOI: 10.1016/j.heliyon.2019.e02875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/20/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022] Open
Abstract
Sites contaminated by Dense Non-Aqueous Liquid Phases (DNAPLs) containing chlorinated compounds are a ubiquitous problem caused by spills or the dumping of wastes with no concern for the environment. Their migration by gravity through the subsurface and their accumulation far below ground level make in-situ treatments the most appropriate remediation technologies. In this work, an aqueous solution containing a non-ionic and biodegradable surfactant was injected in the Sardas alluvial layer contaminated at some points with DNAPL (formed by a mixture of more than 28 chlorinated compounds) from lindane production. A volume of 5.28 m3 of an aqueous surfactant emulsion (13 g L-1) was injected at 14.5 m b g.l in the permeable layer (gravel-sand), at a flow rate of 0.6 m3 h-1 and the groundwater was monitored within a test cell (3.5 m radius) built ad hoc. The flow of the injected fluids in the subsurface was also evaluated using a conservative tracer, bromide (130 mg L-1), added to the surfactant solution. Concentration of contaminants, chloride, bromide and surfactant, surface tension and conductivity were measured at the injection point and at three monitoring points over time. High radial dispersion was noticed resulting in high dilution of the injected fluids. The surfactant was not adsorbed in the soil during the injection time, the adsorption of the surfactant took place in the meantime (15 h) between its injection and the groundwater (GW) extraction. The concentration of chlorinated compounds dissolved from the soil in the surfactant aqueous phase when equilibrium was reached (about 850 mg L-1) is related to the moderate average contamination of the soil in the test cell (about 1230 mg kg-1). In contrast, the extraction of the free DNAPL in the altered marls layer was highly enhanced due to the addition of the surfactant. Finally, it was found that the surfactant and the contamination did not migrate from the capture zone.
Collapse
|
17
|
Bouzid I, Maire J, Fatin-Rouge N. Comparative assessment of a foam-based oxidative treatment of hydrocarbon-contaminated unsaturated and anisotropic soils. CHEMOSPHERE 2019; 233:667-676. [PMID: 31195271 DOI: 10.1016/j.chemosphere.2019.05.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
In situ delivery of liquid reagents in vadose zone is limited by soil anisotropy and gravity. The enhanced delivery of persulfate (PS) as oxidant, using a new foam-based method (F-PS) was compared at bench-scale to traditional water-based (W-PS) and surfactant solution-based (S-PS) deliveries. The goal was to distribute PS uniformly in coal tar-contaminated unsaturated and anisotropic soils, both in terms of permeability and contamination. Water was the less efficiently delivered fluid because of the hydrophobicity of the contaminated soils. Surfactant enhanced PS-distribution into contaminated zones by reducing interfacial tension and inverting soil wettability. Regardless of coal tar contamination contrasts (0 vs. 5 and 1 vs. 10 g kg soil-1) or strong permeability contrasts, PS-solution injection after foam injection led to the most uniform reagents delivery. While PS-concentration varied more than 5-times between zones using W-PS and S-PS methods, it varied less than 1.6-times when the F-PS one was used. Finally, despite unfavorable conditions, the foam-based method did not show any detrimental effect regarding the oxidation of hydrocarbons compared to the W-PS and S-PS methods carried out in ideal conditions. Moreover, hydrocarbon degradation rates were slightly higher when using F-PS than S-PS due to a lower surfactant content in the targeted zone.
Collapse
Affiliation(s)
- Iheb Bouzid
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Julien Maire
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Nicolas Fatin-Rouge
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France.
| |
Collapse
|
18
|
Tracking a Foam Front in a 3D, Heterogeneous Porous Medium. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Bouzid I, Maire J, Ahmed SI, Fatin-Rouge N. Enhanced remedial reagents delivery in unsaturated anisotropic soils using surfactant foam. CHEMOSPHERE 2018; 210:977-986. [PMID: 30208558 DOI: 10.1016/j.chemosphere.2018.07.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/23/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Homogeneous delivery of solution of oxidant in unsaturated soils is limited by soil anisotropy and gravity. An innovative injection strategy using foam was developed to improve in situ delivery. Primary foam injection before oxidant solution enhanced both the lateral and uniform delivery of reactant in isotropic and anisotropic (permeability, contamination) soils. The oxidant spread isotropically through the foam water network. This sequential injection heavily improved the delivery radius of influence (ROI), while limiting contact between surfactant and solution of oxidant in order to preserve the selective oxidation of petroleum hydrocarbons contaminant (TPH). Prior foam injection allowed uniform delivery of the solution of oxidant across the region occupied by the foam, regardless of the soil permeability contrast (1:18), whereas poor ROI were observed for the direct injection of oxidant. Experiments in contamination contrasted soils showed that foam was able to propagate in highly TPH contaminated soils (max 60% velocity reduction for 22 g.kgdry soil-1). As for permeability contrast, foam is expected to enhance reagents delivery in such contexts. This novel strategy was proven to be efficient, even for complex anisotropic conditions, and should allow to cut field costs and uncertainties associated to poor reagents delivery.
Collapse
Affiliation(s)
- Iheb Bouzid
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Julien Maire
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Samaleh Idriss Ahmed
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France
| | - Nicolas Fatin-Rouge
- Université de Bourgogne Franche-Comté - Besançon, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, 25030, Besançon, France.
| |
Collapse
|
20
|
Enhanced Catalytic Dechlorination of 1,2-Dichlorobenzene Using Ni/Pd Bimetallic Nanoparticles Prepared by a Pulsed Laser Ablation in Liquid. Catalysts 2018. [DOI: 10.3390/catal8090390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bimetallic nanoparticles (NPs) exhibit advantageous electrical, optical, and catalytic properties. Among the various NP synthesis methods, pulsed laser ablation in liquid (PLAL) is currently attracting much attention because of its simplicity and versatility. In this study, a pulsed laser was used to produce nickel/palladium (Ni/Pd) bimetallic NPs in methanol and deionized water. The morphological and optical properties of the resulting Ni/Pd bimetallic NPs were characterized. The synthesized Ni/Pd bimetallic NPs were used for the dechlorination of 1,2-dichlorobenzene (1,2-DCB) under various conditions. The dechlorination rates of 1,2-DCB while using single (Ni and Pd) and bimetallic (Ni powder/Pd and Ni/Pd) NPs were investigated. The results showed that the Ni/Pd bimetallic NPs with 19.16 wt.% Pd exhibited much enhanced degradation efficiency for 1,2-DCB (100% degradation after 30 min). Accordingly, the results of enhanced the degradation of 1,2-DCB provide plausible mechanism insights into the catalytic reaction.
Collapse
|
21
|
Maire J, Brunol E, Fatin-Rouge N. Shear-thinning fluids for gravity and anisotropy mitigation during soil remediation in the vadose zone. CHEMOSPHERE 2018; 197:661-669. [PMID: 29407830 DOI: 10.1016/j.chemosphere.2018.01.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Surfactant foam has been proposed as an effective treatment fluid for in situ environmental remediation of soils. In the vadose zone, it could improve treatment homogeneity, but its use remains challenging. To better understand and predict foam formation and propagation in vadose zone, we studied them in 24 soils with wide range of properties (including permeability: 2 10-12 to 3.3 10-9 m2). Foam rheology showed to be complex and mostly influenced by soil permeability and grading. Below 2 10-11 m2, foam propagation velocity was not influenced by permeability. Conversely, slight shear thinning to Newtonian behavior was observed for higher permeabilities. Benefits for remediation in anisotropic vadose zones and the injection strategies (mobility control agent or blocking agent) were discussed. Moreover, different methods of foam injection were compared over the range of soil permeability. It showed that "surfactant alternating gas" method was the most suitable for soil permeability lower than 5 10-10 m2 to avoid soil fracturing. Conversely, in higher permeability soils, pre-generated foam was required to get high viscosity foam. Foam and xanthan polymer solution behaviors were compared across the range of permeability studied. They show similarities, and the benefits of one among the other should be evaluated for each specific case.
Collapse
Affiliation(s)
- Julien Maire
- Université de Bourgogne Franche-Comté, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, F- 25030, Besançon Cedex, France
| | - Emmanuelle Brunol
- Université de Bourgogne Franche-Comté, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, F- 25030, Besançon Cedex, France
| | - Nicolas Fatin-Rouge
- Université de Bourgogne Franche-Comté, Institut UTINAM - UMR CNRS 6213, 16, Route de Gray, F- 25030, Besançon Cedex, France.
| |
Collapse
|