1
|
Georgin J, Franco DSP, Manzar MS, Meili L, El Messaoudi N. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24679-24712. [PMID: 38488920 DOI: 10.1007/s11356-024-32876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Even at low concentrations, steroid hormones pose a significant threat to ecosystem health and are classified as micropollutants. Among these, 17β-estradiol (molecular formula: C18H24O2; pKa = 10.46; Log Kow = 4.01; solubility in water = 3.90 mg L-1 at 27 °C; molecular weight: 272.4 g mol-1) is extensively studied as an endocrine disruptor due to its release through natural pathways and widespread use in conventional medicine. 17β-estradiol (E2) is emitted by various sources, such as animal and human excretions, hospital and veterinary clinic effluents, and treatment plants. In aquatic biota, it can cause issues ranging from the feminization of males to inhibiting plant growth. This review aims to identify technologies for remediating E2 in water, revealing that materials like graphene oxides, nanocomposites, and carbonaceous materials are commonly used for adsorption. The pH of the medium, especially in acidic to neutral conditions, affects efficiency, and ambient temperature (298 K) supports the process. The Langmuir and Freundlich models aptly describe isothermal studies, with interactions being of a low-energy, physical nature. Adsorption faces limitations when other ions coexist in the solution. Hybrid treatments exhibit high removal efficiency. To mitigate global E2 pollution, establishing national and international standards with detailed guidelines for advanced treatment systems is crucial. Despite significant advancements in optimizing technologies by the scientific community, there remains a considerable gap in their societal application, primarily due to economic and sustainable factors. Therefore, further studies are necessary, including conducting batch experiments with these adsorbents for large-scale treatment along with economic analyses of the production process.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 31451, Dammam, Saudi Arabia
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas Campus A. C. Simões, Av. Lourival Melo Mota, Tabuleiro Dos Martins, Maceió, AL, 57072-970, Brazil
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
2
|
O'Neill EA, Rowan NJ. Potential disruptive effects of zoosporic parasites on peatland-based organic freshwater aquaculture: Case study from the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161495. [PMID: 36634789 DOI: 10.1016/j.scitotenv.2023.161495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Irish freshwater aquaculture holds great potential for aiding food security. However, its necessary expansion has been hampered by the adoption of important environmental EU directives. A novel peatland-based recirculating aquaculture multi-trophic pond system (RAMPS) was developed to assess its potential to assist in the sustainable development of industry whilst remaining aligned with environmental protection by adhering to organic aquaculture practices. Microalgae play a pivotal role in the farms' wastewater bioremediation. However, a collapse of the algal population within the system towards the end of the pilot study was observed. No relationship between physicochemical fluctuations and the collapse were indicated. Further investigations into the potential presence of biological agents were then conducted and fourteen species of zoosporic parasites from five different genera (Labyrinthula, Vampyrella, Amoeboaphelidium, Paraphelidium and Aphelidium) were identified after conducting next-generation sequencing (MinION). The presence of these species indicated the potential cause of algal collapse. Additionally, changes in weather conditions may have also contributed to the issue. Given the lack of data available on zoosporic parasites and their potential impact on organic aquaculture practices, additional research needs to be conducted. Developing a means to monitor and mitigate against these complex zoosporic parasites will inform food security, it will particularly help safeguard "organic" freshwater aquaculture where there is a reliance on using natural-based approaches to address disease mitigation. This information will in turn inform the replication of this RAMPs system in peatlands internationally creating local employment in green technologies, as communities' transition away from burning peat as fossil fuel. Also, zoosporic parasites may reduce important microalgae in peatland-based culture ponds that serve as exceptional sequesters of carbon. Findings of this study will inform related research that focus on the emergence of microbial pathogens in local aquatic ecosystems brought on by variances in climate.
Collapse
Affiliation(s)
- Emer A O'Neill
- Centre for Sustainable Disinfection and Sustainability, Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland; Faculty of Science & Health, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland.
| | - Neil J Rowan
- Centre for Sustainable Disinfection and Sustainability, Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland; Faculty of Science & Health, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
3
|
O'Neill EA, Fehrenbach G, Murphy E, Alencar SA, Pogue R, Rowan NJ. Use of next generation sequencing and bioinformatics for profiling freshwater eukaryotic microalgae in a novel peatland integrated multi-trophic aquaculture (IMTA) system: Case study from the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158392. [PMID: 36055498 DOI: 10.1016/j.scitotenv.2022.158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Development of integrated multi-trophic aquaculture (IMTA) systems constitutes a step change in the sustainable production of freshwater fish to meet emerging needs for high-protein foods globally. Recently, there has been a paradigm shift away from harvesting peat as a fuel towards the development of wettable peatland innovation (termed 'paludiculture'), such as aquaculture. Such eco-innovations support carbon sequestration and align with a balanced environmental approach to protecting biodiversity. This novel peatland-based IMTA process in the Irish midlands relies upon natural microalgae for waste treatment, recirculation and water quality where there is no use of pesticides or antibiotics. This novel IMTA system is powered with a wind turbine and the process has 'organic status'; moreover, it does not discharge aquaculture effluent to receiving water. However, there is a significant lack of understanding as to diversity of microalgae in this 'paludiculture'-based IMTA processes. This constitutes the first case study to use conventional microscopy combined with next-generation sequencing and bioinformatics to profile microalgae occurring in this novel IMTA system from pooled samples over a 12 month period in 2020. Conventional microscopy combined with classic identification revealed twenty genera of algae; with Chlorophyta and Charophyta being the most common present. However, algal DNA isolation, 16 s sequencing and bioinformatics revealed a combined total of 982 species from 341 genera across nine phyla from the same IMTA system, which emphasized a significant underestimation in the number and diversity of beneficial or potentially harmful algae in the IMTA-microbiome. These new methods also yield rich data that can be used by digital technologies to transform future monitoring and performance of the IMTA system for sustainability. The findings of this study align with many sustainability development goals of the United Nations including no poverty, zero hunger, good health and well-being, responsible consumption and production, climate change, and life below water.
Collapse
Affiliation(s)
- Emer A O'Neill
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland.
| | - Gustavo Fehrenbach
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland
| | - Emma Murphy
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland
| | - Sérgio A Alencar
- Universidade Católica de Brasilia, QS 7 LOTE 1 - Taguatinga, Brasília, DF 71966-700, Brazil
| | - Robert Pogue
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland; Universidade Católica de Brasilia, QS 7 LOTE 1 - Taguatinga, Brasília, DF 71966-700, Brazil
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
4
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Fehrenbach GW, Pogue R, Carter F, Clifford E, Rowan N. Implications for the seafood industry, consumers and the environment arising from contamination of shellfish with pharmaceuticals, plastics and potentially toxic elements: A case study from Irish waters with a global orientation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157067. [PMID: 35780875 DOI: 10.1016/j.scitotenv.2022.157067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Shellfish are a rich source of minerals, B-vitamins and omega-3 to the human diet. The global population is expected to reach 9.6 billion people by 2050 where there will be increased demand for shellfish and for sustained improvements in harvesting. The production of most consumed species of shellfish is sea-based and are thus susceptible to in situ environmental conditions and water quality. Population growth has contributed to expansion of urbanization and the generation of effluent and waste that reaches aquatic environments, potentially contaminating seafood by exposure to non-treated effluents or inappropriately discarded waste. Environmental contaminants as microplastics (MP), pharmaceuticals (PHAR) and potentially toxic contaminants (PTE) are being identified in all trophic levels and are a current threat to both shellfish and consumer safety. Immunotoxicity, genotoxicity, fertility reduction, mortality and bioaccumulation of PTE are representative examples of the variety of effects already established in contaminated shellfish. In humans, the consumption of contaminated shellfish can lead to neurological and developmental effects, reproductive and gastrointestinal disorders and in extreme cases, death. This timely review provides insights into the presence of MP, PHAR and PTE in shellfish, and estimate the daily intake and hazard quotient for consumption behaviours. Alternatives approaches for seafood depuration that encompass risk reduction are addressed, to reflect state of the art knowledge from a Republic of Ireland perspective. Review of best-published literature revealed that MP, PHAR and PTE contaminants were detected in commercialised species of shellfish, such as Crassostrea and Mytilus. The ability to accumulate these contaminants by shellfish due to feeding characteristics is attested by extensive in vitro studies. However, there is lack of knowledge surrounding the distribution of these contaminants in the aquatic environment their interactions with humans. Preventive approaches including risk assessment are necessary to safeguard the shellfish industry and the consumer.
Collapse
Affiliation(s)
- Gustavo Waltzer Fehrenbach
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland.
| | - Robert Pogue
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, 71966-700, Brazil
| | - Frank Carter
- Coney Island Shellfish Ltd., Sligo F91YH56, Ireland
| | - Eoghan Clifford
- School of Engineering, National University of Ireland Galway, H91HX31, Ireland; Ryan Institute, National University of Ireland Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland; Empower Eco™ Sustainability Hub, Technological University of the Shannon - Midlands Midwest, N37F6D7, Ireland
| |
Collapse
|
6
|
Rowan NJ, Murray N, Qiao Y, O'Neill E, Clifford E, Barceló D, Power DM. Digital transformation of peatland eco-innovations ('Paludiculture'): Enabling a paradigm shift towards the real-time sustainable production of 'green-friendly' products and services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156328. [PMID: 35649452 DOI: 10.1016/j.scitotenv.2022.156328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The world is heading in the wrong direction on carbon emissions where we are not on track to limit global warming to 1.5 °C; Ireland is among the countries where overall emissions have continued to rise. The development of wettable peatland products and services (termed 'Paludiculture') present significant opportunities for enabling a transition away from peat-harvesting (fossil fuels) to developing 'green' eco-innovations. However, this must be balanced with sustainable carbon sequestration and environmental protection. This complex transition from 'brown to green' must be met in real time by enabling digital technologies across the full value chain. This will potentially necessitate creation of new green-business models with the potential to support disruptive innovation. This timely paper describes digital transformation of paludiculture-based eco-innovation that will potentially lead to a paradigm shift towards using smart digital technologies to address efficiency of products and services along with future-proofing for climate change. Digital transform of paludiculture also aligns with the 'Industry 5.0 - a human-centric solution'. However, companies supporting peatland innovation may lack necessary standards, data-sharing or capabilities that can also affect viable business model propositions that can jeopardize economic, political and social sustainability. Digital solutions may reduce costs, increase productivity, improve produce develop, and achieve faster time to market for paludiculture. Digitisation also enables information systems to be open, interoperable, and user-friendly. This constitutes the first study to describe the digital transformation of paludiculture, both vertically and horizontally, in order to inform sustainability that includes process automation via AI, machine learning, IoT-Cloud informed sensors and robotics, virtual and augmented reality, and blockchain for cyber-physical systems. Thus, the aim of this paper is to describe the applicability of digital transformation to actualize the benefits and opportunities of paludiculture activities and enterprises in the Irish midlands with a global orientation.
Collapse
Affiliation(s)
- Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Empower Eco™ Sustainable Hub, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland.
| | - Niall Murray
- Software Research Institute, TUS, Athlone, Ireland
| | | | - E O'Neill
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Empower Eco™ Sustainable Hub, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland
| | | | - Damià Barceló
- Catalan Institute for Water Research, Faculty of Chemistry, University of Bacrelona, (ICRA), Spain
| | - Deborah M Power
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest (TUS), Dublin Road, Athlone, Ireland; Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas 8005-139, Faro, Portugal
| |
Collapse
|
7
|
Rowan NJ. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain – Quo Vadis? AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
O'Neill EA, Morse AP, Rowan NJ. Effects of climate and environmental variance on the performance of a novel peatland-based integrated multi-trophic aquaculture (IMTA) system: Implications and opportunities for advancing research and disruptive innovation post COVID-19 era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153073. [PMID: 35038521 DOI: 10.1016/j.scitotenv.2022.153073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancing wet peatland 'paludiculture' innovation present enormous potential to sustain carbon-cycles, reduce greenhouse-gas (GHG) gas emissions and to transition communities to low-carbon economies; however, there is limited scientific-evidence to support and enable direct commercial viability of eco-friendly products and services. This timely study reports on a novel, paludiculture-based, integrated-multi-trophic-aquaculture (IMTA) system for sustainable food production in the Irish midlands. This freshwater IMTA process relies on a naturally occurring ecosystem of microalgae, bacteria and duckweed in ponds for managing waste and water quality that is powered by wind turbines; however, as it is recirculating, it does not rely upon end-of-pipe solutions and does not discharge effluent to receiving waters. This constitutes the first report on the effects of extreme weather events on the performance of this IMTA system that produces European perch (Perca fluviatilis), rainbow trout (Oncorhynchus mykiis) during Spring 2020. Sampling coincided with lockdown periods of worker mobility restriction due to COVID-19 pandemic. Observations revealed that the frequency and intensity of storms generated high levels of rainfall that disrupted the algal and bacterial ecosystem in the IMTA leading to the emergence and predominance of toxic cyanobacteria that caused fish mortality. There is a pressing need for international agreement on standardized set of environmental indicators to advance paludiculture innovation that addresses climate-change and sustainability. This study describes important technical parameters for advancing freshwater aquaculture (IMTA), which can be future refined using real-time monitoring-tools at farm level to inform management decision-making based on evaluating environmental indicators and weather data. The relevance of these findings to informing global sustaining and disruptive research and innovation in paludiculture is presented, along with alignment with UN Sustainable Development goals. This study also addresses global challenges and opportunities highlighting a commensurate need for international agreement on resilient indicators encompassing linked ecological, societal, cultural, economic and cultural domains.
Collapse
Affiliation(s)
- E A O'Neill
- Bioscience Research Institute, Technological University of the Shannon - Midlands and Midwest, University Road, Athlone, Ireland.
| | - A P Morse
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, UK
| | - N J Rowan
- Bioscience Research Institute, Technological University of the Shannon - Midlands and Midwest, University Road, Athlone, Ireland
| |
Collapse
|
9
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Rowan NJ, Moral RA. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145530. [PMID: 33581526 PMCID: PMC7848491 DOI: 10.1016/j.scitotenv.2021.145530] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Best-published evidence supports the combined use of vaccines with non-pharmaceutical interventions (NPIs), to reduce the relative risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19; this will enable a safe transition to achieving herd immunity. Albeit complex, the strategic public health goal is to bundle NPIs to keep the basic reproduction number R0 below one. However, validation of these NPIs is conducted using random clinical trials, which is challenging in a swiftly moving pandemic given the need for recruiting large participant cohort over a longitudinal analysis period. This review highlights emerging innovations for potentially improving the design, functionality and improved waste management of disposable face masks such as filtering facepiece (FFPs) respirators, medical masks, and reusable face coverings to help prevent COVID-19. It describes use of different mathematical models under varying scenarios to inform efficacy of single and combined use of NPIs as important counter-measures to break the cycle of COVID-19 infection including new SARS-CoV-2 variants. Demand for face masks during COVID-19 pandemic keeps increasing, especially for FFPs worn by medical workers. Collaborative and well-conducted randomised controlled trials across borders are required to generate robust data to inform common and consistent policies for COVID-19 and future pandemic planning and management; however, current use of systematic reviews of best available evidence can be considered to guide interim policies.
Collapse
Affiliation(s)
- Neil J Rowan
- Department of Nursing and Healthcare, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Ireland; Empower Eco Sustainability Hub, Lough Boora, Co. Offaly, Ireland; School of Medicine, National University of Ireland Galway, Ireland.
| | - Rafael A Moral
- Department of Mathematics and Statistics, Maynooth University, Ireland
| |
Collapse
|
11
|
Yang S, Yu W, Yang L, Du B, Chen S, Sun W, Jiang H, Xie M, Tang J. Occurrence and Fate of Steroid Estrogens in a Chinese Typical Concentrated Dairy Farm and Slurry Irrigated Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:67-77. [PMID: 33205963 DOI: 10.1021/acs.jafc.0c05068] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Animal husbandry is the second largest source of steroid estrogen (SE) pollutants in the environment, and it is significant to investigate the occurrence and fate of SEs discharged from concentrated animal feeding operations. In this research, with a Chinese typical concentrated dairy farm as the object, the concentrations of SEs (E1, 17α-E2, 17β-E2, E3, and E1-S3) in slurry, lagoon water, and slurry-irrigated soil samples in summer, autumn, and winter were determined. The total concentrations of SEs (mainly E1, 17α-E2, and 17β-E2) in slurry were very high in the range of 263.1-2475.08 ng·L-1. In the lagoon water, the removal efficiencies of the aerobic tank could reach up to 89.53%, with significant fluctuation in different seasons. In the slurry-irrigated soil, the maximum concentrations of SEs in the topsoil and subsoil were 21.54 ng·g-1 to 6.82 g·g-1, respectively. Most of the SEs tended to transport downward and accumulate in the soil accompanied with the complex mutual conversion. Correlations and hierarchical clustering analysis showed a variety of intertransformation among SEs, and the concentrations of SEs were correlated with various physicochemical indexes, such as TN and NO3--N of the slurry, chemical oxygen demand of the lagoon water, and the heavy metals of soil. In addition, 17β-estradiol equivalency assessment and risk quotients indicated that the slurry irrigation and discharge of the lagoon water would cause potential estrogenic risks to the environment. Consequently, reasonable slurry irrigation and lagoon water discharge are essential to efficiently control SE pollution in the environment.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- College of Civil Engineering, Fuzhou University, Fujian 350116, China
| | - Shiling Chen
- Risland Thailand Co., Ltd., Huai Khwang, Bangkok 10310, Thailand
| | - Weizhe Sun
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hui Jiang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Mingyuan Xie
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jingjing Tang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
12
|
Rowan NJ, Galanakis CM. Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141362. [PMID: 32823223 PMCID: PMC9977645 DOI: 10.1016/j.scitotenv.2020.141362] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 04/13/2023]
Abstract
COVID-19 pandemic is on a trajectory to cause catastrophic global upheaval with the potential to alter geopolitical and socio-economic norms. Many countries are frantically responding with staggering financial stimulus recovery initiatives. This opinion-paper reviews challenges, opportunities, and potential solutions for the post-COVID-19 era that focuses on intensive sustaining of agri-food supply chain in tandem with meeting the high demand for new green deal innovation. For example, the development of wet peatland innovation, known as Paludiculture, can intensively sustain and blend agri-food and green innovations that will help support COVID-19 pandemic transitioning. The future looks bright for the creation of new sustainability multi-actor innovation hubs that will support, connect, and enable businesses to recover and pivot beyond the COVID-19 pandemic. The nexus between first 'Green Deal' initiative supporting 64 selected European Startups and SMEs (European Innovation Council) and 43 Irish Disruptive Technology projects are addressed in the context of cross-cutting developments and relevance to COVID-19. Candidate areas for future consideration will focus on climate action, digitization, manufacturing, and sustainable food production, security, and waste mitigation. Recommendations are also provided to facilitate community transitioning, training, enterprise, and employment to low carbon economy.
Collapse
Affiliation(s)
- Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization, and Biosecurity, Athlone Institute of Technology, Ireland; Empower Eco Sustainability Hub, Lough Boora, Co. Offaly, Ireland.
| | - Charis M Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece; College of Science, King Saud University, Riyadh, Saudi Arabia; Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
13
|
Du B, Fan G, Yu W, Yang S, Zhou J, Luo J. Occurrence and risk assessment of steroid estrogens in environmental water samples: A five-year worldwide perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115405. [PMID: 33618485 DOI: 10.1016/j.envpol.2020.115405] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 05/15/2023]
Abstract
The ubiquitous occurrence of steroid estrogens (SEs) in the aquatic environment has raised global concern for their potential environmental impacts. This paper extensively compiled and reviewed the available occurrence data of SEs, namely estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), and 17α-ethinyl estradiol (EE2), based on 145 published articles in different regions all over the world including 51 countries and regions during January 2015-March 2020. The data regarding SEs concentrations and estimated 17β-estradiol equivalency (EEQ) values are then compared and analyzed in different environmental matrices, including natural water body, drinking and tap water, and wastewater treatment plants (WWTPs) effluent. The detection frequencies of E1, 17β-E2, and E3 between the ranges of 53%-83% in natural water and WWTPs effluent, and the concentration of SEs varied considerably in different countries and regions. The applicability for EEQ estimation via multiplying relative effect potency (REPi) by chemical analytical data, as well as correlation between EEQbio and EEQcal was also discussed. The risk quotient (RQ) values were on the descending order of EE2 > 17β-E2 > E1 > 17α-E2 > E3 in the great majority of investigations. Furthermore, E1, 17β-E2, and EE2 exhibited high or medium risks in water environmental samples via optimized risk quotient (RQf) approach at the continental-scale. This overview provides the latest insights on the global occurrence and ecological impacts of SEs and may act as a supportive tool for future SEs investigation and monitoring.
Collapse
Affiliation(s)
- Banghao Du
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 350002, Fujian, China; Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, 350002, Fujian, China.
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, 400074, Chongqing, China
| | - Jinjin Zhou
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| | - Jing Luo
- College of Civil Engineering, Fuzhou University, 350116, Fujian, China
| |
Collapse
|
14
|
O'Neill EA, Stejskal V, Clifford E, Rowan NJ. Novel use of peatlands as future locations for the sustainable intensification of freshwater aquaculture production - A case study from the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136044. [PMID: 31855652 DOI: 10.1016/j.scitotenv.2019.136044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/08/2019] [Accepted: 12/08/2019] [Indexed: 05/29/2023]
Abstract
There has been an increasing interest in enhancing freshwater aquaculture processes without hindering the progress of the Water Framework Directive. This constitutes the first study to describe a new concept in integrated multitrophic aquaculture (IMTA) that uses cutaway peatlands (bogs) to farm rainbow trout and Eurasian perch with associated organic status that is powered by wind energy and utilizes algae and duckweed to treat rearing water. Approximately 5% of Ireland comprises bogs that support natural ecosystems where there is a pressing need to develop alternative innovation to that of burning peat in order to reduce Ireland's carbon emissions. Specifically, this study evaluates water quality from this new IMTA where intake and terminal holding tank samples were evaluated from May to August 2019. Physicochemical parameters (temperature, pH, nitrogen, phosphorus, oxygen, suspended solids, hardness and alkalinity), and ecotoxicological bioassays (Pseudokirchneriella subcapitata and Daphnia pulex), were used to investigate the potential effects that introducing aquaculture processes may have on peatlands. Nitrite (P < 0.001), nitrate (P = 0.016), and chemical oxygen demand (P = 0.011), were the only physicochemical parameters that differed significantly between the intake and holding tank water indicating that water quality for the most part remained unchanged. Low levels of toxicity were observed between the bioassays suggested the introduction of the processes into the bog were unlikely to cause adverse effects on the ecosystem and the organisms therein. Observations were similar to or lower than those reported previously by other researchers for intensive flow-through aquaculture processes that discharge to receiving water. Findings from this study support the use of peatlands as future locations for integrated aquaculture processes.
Collapse
Affiliation(s)
- Emer A O'Neill
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Faculty of Science & Health, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| | - Vlastimil Stejskal
- University College Cork, School of Biological, Earth and Environmental Sciences & Environmental Research Institute, Cork, Ireland; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Vodňany, Czech Republic
| | - Eoghan Clifford
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland; Department of Life & Physical Science, Faculty of Science & Health, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
15
|
Rowan NJ. Pulsed light as an emerging technology to cause disruption for food and adjacent industries – Quo vadis? Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|