1
|
Rahman A, Belia E, Kirim G, Hasan M, Borzooei S, Santoro D, Johnson B. Digital solutions for continued operation of WRRFs during pandemics and other interruptions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2527-2536. [PMID: 34318558 PMCID: PMC8441735 DOI: 10.1002/wer.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
This paper includes survey results from 17 full-scale water resource recovery facilities (WRRFs) to explore their technical, operational, maintenance, and management-related challenges during COVID-19. Based on the survey results, limited monitoring and maintenance of instrumentation and sensors are among the critical factors during the pandemic which resulted in poor data quality in several WRRFs. Due to lockdown of cities and countries, most of the facilities observed interruptions of chemical supply frequency which impacted the treatment process involving chemical additions. Some plants observed influent flow reduction and illicit discharges from industrial wastewater which eventually affected the biological treatment processes. Delays in equipment maintenance also increased the operational and maintenance cost. Most of the plants reported that new set of personnel management rules during pandemic created difficulties in scheduling operator's shifts which directly hampered the plant operations. All the plant operators mentioned that automation, instrumentation, and sensor applications could help plant operations more efficiently while working remotely during pandemic. To handle emergency circumstances including pandemic, this paper also highlights resources and critical factors for emergency responses, preparedness, resiliency, and mitigation that can be adopted by WRRFs.
Collapse
Affiliation(s)
| | | | - Gamze Kirim
- modelEAU, CentrEau, Département de génie civil et de génie des eauxPavillon Adrien‐Pouliot, Université LavalQuebec CityCanada
| | - Mahmudul Hasan
- Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Sina Borzooei
- Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | | | | |
Collapse
|
2
|
Ren B, Pi H, Zhao X, Hu M, Zhang X, Wang R, Wu J. Janus membrane with novel directional water transport capacity for efficient atmospheric water capture. NANOSCALE 2021; 13:9354-9363. [PMID: 33998638 DOI: 10.1039/d1nr01120k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fresh water scarcity has become a crisis affecting human survival and development. Atmospheric water capture with remarkable advantages such as energy-independence and low-cost is supposed to be a promising way to address the problem. Herein, a facile strategy is presented to design a membrane material with efficient atmospheric water capture capacity and high practical significancy. A hybrid Janus membrane with anisotropic wettability and morphology is fabricated by integrating electrospinning and in situ surface oxidation methods. Taking advantage of the anisotropic wettability and strong force provided by directional wicking to draw water drops from a hydrophobic to a hydrophilic layer, the Janus membrane exhibits novel directional water droplet transport and possesses efficient and excellent atmospheric water capture capacity. Janus membrane with larger pores in the hydrophobic layer shows higher atmospheric water capture capacity than that with smaller pores. Furthermore, the hybrid Janus membrane is successfully implemented in soil water retention in the plant cultivation process. This work provides an insight into the facile design of the Janus membrane for fresh water capture, which is important to extend its practical applications.
Collapse
Affiliation(s)
- Baona Ren
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Haohong Pi
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xin Zhao
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Miaomiao Hu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Xiuqin Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Jing Wu
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Poch M, Garrido-Baserba M, Corominas L, Perelló-Moragues A, Monclús H, Cermerón-Romero M, Melitas N, Jiang SC, Rosso D. When the fourth water and digital revolution encountered COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140980. [PMID: 32687996 PMCID: PMC7363603 DOI: 10.1016/j.scitotenv.2020.140980] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
The ongoing COVID-19 pandemic is, undeniably, a substantial shock to our civilization which has revealed the value of public services that relate to public health. Ensuring a safe and reliable water supply and maintaining water sanitation has become ever more critical during the pandemic. For this reason, researchers and practitioners have promptly investigated the impact associated with the spread of SARS-CoV-2 on water treatment processes, focusing specifically on water disinfection. However, the COVID-19 pandemic impacts multiple aspects of the urban water sector besides those related to the engineering processes, including sanitary, economic, and social consequences which can have significant effects in the near future. Furthermore, this outbreak appears at a time when the water sector was already experiencing a fourth revolution, transitioning toward the digitalisation of the sector, which redefines the Water-Human-Data Nexus. In this contribution, a product of collaboration between academics and practitioners from water utilities, we delve into the multiple impacts that the pandemic is currently causing and their possible consequences in the future. We show how the digitalisation of the water sector can provide useful approaches and tools to help address the impact of the pandemic. We expect this discussion to contribute not only to current challenges, but also to the conceptualization of new projects and the broader task of ameliorating climate change.
Collapse
Affiliation(s)
- Manel Poch
- LEQUIA, Institute of the Environment, University of Girona, c/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - Manel Garrido-Baserba
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Lluís Corominas
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park, H2O Building, Emili Grahit 101, 17003 Girona, Catalonia, Spain
| | - Antoni Perelló-Moragues
- LEQUIA, Institute of the Environment, University of Girona, c/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | - Hector Monclús
- LEQUIA, Institute of the Environment, University of Girona, c/ Maria Aurèlia Capmany, 69, 17003 Girona, Catalonia, Spain
| | | | - Nikos Melitas
- Sanitation Districts of Los Angeles County, 1955 Workman Mill Road, Whittier, CA 90706, USA
| | - Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA; Water-Energy Nexus Center, University of California, Irvine, CA 92697-2175, USA.
| |
Collapse
|
4
|
Anwar MN, Fayyaz A, Sohail NF, Khokhar MF, Baqar M, Yasar A, Rasool K, Nazir A, Raja MUF, Rehan M, Aghbashlo M, Tabatabaei M, Nizami AS. CO 2 utilization: Turning greenhouse gas into fuels and valuable products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110059. [PMID: 32090808 DOI: 10.1016/j.jenvman.2019.110059] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 05/08/2023]
Abstract
This study critically reviews the recent developments and future opportunities pertinent to the conversion of CO2 as a potent greenhouse gas (GHG) to fuels and valuable products. CO2 emissions have reached an alarming level of around 410 ppm and have become the primary driver of global warming and climate change leading to devastating events such as droughts, hurricanes, torrential rains, floods, tornados and wildfires across the world. These events are responsible for thousands of deaths and have adversely affected the economic development of many countries, loss of billions of dollars, across the globe. One of the promising choices to tackle this issue is carbon sequestration by pre- and post-combustion processes and oxyfuel combustion. The captured CO2 can be converted into fuels and valuable products, including methanol, dimethyl ether (DME), and methane (CH4). The efficient use of the sequestered CO2 for the desalinization might be critical in overcoming water scarcity and energy issues in developing countries. Using the sequestered CO2 to produce algae in combination with wastewater, and producing biofuels is among the promising strategies. Many methods, like direct combustion, fermentation, transesterification, pyrolysis, anaerobic digestion (AD), and gasification, can be used for the conversion of algae into biofuel. Direct air capturing (DAC) is another productive technique for absorbing CO2 from the atmosphere and converting it into various useful energy resources like CH4. These methods can effectively tackle the issues of climate change, water security, and energy crises. However, future research is required to make these conversion methods cost-effective and commercially applicable.
Collapse
Affiliation(s)
- M N Anwar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - A Fayyaz
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - N F Sohail
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan
| | - M F Khokhar
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan
| | - M Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - A Yasar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - K Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - A Nazir
- Department of Environmental Science and Policy, Lahore School of Economics, Lahore, Pakistan
| | - M U F Raja
- Institute of Environmental Sciences and Engineering, National University of Sciences and Technology Islamabad, Pakistan
| | - M Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - M Tabatabaei
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia; Biofuel Research Team (BRTeam), Karaj, Iran; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran; Faculty of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - A S Nizami
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| |
Collapse
|
5
|
Economic Dispatch Optimization of Multi-Water Resources: A Case Study of an Island in South Korea. SUSTAINABILITY 2019. [DOI: 10.3390/su11215964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ensuring stable and continuous water supplies in isolated but populated areas, such as islands, where the water supply is highly dependent on external factors, is crucial. Sudden loss of function in the water supply system can have enormous social costs. To strengthen water security and to meet multiple water demands with marginal quality, the optimized selection of locally available, diversified multi-water resources is necessary. This study considers a sustainable water supply problem of Yeongjong Island, 30 km west from Seoul, South Korea. The self-sufficiency of several locally available water resources is calculated for four different scenarios based on the volume and quality of the various water sources. Our optimization results show that using all the available local sources can address the water security issues of the island in the case of interruption in the existing supply system, which is fed from a single source of mainland Korea. This optimization framework can be useful for areas where water must be secured in the event of emergency.
Collapse
|
6
|
The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071239. [PMID: 30965551 PMCID: PMC6480278 DOI: 10.3390/ijerph16071239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 11/17/2022]
Abstract
The drinking water supply to Vila Pouca de Aguiar municipality in North Portugal is based on high quality groundwater, namely on nearly one hundred artesian springs and fifty boreholes. The groundwater resources are plentiful on a municipal level, but evidence some deficits at the sub-municipal (village) level, especially during the dry period (July- August) that coincides with the return of many emigrants for holiday time. The deficits affect mostly the municipal capital (Vila Pouca de Aguiar) and a neighboring village (Pedras Salgadas), which populations nearly double or even triple during that period. The estimated annual deficits approach 55,000 m3/yr in those villages. If the anticipated increase in consumption/habitant and decrease in annual rainfall become reality in the next two decades, then the deficits may raise to approximately 90,000 m3/yr. To balance the water supply system, this study proposes its transition towards a conjunctive water management based on surface water stored in small dams and groundwater. A hydrologic modeling involving small forested catchments (< 15 km2) elected the Cabouço watershed as most suited basin to store stream water, because surface water availability is large (2.4 Mm3/yr) and forest cover is dominant (84.8%). Estimated nutrient loads are also compatible with drinking water supply.
Collapse
|