1
|
Lv Y, Wang W, Yin H. Efficacy of P-sorbent material combined with aquatic plants in controlling nutrient release from urban lake sediment: Field investigation. ENVIRONMENTAL RESEARCH 2024; 263:120233. [PMID: 39455043 DOI: 10.1016/j.envres.2024.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
The release of stored nutrients from sediments is thought to substantially affect water quality in urban lakes. To explore the efficiency of different in-situ remediation methods on controlling high internal urban lake sediments, 120 days of field-enclosure experiments were conducted to investigate the efficacy of P-sorbent materials combined with aquatic plants in controlling nutrient release from urban-lake sediments. The lanthanum-modified clay (LMC) effectively reduced sediment P release flux and could temporarily lead to a small increase in N concentration in the overlying water. In contrast, Vallisneria spiralis (V. spiralis) has a relatively weak effect on controlling nutrient release and can even cause an increase in P concentration. The combined restoration technique of V. spiralis + LMC can overcome the drawbacks of a single method, reduce the nutrient content in overlying water, and inhibit the sediment internal release. Relative to the control, the V. spiralis + LMC treatment reduced mobile P content by 52.5% and increased Ca-P content by 34.5%. The added lanthanum contained material can quickly bind the readily released P in sediment and porewater, transforming it into intert P over time. Submerged macrophytes can absorb active P in water and sediments and transport oxygen to sediments promoting denitrification and N removal. The combined restoration technique synergistically combines the high P sorption affinity of LMC and the substrate improvement effect of V. spiralis, thus realizing the long-term control of endogenous release in urban lakes. This approach holds great promise for restoring urban lakes with high endogenous nutrient loading.
Collapse
Affiliation(s)
- Yaobin Lv
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China; University of Chinese Academy of Sciences, Nanjing, Nanjing, 211135, China
| | - Weizhen Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, Nanjing, 211135, China.
| |
Collapse
|
2
|
Li X, Liu X, Huang Y, Zhang Y, Li J. Seasonal impact of constructed wetlands on nitrogen and phosphorus in sediments of flood control lakes with pollution assessment. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:340-351. [PMID: 38595076 DOI: 10.1002/jeq2.20561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
The primary drivers of eutrophication in lakes following the reduction of external nutrient inputs are the release of N and P from sediments. Constructed wetlands play a pivotal role in ameliorating N, P, and other biogenic element levels. However, the presence of large vegetation in these wetlands also substantially contributes to nutrient accumulation in sediments, a phenomenon influenced by seasonal variations. In this study, a typical constructed wetland was selected as the research site. The research aimed to analyze the forms of N and P in sediments during both summer and winter. Simultaneously, a comprehensive pollution assessment and analysis were conducted within the study area. The findings indicate that elevated summer temperatures, together with the presence of wetland vegetation, promote the release of N through the nitrification process. Additionally, seasonal variations exert a significant impact on the distribution of P storage. Furthermore, the role of constructed wetlands in the absorption and release of N and P is primarily controlled by the influence of organic matter on nitrate-nitrogen, nitrite-nitrogen, and available phosphorus, and is also subject to seasonal fluctuations. In summary, under the comprehensive influence of constructed wetlands, vegetation types, and seasons, sediments within the lake generally exhibit a state of mild or moderate pollution. Therefore, targeted measures should be adopted to optimally adjust vegetation types, and human intervention is necessary, involving timely sediment harvesting during the summer to reduce N and P loads, and enhancing sediment adsorption and retention capacity for N and P during the winter.
Collapse
Affiliation(s)
- Xiao Li
- ART School, Jiangsu University, Zhenjiang, China
- Institute of International Education, New Era University College, Kajang, Malaysia
| | - Xinlin Liu
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yang Huang
- ART School, Jiangsu University, Zhenjiang, China
| | - Yulong Zhang
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jian Li
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Chen X, Liu L, Wang Y, Zhou L, Xiao J, Yan W, Li M, Li Q, He X, Zhang L, You X, Zhu D, Yan J, Wang B, Hang X. The combined effects of lanthanum-modified bentonite and Vallisneria spiralis on phosphorus, dissolved organic matter, and heavy metal(loid)s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170502. [PMID: 38301791 DOI: 10.1016/j.scitotenv.2024.170502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
The use of lanthanum-modified bentonite (LMB) combined with Vallisneria spiralis (V∙s) (LMB + V∙s) is a common method for controlling internal phosphorus (P) release from sediments. However, the behaviors of iron (Fe) and manganese (Mn) under LMB + V∙s treatments, as well as the associated coupling effect on P, dissolved organic matter (DOM), and heavy metal(loid)s (HMs), require further investigations. Therefore, we used in this study a microelectrode system and high-resolution dialysis technology (HR-Peeper) to study the combined effects of LMB and V∙s on P, DOM, and HMs through a 66-day incubation experiment. The LMB + V∙s treatment increased the sediment DO concentration, promoting in-situ formations of Fe (III)/Mn (IV) oxyhydroxides, which, in turn, adsorbed P, soluble tungsten (W), DOM, and HMs. The increase in the concentrations of HCl-P, amorphous and poorly crystalline (oxyhydr) oxides-bound W, and oxidizable HMs forms demonstrated the capacity of the LMB + V∙s treatment to transform mobile P, W, and other HMs forms into more stable forms. The significant positive correlations between SRP, soluble W, UV254, and soluble Fe (II)/Mn, and the increased concentrations of the oxidizable HMs forms suggested the crucial role of the Fe/Mn redox in controlling the release of SRP, DOM, and HMs from sediments. The LMB + V∙s treatment resulted in SRP, W, and DOM removal rates of 74.49, 78.58, and 54.78 %, which were higher than those observed in the control group (without LMB and V∙s applications). On the other hand, the single and combined uses of LMB and V·s influenced the relative abundances of the sediment microbial communities without exhibiting effects on microbial diversity. This study demonstrated the key role of combined LMB and V∙s applications in controlling the release of P, W, DOM, and HMs in eutrophic lakes.
Collapse
Affiliation(s)
- Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Ling Liu
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Qi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaohui You
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongdong Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiabao Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bin Wang
- Zhongyifeng Construction Group Co., Ltd., Suzhou 215131, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
4
|
Zhang X, Zhen W, Cui S, Wang S, Chen W, Zhou Q, Jeppesen E, Liu Z. The effects of different doses of lanthanum-modified bentonite in combination with a submerged macrophyte (Vallisneria denseserrulata) on phosphorus inactivation and macrophyte growth: A mesocosm study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120053. [PMID: 38211429 DOI: 10.1016/j.jenvman.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The combination of chemical phosphorus (P) inactivation and submerged macrophyte transplantation has been widely used in lake restoration as it yields stronger effects than when applying either method alone. However, the dose effect of chemical materials on P inactivation when used in combination with submerged macrophytes and the influences of the chemicals used on the submerged macrophytes growth remain largely unknown. In this study, we investigated P inactivation in both the water column and the sediment, and the responses of submerged macrophytes to Lanthanum modified bentonite (LMB) in an outdoor mesocosm experiment where Vallisneria denseserrulata were transplanted into all mesocosms and LMB was added at four dosage levels, respectively: control (LMB-free), low dosage (570 g m-2), middle dosage (1140 g m-2), and high dosage (2280 g m-2). The results showed that the combination of LMB dosage and V. denseserrulata reduced TP in the water column by 32%-38% compared to V. denseserrulata alone, while no significant difference was observed among the three LMB treatments. Porewater soluble reactive P, two-dimensional diffusive gradient in thin films (DGT)-labile P concentrations, and P transformation in the 0-1 cm sediment layer exhibited similar trends along the LMB dosage gradient. Besides, LMB inhibited plant growth and reduced the uptake of mineral elements (i.e., calcium, manganese, iron, and magnesium) in a dosage-dependent manner with LMB. LMB may reduce plant growth by creating a P deficiency risk for new ramets and by interfering with the uptake of mineral elements. Considering both the dose effect of LMB on P inactivation and negative effect on macrophyte growth, we suggest a "small dosage, frequent application" method for LMB application to be used in lake restoration aiming to recover submerged macrophytes and clear water conditions.
Collapse
Affiliation(s)
- Xiumei Zhang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 210008, Nanjing, China.
| | - Wei Zhen
- Wuhan Changjiang Waterway Rescue and Salvage Bure, 430013, Wuhan, China
| | - Suzhen Cui
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China
| | - Sen Wang
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China
| | - Weiqi Chen
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China
| | - Qiong Zhou
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Areas, College of Fisheries, Huazhong Agricultural University, 430070, Wuhan, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, 430070, Wuhan, China
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-6, 8600, Silkeborg, Denmark; Limnology Laboratory, Department of Biological Sciences and Center for Ecosystem Research and Implementation, Middle East Technical University, 06800, Ankara, Turkey; Institute of Marine Science, Middle East Technical University, Mersin, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, 210008, Nanjing, China; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, 100049, Beijing, China; Department of Ecology and Institute of Hydrobiology, Jinan University, 510632, Guangzhou, China
| |
Collapse
|
5
|
Huo L, Yang P, Yin H, Zhang E. Enhanced nutrient control efficiency in sediments using modified clay inactivation coupled with aquatic vegetation in the confluence area of a eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168149. [PMID: 37898219 DOI: 10.1016/j.scitotenv.2023.168149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Developing a long-term method for controlling sediment N and P release is important for enabling lake restoration. In this study, inactivation methods using lanthanum-modified clay, modified zeolite, or planting aquatic vegetation and their combinations were used in the control internal sediment loading (pore water N and P concentrations and their fluxes), and the efficacies of the methods were analyzed. The results indicated that compared to the control sediment, the addition of P sorbent, which was La and Al co-modified attapulgite (ACLA), and N sorbent, which was NaCl-modified zeolite (modified zeolite), planting of aquatic vegetation Vallisneria spiralis (V. spiralis), and a combination of sorbents and plants effectively reduced the porewater nutrient content and its fluxes across the sediment-water interface. However, the reduction in pore water nutrients and flux were superior when using a combination of clay inactivation and aquatic planting. The poorest sediment N and P control was achieved by planting V. spiralis alone. The addition of La and Al co-modified attapulgite (ACLA) and modified zeolite efficiently reduced N and P in the sediment, but the N and P sorbents did not achieve long-lasting nutrient release control. The high efficiency obtained by the combination of modified clay-based inactivation and V. spiralis was likely due to the strong chemical sorption capacity of clay and oxygenation by the rhizosphere of aquatic vegetation. These results show that a combination of chemical and ecological methods would be the most effective approach to remediate polluted sediments in the long term.
Collapse
Affiliation(s)
- Li Huo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Pan Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Hongbin Yin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China; University of Chinese Academy of Sciences, Nanjing, Nanjing 211135, People's Republic of China.
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China
| |
Collapse
|
6
|
Wang R, Zhu J, Li B, Liu Y, Fang Q, Bai G, Tang Y, He F, Zhou Q, Wu Z, Zhang Y. Effects of attapulgite on the growth status of submerged macrophytes Vallisneria spiralis and sediment microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118496. [PMID: 37384996 DOI: 10.1016/j.jenvman.2023.118496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
The effects of raw attapulgite clay and thermally modified attapulgite clay on the growth status of submerged plant Vallisneria Spiralis (V. spiralis) and the microenvironment of sediment were first explored. The results demonstrated that the attapulgite could effectively promote the development of V. spiralis and improve plant stress resistance by enhancing the activity of antioxidant enzymes. The 10% addition of attapulgite clay increased the biomass of V. spiralis by 27%∼174%, and the promoted rate of raw attapulgite clay was 2∼5 times of modified attapulgite clay. The attapulgite increased redox potential in sediment (P < 0.05) and provided proper niches for organism propagation, further promoting the degradation of organic matter and nutrient metabolism in sediment. The value of Shannon, Chao, and Ace was 9.98, 4865.15, 5029.08 in the 10% modified attapulgite group, and 10.12, 4856.85, 4947.78 in the 20% raw attapulgite group, respectively, indicating that the attapulgite could increase the microbial diversity and abundance in sediment. Additionally, the nutrient elements, such as Ca, Na, S, Mg, K, Zn, and Mo, that dissolved from attapulgite may also promote the V. spiralis growth. This study provided an environment-friendly approach to facilitating submerged macrophyte restoration in the eutrophic lake ecosystem.
Collapse
Affiliation(s)
- Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiying Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beining Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingjun Fang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Shi Y, Khan IUH, Radford D, Guo G, Sunohara M, Craiovan E, Lapen DR, Pham P, Chen W. Core and conditionally rare taxa as indicators of agricultural drainage ditch and stream health and function. BMC Microbiol 2023; 23:62. [PMID: 36882680 PMCID: PMC9990217 DOI: 10.1186/s12866-023-02755-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The freshwater microbiome regulates aquatic ecological functionality, nutrient cycling, pathogenicity, and has the capacity to dissipate and regulate pollutants. Agricultural drainage ditches are ubiquitous in regions where field drainage is necessary for crop productivity, and as such, are first-line receptors of agricultural drainage and runoff. How bacterial communities in these systems respond to environmental and anthropogenic stressors are not well understood. In this study, we carried out a three year study in an agriculturally dominated river basin in eastern Ontario, Canada to explore the spatial and temporal dynamics of the core and conditionally rare taxa (CRT) of the instream bacterial communities using a 16S rRNA gene amplicon sequencing approach. Water samples were collected from nine stream and drainage ditch sites that represented the influence of a range of upstream land uses. RESULTS The cross-site core and CRT accounted for 5.6% of the total number of amplicon sequence variants (ASVs), yet represented, on average, over 60% of the heterogeneity of the overall bacterial community; hence, well reflected the spatial and temporal microbial dynamics in the water courses. The contribution of core microbiome to the overall community heterogeneity represented the community stability across all sampling sites. CRT was primarily composed of functional taxa involved in nitrogen (N) cycling and was linked to nutrient loading, water levels, and flow, particularly in the smaller agricultural drainage ditches. Both the core and the CRT were sensitive responders to changes in hydrological conditions. CONCLUSIONS We demonstrate that core and CRT can be considered as holistic tools to explore the temporal and spatial variations of the aquatic microbial community and can be used as sensitive indicators of the health and function of agriculturally dominated water courses. This approach also reduces computational complexity in relation to analyzing the entire microbial community for such purposes.
Collapse
Affiliation(s)
- Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Devon Radford
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Galen Guo
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Mark Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada
| | - Phillip Pham
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada.,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Canada. .,Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON, K1N 9A7, Canada.
| |
Collapse
|
8
|
Lin Q, Huai Z, Riaz L, Peng X, Wang S, Liu B, Yu F, Ma J. Aluminum phytotoxicity induced structural and ultrastructural changes in submerged plant Vallisneria natans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114484. [PMID: 36608570 DOI: 10.1016/j.ecoenv.2022.114484] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al) is a concentration-dependent toxic metal found in the crust of earth that has no recognized biological use. Nonetheless, the mechanism of Al toxicity to submerged plants remains obscure, especially from a cell/subcellular structure and functional group perspective. Therefore, multiple dosages of Al3+ (0, 0.3, 0.6, 1.2, and 1.5 mg/L) were applied hydroponically to the submerged plant Vallisneria natans in order to determine the accumulation potential of Al at the subcellular level and their ultrastructural toxicity. More severe structural and ultrastructural damage was determined when V. natans exposed to ≥ 0.6 mg/L Al3+. In 1.2 and 1.5 mg/L Al3+ treatment groups, the total chlorophyll content of leaves significantly reduced 3.342, 3.838 mg/g FW, some leaves even exhibited chlorosis and fragility. Under 0.3 mg/L Al3+ exposure, the middle-age and young leaves were potent phytoexcluders, whereas at 1.5 mg/L Al3+, a large amount of Al could be transferred from the roots to other parts, among which the aged leaves were the most receptive tissues (7.306 mg/g). Scanning/Transmission electron microscopy analysis displayed the Al-mediated disruption of vascular bundle structure in leaf cells, intercellular space and several vegetative tissues, and demonstrated that Al in vacuole and chloroplast subcellular segregation into electron dense deposition. Al and P accumulation in the roots, stolons and leaves varied significantly among treatments and different tissues (P < 0.05). Fourier transform infrared spectroscopy of plant biomass also indicated possible metabolites (amine, unsaturated hydrocarbon, etc.) of V. natans that may bind Al3+. Conclusively, results revealed that Al3+ disrupts the cellular structure of leaves and roots or binds to functional groups of biological tissues, thereby affecting plant nutrient uptake and photosynthesis. Findings might have scientific and practical significance for the restoration of submerged vegetation in Al-contaminated lakes.
Collapse
Affiliation(s)
- Qingwei Lin
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China
| | - Zhiwen Huai
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750 Punjab, Pakistan
| | - Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shishi Wang
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Yu
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China.
| | - Jianmin Ma
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China.
| |
Collapse
|
9
|
Ren Z, He J, Zhao H, Ding S, Duan P, Jiao L. Water depth determines spatial and temporal phosphorus retention by controlling ecosystem transition and P-binding metal elements. WATER RESEARCH 2022; 219:118550. [PMID: 35567845 DOI: 10.1016/j.watres.2022.118550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Shallow lakes are more susceptible to eutrophication than deep lakes. The geochemical and biogeochemical mechanisms controlling the vulnerability to eutrophication for deep lakes and shallow lakes remain unknown. Therefore, we investigated the combined Phosphorus (P) retention mechanism with P fractions, water depth, distribution of P-binding metal elements, and macrophytes coverage in a degrading ecosystem of Erhai Lake. We concluded that different mechanisms control the P retention in deep-water areas and shallow-water areas. In shallow areas covered by macrophytes, the biogeochemical process manipulates the P retention by changing the total organic carbon (TOC), calcium (Ca) distributions and turbulence. In deep areas without macrophyte coverage, the aluminum (Al) and iron (Fe) distributions control the P retention by a physicochemical process. Manganese (Mn) was found to be a potential proxy in tracking the kinetic release and readsorb of redox-sensitive P (BD-P) in deep areas. The historical record and core sample indicate that the hydrological engineering induced water depth variation is a vital factor changing the ecosystem of Erhai Lake by forming a large area of intermediate area where macrophytes could only survive at low water level. The uplift of water level in the 1990s gradually changed the ecosystem of Erhai Lake from macrophyte-dominated to algal-macrophyte concomitant that reduced the accumulation of stable P fractions and their binding metals. Macrophytes were capable to preserve P in biomass in the macrophyte-dominated ecosystem, which released 150% and 72% of more labile organic P (NaOH25-nrP) and BD-P in the sediment after the deterioration than before, respectively. Therefore, water depth is a prerequisite to restoring the P preservation capacity of sediment and the macrophyte ecosystem. Further hydraulic engineering projects should consider the effect of water-level-variation-induced ecosystem transition.
Collapse
Affiliation(s)
- Zhiyuan Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jia He
- Kunming Institute of Eco-Environmental Sciences, Yunnan, Kunming, China
| | - Haichao Zhao
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Liu Y, Bai G, Zou Y, Ding Z, Tang Y, Wang R, Liu Z, Zhou Q, Wu Z, Zhang Y. Combined remediation mechanism of bentonite and submerged plants on lake sediments by DGT technique. CHEMOSPHERE 2022; 298:134236. [PMID: 35288180 DOI: 10.1016/j.chemosphere.2022.134236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/15/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The diffusive gradients in thin films (DGT) technique was applied to determine the mechanism by which bentonite improves the eutrophic lake sediment microenvironment and enhances submerged plant growth. The migration dynamics of N, P, S, and other nutrient elements were established for each sediment layer and the remediation effects of bentonite and submerged plants on sediments were evaluated. Submerged plant growth in the bentonite group was superior to that of the Control. At harvest time, the growth of Vallisneria spiralis and Hydrilla verticillata was optimal on a substrate consisting of five parts eutrophic lake sediment to one part modified bentonite (MB5/1). Bentonite addition to the sediment was conducive to rhizosphere microorganism proliferation. Microbial abundance was highest under the MB5/1 treatment whilst microbial diversity was highest under the RB1/1 (equal parts raw bentonite and eutrophic lake sediment) treatment. Bentonite addition to the sediment may facilitate the transformation of nutrients to bioavailable states. The TP content of the bentonite treatment was 22.47%-46.70% lower than that of the Control. Nevertheless, the bentonite treatment had higher bioavailable phosphorus (BIP) content than the control. The results of this study provide theoretical and empirical references for the use of a combination of modified bentonite and submerged plants to remediate eutrophic lake sediment microenvironments.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yadong Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Rou Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Responses of Different Submerged Macrophytes to the Application of Lanthanum-Modified Bentonite (LMB): A Mesocosm Study. WATER 2022. [DOI: 10.3390/w14111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lanthanum-modified bentonite (LMB) has remarkable efficacy on eutrophication control, but the reduced bioavailable phosphorus and formed anaerobic horizon from LMB may be harmful to submerged macrophytes. We conducted this study to explore the influence of LMB on Hydrilla verticillata and Vallisneria natans in mixed-species plantings. The concentrations of TP, TDP, SRP, and TDN in the LMB treatments were lower than the Control, but the Chl a concentration in the HLMB treatment (850 g m−2) was higher than the Control by 63%. There were no differences of V. natans growth among the treatments. For H. verticillata, its biomass, RGR, height, branch number, root number, and length in the LLMB treatment (425 g m−2) were lower than the Control by 48%, 22%, 13%, 34%, 33%, and 8%, respectively. In addition, the biomass of H. verticillata was 62%, the RGR was 32%, the height was 19%, the branch number was 52%, the root length was 40%, and the root number was 54% lower in the HLMB treatment than those in the Control. In summary, LMB had negative effects on submerged macrophytes with underdeveloped roots. Submerged macrophytes with more developed roots are preferred when using combined biological–chemical methods for water restoration.
Collapse
|
12
|
Li C, Ding S, Chen M, Sun Q, Zhang Y, Ma X, Zhong Z, Tsang DCW, Wang Y. Mechanistic insights into trace metal mobilization at the micro-scale in the rhizosphere of Vallisneria spiralis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150735. [PMID: 34606867 DOI: 10.1016/j.scitotenv.2021.150735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Mobilization of trace metals in the rhizosphere of macrophytes is controlled by root-driven chemical changes, especially the steep gradients of O2 and pH from the rhizosphere to bulk sediments. Here, the O2 and pH dynamics, and the distribution of trace metal, in the rhizosphere of Vallisneria spiralis were obtained using planar optodes and diffusive gradients in thin films, respectively. Radial O2 loss (ROL) and acidification occurred on all visible roots of V. spiralis and exhibited highly spatiotemporal dynamics depending on the root growth and various environmental conditions. Trace metals showed different mobilization mechanisms in the rhizosphere. ROL and produced Fe(III) (oxyhydr)oxides decreased the mobility of Fe, As, Co, V and W in the rhizosphere. However, Mn, Ni and Cu exhibited greater mobility in the rhizosphere than bulk sediments as a result of the oxidation of metal sulfide and proton-induced dissolution of minerals. In particular, Co and Ni presented increased activity at the interface between rhizosphere and bulk sediment, which was attributed to the redox dissolution processes of Fe and Mn as a result of ROL and rhizosphere acidification. These results provide new insights into the roles of macrophyte root-induced O2 and pH changes in controlling trace metal mobility in sediments.
Collapse
Affiliation(s)
- Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qin Sun
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Zhang
- School of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Xin Ma
- School of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zhilin Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
13
|
Zhou S, Zhao R, Li Q, Du J, Chen C, Lu Q, Zhang M, Zhao D, An S. Influent salinity affects substrate selection in surface flow constructed wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62235-62245. [PMID: 34185271 DOI: 10.1007/s11356-021-15036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
To identify the effect of influent salinity on substrate selection, a study was conducted in pilot-scale surface flow constructed wetlands (SFCWs). Compared with gravel and sand SFCWs, soil SFCWs performed similarly or worse at low salinities, while at high salinities, soil SFCWs performed similarly or better in removal efficiency (RE) of salt, total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD). Soil generally increased macrophyte growth (especially at high salinity) in terms of biomass, leaf chlorophyll concentration, root activity, and root catalase and superoxide dismutase activities. A general decrease in bacterial α-diversity in the rhizosphere was observed at high salinity, while compared with gravel or sand, soil improved rhizosphere bacterial community stability at varying salinities. At high salinity, compared with that of gravel or sand, the soil support of macrophytes and rhizosphere microorganisms increased pollutant RE in SFCWs. This finding highlights the necessity of varying substrate selection in SFCWs with influent salinities for both increasing pollutant RE and reducing input cost, with soil recommended at high influent salinity.
Collapse
Affiliation(s)
- Shenyan Zhou
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Ran Zhao
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Qiming Li
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Juan Du
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Chen Chen
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Qianqian Lu
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Miao Zhang
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| | - Dehua Zhao
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China.
| | - Shuqing An
- School of Life Science, Nanjing University, Nanjing, 210093, People's Republic of China
| |
Collapse
|
14
|
Ding S, Liu Y, Dan SF, Jiao L. Historical changes of sedimentary P-binding forms and their ecological driving mechanism in a typical "grass-algae" eutrophic lake. WATER RESEARCH 2021; 204:117604. [PMID: 34517265 DOI: 10.1016/j.watres.2021.117604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
With the transformation of lake ecosystem from "clear water" to "turbid water", the residual phosphorus (P) accumulated in sediments may slow down the process of aquatic ecological restoration, and the related mechanisms are complex and need to be better understood. In this study, high-resolution systematic investigation and analysis of P-binding forms in the sediments showed that Lake Dianchi, the largest plateau lake in Southwest China, was enriched with NaOH-rP, HCl-P and Res-P, but depleted in NH4Cl-P, BD-P and NaOH-nrP. The BD-P, NaOH-nrP and NaOH-rP were the main contributors to potential P release from sediments, while the release potential of NH4Cl-P was relatively weak (<1%). When the external P loading gradually decreased, the internal P loading of Lake Dianchi was estimated to be 522 mg P/(m2•a) in the past 30 years. The succession of "grass-algae" type in Lake Dianchi coincided with reduced absorption and transformation of potential mobile P and decreased accumulation of stable P, especially the Res-P. Meanwhile, the temporal variation of potential mobile P was a good predictor of ecological degradation and reduced ecosystem sustainability in Lake Dianchi.
Collapse
Affiliation(s)
- Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Yan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100012, China
| | - Solomon Felix Dan
- Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
15
|
Liu Y, Zou Y, Kong L, Bai G, Luo F, Liu Z, Wang C, Ding Z, He F, Wu Z, Zhang Y. Effects of bentonite on the growth process of submerged macrophytes and sediment microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112308. [PMID: 33706092 DOI: 10.1016/j.jenvman.2021.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The effects of clay mineral bentonite on the growth process of submerged macrophyte V. spiralis and sediment microenvironment were investigated in the study for the first time, aiming to determine whether it is suitable for application in the field of ecological restoration. The growth index, and physiological and biochemical index of V. spiralis in the experiments were measured once a month, and the changes of rhizosphere microorganisms and physicochemical properties of sediments were also studied at the same time. The results demonstrated that bentonite can effectively promote the growth of V. spiralis. The treatment groups of RB1/1 and MB1/5 (the mass ratios of bentonite to sediment were 1/1 and 1/5, respectively.) showed the best V. spiralis growth promotion rates which were 18.78%, and 11.79%, respectively. The highest microbial diversity and abundance existed in group of RB10 (the mass ratio of sediment to bentonite was 10/1), in which the OTUs, Shannon, Chao and Ace were 1521.0, 5.20, 1712.26, and 1686.31, respectively. Bentonite was conducive to the propagation of rhizosphere microorganisms, and further changed the physical and chemical properties of the sediment microenvironment. The nutrient elements dissolved from bentonite may be one of the main reasons that promoted the growth of V. spiralis. The purpose of this result is to prove that bentonite can be further applied as sediment improver and growing media in ecological restoration projects in eutrophic shallow lakes.
Collapse
Affiliation(s)
- Yunli Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilingyun Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingwei Kong
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guoliang Bai
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Feng Luo
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chuan Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Zimao Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Han Y, Li Q, He H, Gu J, Wu Z, Huang X, Zou X, Zhang Y, Li K. Effect of juvenile omni-benthivorous fish (Carassius carassius) disturbance on the efficiency of lanthanum-modified bentonite (LMB) for eutrophication control: a mesocosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21779-21788. [PMID: 33411272 DOI: 10.1007/s11356-020-12045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Lanthanum-modified bentonite (LMB) is widely used for eutrophication control and has demonstrated good efficiency in some eutrophic lakes. However, the efficiency of LMB on eutrophication control in some eutrophic lakes, where the structure of food webs is mainly dominated by omni-benthivorous fish, remains ambiguous. Omni-benthivorous fish usually disturbs sediment and promotes the release of internal nutrients, the effect of which on the efficacy of LMB remains to be studied. Thus, a 30-day mesocosm experiment was conducted to determine whether omni-benthivorous fish disturbance and LMB would cause antagonistic responses. LMB significantly reduced dissolved P concentration in overlying water, converting mobile P to bound P in the surface layer of sediment in the absence of crucian carp (Carassius carassius). However, there were significantly negative interaction effects between LMB and crucian carp. Although LMB still effectively reduced the total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP) concentrations of overlying water in the presence of crucian carp, it had limited efficacy on inhibiting the increased concentrations of suspended solids, particulate nutrients, and chlorophyll a (Chl a) due to crucian carp disturbance. Furthermore, the crucian carp disturbance also increased the risk of mobile P releasing from surface sediment, whether with or without LMB application. The results indicated that the efficacy of LMB was insufficient to offset the negative effect of omni-benthivorous fish disturbance on eutrophication control. Hence, the omni-benthivorous fish also need to be considered for eutrophication control in shallow eutrophic lakes. Some measures need to be taken to control the biomass of omni-benthivorous fish.
Collapse
Affiliation(s)
- Yanqing Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China
| | - Hu He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China
| | - Jiao Gu
- College of Geographical Sciences, Taiyuan Normal University, Jinzhong, 030619, China
| | - Zhaoshi Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaolong Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaojuan Zou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China
| | - You Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China.
| | - Kuanyi Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, No.73 East Beijing Road, 210008, Nanjing, Jiangsu Province, People's Republic of China.
- Sino-Danish Centre for Education and Research, Beijing, 100049, China.
| |
Collapse
|
17
|
Li Y, Wang L, Chao C, Yu H, Yu D, Liu C. Submerged macrophytes successfully restored a subtropical aquacultural lake by controlling its internal phosphorus loading. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115949. [PMID: 33168373 DOI: 10.1016/j.envpol.2020.115949] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/08/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Intensive aquaculture has largely changed the global phosphorus (P) flow and become one of the main reasons for the eutrophication of global aquatic ecosystem. Artificial planting submerged macrophytes has attracted enormous interest regarding the restoration of eutrophic lakes. However, few large-scale (>80 km2) studies have focused on the restoration of aquatic vegetation in the subtropical lakes, and the mechanism underlying the restrain of sediment P release by macrophytes remains unknown. In this study, field surveys and the diffusive gradients in thin films (DGT) technique were used to elucidate the effects of macrophytes on internal P loading control in a typical eutrophic aquacultural lake. Results showed that half of the P content in overlying water and sediments, particularly dissolved P in overlying water and calcium bound P (Ca-P) in sediment, were removed after restoration. Temperature, as well as dissolved oxygen (DO) and P concentration gradients near the sediment-water interface (SWI) jointly controlled the release of labile P from surface sediments. Submerged macrophytes can effectively inhibit the release of sediment P into the overlying water, which depended on DO concentration in the bottom water. Future restoration projects should focus on the temperature response of submerged macrophytes of different growth forms (especially canopy-forming species) to avoid undesirable restoration effects. Our results complement existing knowledge about submerged macrophytes repairing subtropical P-contaminated lakes and have positive significance for lake restoration by in situ phytoremediation.
Collapse
Affiliation(s)
- Yang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Ligong Wang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chuanxin Chao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Hongwei Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
18
|
Lin Q, Fan M, Peng X, Ma J, Zhang Y, Yu F, Wu Z, Liu B. Response of Vallisneria natans to aluminum phytotoxicity and their synergistic effect on nitrogen, phosphorus change in sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123167. [PMID: 32569987 DOI: 10.1016/j.jhazmat.2020.123167] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Increasing aluminum (Al) use and its effects on aquatic systems have been a global issue, however the Al impacts on submerged plants and their ecological functions were poorly understood. Aquatic simulation experiments were performed to study Al-toxicity on the germination and seedling morphological and physiological characteristics of Vallisneria natans, and investigate their synergistic effect on nitrogen (N), phosphorus (P) change and microbial community in sediment. The seeds germination characteristics, growth and physiological parameters of seedlings, including root activity, were significantly affected by alum treatments and the inhibition levels increased with Al3+ concentration. The Al accumulation in roots and leaves were significantly different. Al3+ concentration above 0.3 mg/L showed toxic to V. natans. TN, TP, IP, Fe/Al-P contents in sediments varied markedly under co-existence of Al and V. natans. Additionally, the relative abundance of sediment microbial community related to N, P cycle was effected. Results concluded that the increasing aquatic Al-concentration inhibits growth and propagation of submerged plants and the ecological restoration effect, and exerts synergistic effect with submerged plants on N, P components in sediments. Such findings were helpful for Al ecological evaluation, and were instructive for the submerged plants restoration in shallow eutrophic lakes with Al input.
Collapse
Affiliation(s)
- Qingwei Lin
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Mingjun Fan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jianmin Ma
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fei Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
19
|
Bai G, Zhang Y, Yan P, Yan W, Kong L, Wang L, Wang C, Liu Z, Liu B, Ma J, Zuo J, Li J, Bao J, Xia S, Zhou Q, Xu D, He F, Wu Z. Spatial and seasonal variation of water parameters, sediment properties, and submerged macrophytes after ecological restoration in a long-term (6 year) study in Hangzhou west lake in China: Submerged macrophyte distribution influenced by environmental variables. WATER RESEARCH 2020; 186:116379. [PMID: 32911268 DOI: 10.1016/j.watres.2020.116379] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Submerged macrophyte restoration is the key stage in the reestablishment of an aquatic ecosystem. Previous studies have paid considerable attention to the effect of multiple environmental factors on submerged macrophytes. Meanwhile, few studies have been conducted regarding the spatial and seasonal characteristics of water and sediment properties and their long-term relationship with submerged macrophytes after the implementation of the submerged macrophytes restoration project. On a monthly basis, we monitored the spatial and seasonal variation in water parameters, sediment properties, and the submerged macrophyte characteristics of West Lake in Hangzhou from August 2013 to July 2019. From these measurements, we characterized the relationship between environmental factors and submerged macrophytes. Water nutrient concentrations continuously decreased with time, and the accumulation of sediment nutrients was accelerated as the submerged macrophyte communities developed on a long-term scale. The results indicated that the difference in water parameters was due to seasonal changes and land-use types in the watershed. The differences in the sediment properties were mainly attributed to seasonal changes and changes in the flow field. Redundancy analysis showed that the influence of water nutrients on the submerged macrophyte distribution was greater than that of sediment nutrients. The result also suggested that the developed root system, high stoichiometric homeostasis coefficients of P, and compensation ability of substantial leaf tissue may lead to a large distribution of Vallisneria natans in West Lake in Hangzhou. The correlation of water parameters and sediment properties with submerged macrophytes for a long time was very important as the restoration was achieved. To ensure the stability of the aquatic ecosystem after performing the submerged macrophyte restoration, a greater emphasis must be placed on reestablishing the entire ecosystem, including the restoration of aquatic animals and fish stocks. We expect these findings to serve as a reference for researchers and government agencies in the field of aquatic ecosystem restoration.
Collapse
Affiliation(s)
- Guoliang Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenhao Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lingwei Kong
- Environmental Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Lai Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianmin Ma
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Jincheng Zuo
- College of Life Sciences, Ludong University, Yantai 264025, China
| | - Jin Li
- Life Science School, Hubei Normal University, Huangshi 435002, China
| | - Jing Bao
- Hangzhou Administration of West Lake Water Areas (The Environmental Monitoring Station of Hangzhou West Lake Scenic Area) Hangzhou 310002, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
20
|
Liu Z, Zhang Y, Yan P, Luo J, Kong L, Chang J, Liu B, Xu D, He F, Wu Z. Synergistic control of internal phosphorus loading from eutrophic lake sediment using MMF coupled with submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:138697. [PMID: 32438085 DOI: 10.1016/j.scitotenv.2020.138697] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/16/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Sediment phosphorus (P) is the main source of endogenous P for lake eutrophication. An in-situ combined technology for determination the removal effect of sediment P in all fractions was first developed using the novel modified maifanite (MMF) and submerged macrophytes in this study. MMF was synthesized using an acidification process (2.5 mol/L H2SO4) and then a calcination (400 °C) method. The morphology and structure of MMF were characterized by XRD, SEM, XPS, and BET. We tested the removal effects of sediment P by MMF and submerged macrophytes in combination and separately. The results demonstrated that the synergistic removal capacity of sediment P using MMF coupled with submerged macrophytes was higher than the sum of them applied separately. MMF could promote the submerged macrophytes growth and enhance the adsorption of extra P on MMF through root oxygenation and nutrient allocation. The microcosm experiment results showed that sediment from fMMF+V. spiralis exhibited the most microbial diversity and abundance among the sediment. The combination of MMF and submerged macrophytes increased the Firmicutes abundance and decreased the Bacteroidetes. These results indicated that adsorption-biological technology can be regarded as a novel and competitive technology to the endogenous pollution control in eutrophic shallow lakes.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Luo
- Center for Environmental Research and Technology, University of California-Riverside, California, USA
| | - Lingwei Kong
- Environmental Research and Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Junjun Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
21
|
Li X, Huang L, Fang H, He G, Reible D, Wang C. Immobilization of phosphorus in sediments by nano zero-valent iron (nZVI) from the view of mineral composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133695. [PMID: 31400671 DOI: 10.1016/j.scitotenv.2019.133695] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Immobilization of phosphorus (P) in sediments is essential for controlling eutrophication in natural waters. As sediment is a complex assemblages of minerals, it is necessary to explore the intrinsic mechanisms of immobilization from the view of mineral composition. In this study, nano zero-valent iron (nZVI) is used as an example to immobilize P in sediment from Tai Lake and minerals of quartz, hematite, potassium feldspar, illite, montmorillonite, calcite, and kaolin (i.e. the main components of natural sediment), to consider the role of mineral composition on P immobilization). Results show that the immobilization efficiency increases gradually with the increasing amount of adopted nZVI, until a maximum value of about 60% - 80% when 0.03-0.05 g/g of nZVI is added. Particularly, the maximum P immobilization efficiency is the highest for hematite (about 86%) due to the chemical reaction between hematite and P that inhibiting P release, followed by quartz, illite, montmorillonite, and kaolin (about 64% - 72%) which only physically adsorb P. However, the maximum P immobilization efficiency of nZVI is only 31% and 17% for potassium feldspar and calcite, respectively, due to their relatively high pH values that reducing the formation of iron (Fe)-P precipitation and inhibiting P immobilization. Thus, the P immobilization is mainly due to the reaction between nZVI/mineral and P to form FeP precipitates, followed by physical adsorption; and the particle size, elemental composition (e.g. the calcium (Ca) in calcite and Fe in hematite) and pH value also affect the P immobilization efficiency. Moreover, based on the P immobilization efficiencies for various minerals, P immobilization in sediments can be reasonably predicted from the mineral composition through methods such as component additivity.
Collapse
Affiliation(s)
- Xiaocui Li
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Huang
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| | - Hongwei Fang
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.
| | - Guojian He
- State Key Laboratory of Hydro-science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Danny Reible
- Department of Civil & Environmental Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
22
|
Liu Z, Zhang Y, Han F, Yan P, Liu B, Zhou Q, Min F, He F, Wu Z. Investigation on the adsorption of phosphorus in all fractions from sediment by modified maifanite. Sci Rep 2018; 8:15619. [PMID: 30353133 PMCID: PMC6199331 DOI: 10.1038/s41598-018-34144-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Sediment phosphorus (P) removal is crucial for the control of eutrophication, and the in-situ adsorption is an essential technique. In this study, modified maifanite (MMF) prepared by acidification, alkalization, salinization, calcination and combined modifications, respectively, were first applied to treat sediment P. The morphology and microstructure of MMF samples were characterized by X-ray fluorescence (XRF), Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET). Various adsorption parameters were tested, such as dosage of maifanite, time, operation pH and temperature. The adsorption mechanisms were also investigated and discussed. Results showed that CMMF-H2.5-400 (2.5 mol/L H2SO4 and calcined at 400 °C) exhibited the highest P adsorption capacity. Thus, it was selected as the in-situ adsorbent material to control the internal P loading. Under the optimal conditions of dynamic experiments, the adsorption rates of TP, IP, OP, Fe/Al-P and Ca-P by CMMF-H2.5-400 were 37.22%, 44.41%, 25.54%, 26.09% and 60.34%, respectively. The adsorption mechanisms analysis revealed that the adsorption of P onto CMMF-H2.5-400 mainly by ligand exchange. Results of this work indicated that the modification treatment could improve the adsorption capacity of maifanite, and CMMF-H2.5-400 could be further applied to eutrophication treatment.
Collapse
Affiliation(s)
- Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Fan Han
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Pan Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fenli Min
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
23
|
Yu J, Zhong J, Chen Q, Huang W, Hu L, Zhang Y, Fan C. An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24682-24694. [PMID: 29916150 DOI: 10.1007/s11356-018-2432-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
In eutrophic lake restorations, in situ capping is an often considered method to control sediment internal phosphorus (P) pollution for mitigating eutrophication status. Subsequent aquatic macrophyte revegetation can directly derive P from the sediment for growth. However, the effects of capping with clean soils on internal P release from sediments under rooted aquatic macrophyte revegetation are still unclear. In the present study, the influences of sediment P remobilization by P. australis revegetation on P inactivation by capping were investigated based on an entire growth simulation study. Our findings showed during the growth of P. australis, tests conducted on total phosphorous (TP), calcium-bound P (Ca-P), loosely bound P (loose-P), organic P (Org-P), and iron-adsorbed P (Fe-P) found significant changes (p < 0.001). Specifically, the mean contents of TP and Ca-P decreased by 291.1 and 224.2 mg kg-1, respectively, while those of Fe-P increased from 26.4 to 124.8 mg kg-1. In addition, sediment mobile-P contents increased coincidentally with the growth of P. australis during the whole course of experiment. Further analysis indicated calculated diffusion fluxes of soluble reactive phosphorus (SRP) generally increased with incubation time, although capping effectively induced the reduction of SRP concentration in pore water and its release to waters. Therefore, sediment P remobilization by P. australis revegetation was able to enhance P lability in lake sediments, with intermediate activation ability compared to other correlated water bodies. This phenomenon was most likely attributed to solubilization of sediment P by organic acids secreted from P. australis rhizosphere. Overall, sediment P remobilization by rooted macrophytes is unfavorable for capping to control internal P release to water column during eutrophic lake restorations.
Collapse
Affiliation(s)
- Juhua Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
- CEER, Nanjing Hydraulic Research Institute, Nanjing, 210029, People's Republic of China
| | - Jicheng Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| | - Qiuwen Chen
- CEER, Nanjing Hydraulic Research Institute, Nanjing, 210029, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China
| | - Liuming Hu
- CEER, Nanjing Hydraulic Research Institute, Nanjing, 210029, People's Republic of China
| | - Yinlong Zhang
- Key Laboratory of Forestry Ecological Engineering of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chengxin Fan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Number 73 Beijing East Road, 210008, Nanjing, People's Republic of China.
| |
Collapse
|