1
|
Liang L, Cao J, Zhang Y, Liu X, Li J, Yang B, Lv W, Yang Q, Xing M. Selective adsorption of high ionization potential value organic pollutants in wastewater. Proc Natl Acad Sci U S A 2024; 121:e2403766121. [PMID: 38995964 PMCID: PMC11260121 DOI: 10.1073/pnas.2403766121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/20/2024] [Indexed: 07/14/2024] Open
Abstract
It is imperative to devise effective removal strategies for high ionization potential (IP) organic pollutants in wastewater as their reduced electron-donating capacity challenges the efficiency of advanced oxidation systems in degradation. Against this backdrop, leveraging the metal-based carbon material structure meticulously, we employed metal-pyridine-N (M-N-C, M=Fe, Co, and Ni) as the electron transfer bridge. This distinctive design facilitated the ordered transfer of electrons from the adsorbent surface to the surface of high IP value pollutants, acting as a "supplement" to compensate for their deficient electron-donating capability, thereby culminating in the selective adsorption of these pollutants. Furthermore, this adsorbent also demonstrated effective removal of trace emerging contaminants (2 mg/L), displayed robust resistance to various salts, exhibited reusability, and maintained stability. These findings carry substantial implications for future carbon-based material design, offering a pathway toward exceptional adsorption performance in treating water pollution.
Collapse
Affiliation(s)
- Lihong Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jiazhen Cao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai200237, China
| | - Yayun Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Xinyue Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Jun Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Bo Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Weiyang Lv
- National Engineering Lab of Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Qiang Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai200237, China
| | - Mingyang Xing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai200237, China
| |
Collapse
|
2
|
Yi P, Shu X, Wang C, Li M, Huang Y, Wu M, Zhang L, Chen Q. Formation of cation bridges and its promoting mechanism for sorption of sulfamethoxazole by montmorillonite. CHEMOSPHERE 2024; 356:141841. [PMID: 38582173 DOI: 10.1016/j.chemosphere.2024.141841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
The coexistence of metal cations is often accompanied by organic pollution and could affect the environmental fate of organics by mediating the formation of cation bridges. However, the environmental fate and risk of organics in cation co-existing environments are poorly understood due to the lack of accurate identification of cation bridge formation and stability. In this study, the sorption of sulfamethoxazole (SMX) on montmorillonite (MT) with the coexistence of three different valence metal cations (Na+, Ca2+, and Cr3+) was investigated. Ca2+ and Cr3+ can significantly promote the sorption of SMX on MT for about 5∼10 times promotion, respectively, while Na+ bridges displayed little effect on the sorption of SMX. The sorption binding energy of SMX with MT-Ca (-44.01 kcal/mol) and MT-Cr (-64.57 kcal/mol) bridges was significantly lower than that with MT-Na (-38.45 kcal/mol) and MT (-39.39 kcal/mol), indicating that the sorption affinity of SMX on Cr and Ca bridges was much stronger. The higher valence of the cations also resulted in a more stable adsorbed SMX with less desorption fluctuation. In addition, the relatively higher initial concentration of SMX and the valence of cations increased the bonding density of the cation bridges, thus promoting the apparent sorption of SMX on MT to a certain extent. This work reveals the formation and function of cation bridges in the sorption of SMX on MT. It lays a theoretical foundation for further understanding the environmental fate and risk of organics.
Collapse
Affiliation(s)
- Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Xiao Shu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenhui Wang
- Kunming Academy of Agricultural Science, Yunnan, Kunming, 650034, China
| | - Mingfu Li
- Kunming Academy of Agricultural Science, Yunnan, Kunming, 650034, China
| | - Yu Huang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Gabriela Elvir-Padilla L, Ileana Mendoza-Castillo D, Villanueva-Mejía F, Bonilla-Petriciolet A. Molecular aggregation effect on the antagonistic adsorption of pharmaceuticals from aqueous solution using bone char: DFT calculations and multicomponent experimental studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
4
|
Liang D, Hu Y, Huang R, Cheng J, Chen Y. Effects of various antibiotics on aerobic nitrogen removal and antibiotic degradation performance: Mechanism, degradation pathways, and microbial community evolution. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126818. [PMID: 34390955 DOI: 10.1016/j.jhazmat.2021.126818] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Little information about the selective stress of various antibiotics and how they influence different stages of aerobic nitrogen removal is available. A long-term aerobic nitrogen removal-moving bed biofilm reactor was established by the inoculation of Achromobacter sp. JL9, capable of heterotrophic nitrification and aerobic denitrification, and aerobic activated sludge. The nitrogen removal and antibiotic degradation performances of various antibiotics were then measured. High total nitrogen (91.83% and 91.51%) removal efficiencies were achieved with sulfamethoxazole or no antibiotics, and lower efficiencies were observed with other antibiotics (trimethoprim, teicoplanin, and ciprofloxacin). These results suggest that various antibiotics have different selective inhibitory effects on aerobic nitrogen removal. Additionally, all antibiotics were partly degraded; proposed degradation pathways according to the detected intermediates included ring-opening, S-N bond cleavage, amination, hydroxylation, and methylation. High-throughput sequencing indicated that aerobic denitrifying, recalcitrant pollutant degrading, and antibiotic-resistant bacteria dominate during the community evolution process.
Collapse
Affiliation(s)
- Donghui Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Ruzhen Huang
- School of Environment South China Normal University, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Natarajan R, Saikia K, Ponnusamy SK, Rathankumar AK, Rajendran DS, Venkataraman S, Tannani DB, Arvind V, Somanna T, Banerjee K, Mohideen N, Vaidyanathan VK. Understanding the factors affecting adsorption of pharmaceuticals on different adsorbents - A critical literature update. CHEMOSPHERE 2022; 287:131958. [PMID: 34454222 DOI: 10.1016/j.chemosphere.2021.131958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Remediation of emerging pharmaceutically active compounds (PhACs) as micropollutants in wastewater is of foremost importance as they can cause extremely detrimental effects on life upon bioaccumulation and generation of drug-resistance microorganisms. Presently used physicochemical treatments, such as electrochemical oxidation, nanofiltration and reverse osmosis, are not feasible owing to high operating costs, incomplete removal of contaminants along with toxic by-products formation. Adsorption with the utilization of facile and efficient nanoparticulate adsorbents having distinctive properties of high surface area, excellent adsorption capacity, ability to undergo surface engineering and good regeneration displays great potential in this aspect along with the incorporation of nanotechnology for effective treatment. The application of such nanosorbents provides optimal performance under a wide range of physicochemical conditions, decreased secondary pollution with reduced mechanical stress along with excellent organic compound sequestration capacity, which in turn improves the quality of potable water in a sustainable way compared to current treatments. The present review intends to consolidate the range of factors that affect the process of adsorption of different PhACs on to various nanosorbents and also highlights the adsorption mechanism aiding in the retrieval.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Diya Bharat Tannani
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Varshni Arvind
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Tanya Somanna
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Koyena Banerjee
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Nizar Mohideen
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India.
| |
Collapse
|
6
|
Fan Y, Zheng C, Lin Z, Huo A, Li R, He C. Influence of sulfamethazine (SMT) on the adsorption of antimony by the black soil: Implication for the complexation between SMT and antimony. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143318. [PMID: 33223156 DOI: 10.1016/j.scitotenv.2020.143318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
This paper reported when sulfamethazine (SMT) and antimony (Sb(V)) coexisted in aqueous solution at pH of 3.0, 5.0 and 7.0, the complexation between SMT and Sb(V) occurred. Such a complexation impeded the adsorption of Sb(V) on the black soil. The higher the solution pH value was, the more the amount of Sb(V) was prevented from adsorbing on the black soil. The maximum adsorption capacity (qm) of Sb(V) at the presence of SMT under pH of 3.0, 5.0 and 7.0 was 5.28, 3.45 and 1.95 mg/g, respectively. -NH2, NH, SO and CN of pyrimidine ring carried by SMT acted as the complexation sites with Sb(V). The complexation constant K were - 3.15, -3.26 and - 3.48 at pH of 7.0, 5.0 and 3.0, respectively, indicating that the complexation strength between SMT and Sb(V) followed the order of pH 7.0 > pH 5.0 > pH 3.0. The binding energy between Sb(V) and the CN group of pyrimidine ring was the highest (1.42 eV), and then followed by the groups of -NH (1.37 eV), SO (0.66 eV) and -NH2 (0.39 eV). Besides SO and CN, Sb(V) tends to complex with NH via coordination bond at pH of 7.0 while -NH2 via cation-π interaction at pH 3.0 and 5.0. Compared to pH of 5.0, the strength of cation-π interaction at pH of 3.0 weakened according to the molecular electrostatic potential map. These results demonstrated that different from the situation where Sb(V) exists in aqueous solution alone, the coexistence of SMT with Sb(V) affected the adsorption behavior of Sb(V) in soil and solution pH was also an influence factor. These findings in this paper would be helpful for further understanding the mobility, bioavailability and other environmental behavior of Sb(V) in soil when Sb(V) coexists with antibiotics even other organic compounds.
Collapse
Affiliation(s)
- Yurui Fan
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, PR China.
| | - Zishen Lin
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Aidi Huo
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, PR China; School of Water and Environment, Chang'an University, Xi'an 710054, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, Xi'an, PR China.
| | - Risheng Li
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd, Xi'an, PR China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
7
|
Ouyang J, Zhou L, Liu Z, Heng JY, Chen W. Biomass-derived activated carbons for the removal of pharmaceutical mircopollutants from wastewater: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117536] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Schmidtová Z, Kodešová R, Grabicová K, Kočárek M, Fér M, Švecová H, Klement A, Nikodem A, Grabic R. Competitive and synergic sorption of carbamazepine, citalopram, clindamycin, fexofenadine, irbesartan and sulfamethoxazole in seven soils. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103680. [PMID: 32682147 DOI: 10.1016/j.jconhyd.2020.103680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 05/12/2023]
Abstract
Sorption of pharmaceuticals, which can occur in soils, may differ when present in a soil solution as a single compound or in a solution with other pharmaceuticals. Therefore, the sorption isotherms described by the Freundlich equations were evaluated for 6 compounds, which were applied in solutions of a single pharmaceutical, two pharmaceuticals or all pharmaceuticals to seven soils. Study mainly focused on a behavior of fexofenadine and irbesartan that occurred in soils in 3 forms (cationic, zwitter-ionic or neutral, anionic). Sorption of both compounds slightly increased (in some soils) when applied together, largely increased when applied with carbamazepine (neutral), and extremely increased when applied in solutions with citalopram (strongly sorbed cation), which could be explained by a cooperative multilayer sorption on soil constituents. On the other hand, sorption of both compounds moderately decreased when applied with clindamycin (cation and neutral) or sulfamethoxazole (neutral or anion). The magnitude of an increase or decrease in the Freundlich sorption coefficient (KF) for a particular compound depended on soil conditions, a form of compound's molecule and its interaction with molecules of other compounds. Despite sorption being influenced by other compound(s) in solution, the KF coefficients evaluated for a particular compound under the different conditions were mostly correlated with the same soil properties: KF,CAR with an organic carbon content, KF,CIT and KF,CLI with a base cation saturation, KF,SUL with hydrolytic acidity, and KF,FEX and KF,IRB with sorption complex saturation.
Collapse
Affiliation(s)
- Zuzana Schmidtová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500 Prague 6, Czech Republic.
| | - Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500 Prague 6, Czech Republic.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Martin Kočárek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500 Prague 6, Czech Republic
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500 Prague 6, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Aleš Klement
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500 Prague 6, Czech Republic
| | - Antonín Nikodem
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16500 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
9
|
Ahmed MJ, Hameed BH. Insights into the isotherm and kinetic models for the coadsorption of pharmaceuticals in the absence and presence of metal ions: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109617. [PMID: 31605906 DOI: 10.1016/j.jenvman.2019.109617] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are a wide class of emerging pollutants due to their continuous and the increasing consumption of users. These pollutants are usually found in the real environment as mixtures alone or with metal ions. Thus, the migration risk increases, which complicates the removal of pharmaceuticals because of the combined and synergistic effects. The focus of treatment of pharmaceutical mixtures and their coexistence with metals is of considerable importance. For this purpose, adsorption has been efficiently applied to several studies for the treatment of such complex systems. In this article, the coadsorption behavior of pharmaceuticals in the absence and existence of metals on several adsorbents has been reviewed. The adsorption isotherms and kinetics of these two systems have been analyzed using different models and discussed. Important challenges and promising routes are suggested for the future development of the coadsorption of the studied systems. This article provides an overview on the most utilized and effective adsorbents, widely studied adsorbates, best applied isotherm and kinetic models, and competitive effect in coadsorption of pharmaceuticals, both with and without metals.
Collapse
Affiliation(s)
- M J Ahmed
- Department of Chemical Engineering, College of Engineering, Baghdad University, P.O. Box 47024, Aljadria, Baghdad, Iraq.
| | - B H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
10
|
Strategies for the characterization and optimization of adsorptive stripping voltammetry with catalytic enhancement for ultratrace element determination: The case of iron 2,3-dihydroxynaphthalene complex with catalytic enhancement by atmospheric oxygen. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Silva CP, Jaria G, Otero M, Esteves VI, Calisto V. Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13173-13184. [PMID: 30903474 DOI: 10.1007/s11356-019-04823-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
A waste-based alternative activated carbon (AAC) was produced from paper mill sludge under optimized conditions. Aiming its application in tertiary wastewater treatment, AAC was used for the removal of carbamazepine, sulfamethoxazole, and paroxetine from biologically treated municipal wastewater. Kinetic and equilibrium adsorption experiments were run under batch operation conditions. For comparison purposes, they were also performed in ultrapure water and using a high-performance commercial AC (CAC). Adsorption kinetics was fast for the three pharmaceuticals and similar onto AAC and CAC in either wastewater or ultrapure water. However, matrix effects were observed in the equilibrium results, being more remarkable for AAC. These effects were evidenced by Langmuir maximum adsorption capacities (qm, mg g-1): for AAC, the lowest and highest qm were 194 ± 10 (SMX) and 287 ± 9 (PAR), in ultrapure water, and 47 ± 1 (SMX) and 407 ± 14 (PAR), in wastewater, while for CAC, the lowest and highest qm were 118 ± 7 (SMX) and 190 ± 16 (PAR) in ultrapure water and 123 ± 5 (SMX) and 160 ± 7 (CBZ) in wastewater. It was found that the matrix pH played a key role in these differences by controlling the surface electrostatic interactions between pharmaceutical and AC. Overall, it was evidenced the need of adsorption results in real matrices and demonstrated that AAC is a promising option to be implemented in tertiary wastewater treatments for pharmaceuticals' removal. Graphical abstract Production of an alternative activated carbon (AC) comparing favourably with a commercial AC in the removal of neutral and positive pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Carla Patrícia Silva
- Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Guilaine Jaria
- Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- Department of Environment and Planning and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
12
|
Briones RM, Sarmah AK. Sorption and mobility of metformin and guanylurea in soils as affected by biosolid amendment: Batch and column tests. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:19-27. [PMID: 30317086 DOI: 10.1016/j.envpol.2018.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Recent classification of metformin as an emerging contaminant warrants assessment of its fate and behaviour in the natural environment especially with land-based application of potentially contaminated wastewaters and biosolids. The present study provided further insight into the sorption mechanisms of metformin and its transformation product guanylurea in soil and upon biosolid fortification. Decreased metformin sorption (12.4%) as measured by the effective distribution coefficient (Kdeff) was observed with biosolids amendment while significant increase (2500%) in guanylurea sorption was calculated. Analysis of co-solute effects confirmed their contrasting sorption mechanisms with the absence of competitive effects in unamended soil. Results of the column tests were in good agreement with the batch sorption studies as the fitted values of retardation factors decreased and increased for metformin and guanylurea, respectively, upon addition of biosolids. The shapes of the breakthrough curves suggest slower desorption rates for both compounds in unamended soil resulting to non-equilibrium conditions and back-end tailings. However, in biosolid-amended soil columns, these tailings were less pronounced resembling equilibrium transport. Results also demonstrated enhanced mobility of both compounds upon biosolids fortification. The non-equilibrium chemical transport model fitted the measured data well (0.975 > r2 > 0.988) especially for unamended soils which suggests the existence of non-equilibrium conditions and rate-limited sorption sites.
Collapse
Affiliation(s)
- Rowena M Briones
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
13
|
Saraf A, Sharma S, Sachar S. Insights into the Interactions of Sulfamethoxazole with Organized Assemblies of Ionic and Nonionic Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14624-14632. [PMID: 30380879 DOI: 10.1021/acs.langmuir.8b02814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work reports the physicochemical behavior of antibiotic drug sulfamethoxazole (SMX) in the presence of different surfactants, viz., cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide, didodecyl dimethyl ammonium bromide, sodium dodecyl sulfate, sodium deoxycholate, Tween 80, and Tween 20. The drug-surfactant systems were studied by UV-visible and fluorescence spectroscopies to assess the binding constants ( Kb), partition coefficient ( Kx), free energy of partition (Δ Gp), aggregation number ( Nagg), and quenching constant ( KSV). Solubilization studies were carried out to understand the encapsulation efficiency of the system, which was found to increase as a function of CTAB concentration. Surface tension measurements enabled us to determine the change in critical micelle concentration as well as to calculate the variation in surface parameters of surfactant in the presence of drug, viz., surface pressure (π), surface excess concentration (γmax), and minimum area ( Amin). In addition, UV-visible, fluorescence, and circular dichroism studies were carried out to check the effects of surfactant-based SMX formulation on serum proteins.
Collapse
Affiliation(s)
- Aparna Saraf
- Department of Chemistry , University of Mumbai , Vidyanagari, Santacruz (E), Mumbai 400098 , India
| | - Shweta Sharma
- Institute of Forensic Science & Criminology , Panjab University , Chandigarh 160 014 , India
| | - Shilpee Sachar
- Department of Chemistry , University of Mumbai , Vidyanagari, Santacruz (E), Mumbai 400098 , India
| |
Collapse
|