1
|
Li Z, Li D, Liu S, Zhao H, Li B, Shan S, Zhu Y, Sun J, Hou J. Impact of elevated CO 2 on microbial communities and functions in riparian sediments: Role of pollution levels in modulating effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176481. [PMID: 39341255 DOI: 10.1016/j.scitotenv.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/14/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The impact of elevated CO2 levels on microorganisms is a focal point in studying the environmental effects of global climate change. A growing number of studies have demonstrated the importance of the direct effects of elevated CO2 on microorganisms, which are confounded by indirect effects that are not easily identified. Riparian zones have become key factor in identifying the environmental effects of global climate change because of their special location. However, the direct effects of elevated CO2 levels on microbial activity and function in riparian zone sediments remain unclear. In this study, three riparian sediments with different pollution risk levels of heavy metals and nutrients were selected to explore the direct response of microbial communities and functions to elevated CO2 excluding plants. The results showed that the short-term effects of elevated CO2 did not change the diversity of the bacterial and fungal communities, but altered the composition of their communities. Additionally, differences were observed in the responses of microbial functions to elevated CO2 levels among the three regions. Elevated CO2 promoted the activities of nitrification and denitrification enzymes and led to significant increases in N2O release in the three sediments, with the greatest increase of 76.09 % observed in the Yuyangshan Bay (YYS). Microbial carbon metabolism was promoted by elevated CO2 in YYS but was significantly inhibited by elevated CO2 in Gonghu Bay and Meiliang Bay. Moreover, TOC, TN, and Pb contents were identified as key factors contributing to the different microbial responses to elevated CO2 in sediments with different heavy metal and nutrient pollution. In conclusion, this study provides in-depth insights into the responses of bacteria and fungi in polluted riparian sediments to elevated CO2, which helps elucidate the complex interactions between microbial activity and environmental stressors.
Collapse
Affiliation(s)
- Ziyu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huilin Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yizhi Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jingqiu Sun
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
2
|
Li X, Qi M, Li Q, Wu B, Fu Y, Liang X, Yin G, Zheng Y, Dong H, Liu M, Hou L. Acidification Offset Warming-Induced Increase in N 2O Production in Estuarine and Coastal Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4989-5002. [PMID: 38442002 DOI: 10.1021/acs.est.3c10691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Global warming and acidification, induced by a substantial increase in anthropogenic CO2 emissions, are expected to have profound impacts on biogeochemical cycles. However, underlying mechanisms of nitrous oxide (N2O) production in estuarine and coastal sediments remain rarely constrained under warming and acidification. Here, the responses of sediment N2O production pathways to warming and acidification were examined using a series of anoxic incubation experiments. Denitrification and N2O production were largely stimulated by the warming, while N2O production decreased under the acidification as well as the denitrification rate and electron transfer efficiency. Compared to warming alone, the combination of warming and acidification decreased N2O production by 26 ± 4%, which was mainly attributed to the decline of the N2O yield by fungal denitrification. Fungal denitrification was mainly responsible for N2O production under the warming condition, while bacterial denitrification predominated N2O production under the acidification condition. The reduced site preference of N2O under acidification reflects that the dominant pathways of N2O production were likely shifted from fungal to bacterial denitrification. In addition, acidification decreased the diversity and abundance of nirS-type denitrifiers, which were the keystone taxa mediating the low N2O production. Collectively, acidification can decrease sediment N2O yield through shifting the responsible production pathways, partly counteracting the warming-induced increase in N2O emissions, further reducing the positive climate warming feedback loop.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Mengting Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Qiuxuan Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Boshuang Wu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuxuan Fu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Salgado-Hernández E, Ortiz-Ceballos ÁI, Alvarado-Lassman A, Martínez-Hernández S, Rosas-Mendoza ES, Velázquez-Fernández JB, Dorantes-Acosta AE. Energy-saving pretreatments affect pelagic Sargassum composition and DNA metabarcoding reveals the microbial community involved in methane yield. PLoS One 2023; 18:e0289972. [PMID: 37590200 PMCID: PMC10434912 DOI: 10.1371/journal.pone.0289972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Sargassum spp. flood the Caribbean coastline, causing damage to the local economy and environment. Anaerobic digestion (AD) has been proposed as an attractive option for turning macroalgae into valuable resources. Sargassum spp. has a complex composition that affects the microbial composition involved in AD which generates a low methane yield. This study aimed to improve the methane yield of pelagic Sargassum, using different energy-saving pretreatments and identifying the microbial community associated with methane production. We applied different energy-saving pretreatments to algal biomass and assessed the methane yield using a biomethane potential (BMP) test. The microbial communities involved in the AD of the best- and worst-performing methanogenic systems were analyzed by high-throughput sequencing. The results showed that pretreatment modified the content of inorganic compounds, fibers, and the C:N ratio, which had a strong positive correlation with BMP. The water washing pretreatment resulted in the best methane yield, with an increase of 38%. DNA metabarcoding analysis revealed that the bacterial genera Marinilabiliaceae_uncultured, DMER64, Treponema, and Hydrogenispora, as well as the archaea genera Methanosarcina, RumEn_M2, Bathyarchaeia, and Methanomassiliicocus, dominated the microbial community with a high methane yield. This study is the first to demonstrate the microbial community structure involved in the AD of Sargassum spp. The pretreatments presented in this study can help overcome the limitations associated with methane yield.
Collapse
Affiliation(s)
- Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Ángel Isauro Ortiz-Ceballos
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Alejandro Alvarado-Lassman
- División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, Orizaba, Veracruz, Mexico
| | - Sergio Martínez-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
4
|
Liu S, Miao L, Li B, Shan S, Li D, Hou J. Long-term effects of Ag NPs on denitrification in sediment: Importance of Ag NPs exposure ways in aquatic ecosystems. WATER RESEARCH 2023; 242:120283. [PMID: 37413744 DOI: 10.1016/j.watres.2023.120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
The widespread use of silver nanoparticles (Ag NPs) inevitably leads to their increasing release into aquatic systems, with studies indicating that the mode of Ag NPs entry into water significantly affects their toxicity and ecological risks. However, there is a lack of research on the impact of different exposure ways of Ag NPs on functional bacteria in sediment. This study investigates the long-term influence of Ag NPs on denitrification process in sediments by comparing denitrifies responses to single (pulse injection of 10 mg/L) and repetitive (1 mg/L × 10 times) Ag NPs treatments over 60-day incubation. Results showed that a single exposure of 10 mg/L Ag NPs caused an obvious toxicity on activity and abundance of denitrifying bacteria on the first 30 days, reflecting by the decreased NADH amount, ETS activity, NIR and NOS activity, and nirK gene copy number, which resulted in a significant decline of denitrification rate in sediments (from 0.59 to 0.64 to 0.41-0.47 μmol15N L-1 h-1). While inhibition was mitigated with time and denitrification process recovered to the normal at the end of the experiment, the accumulated nitrate generated in the system showed that the recovery of microbial function did not mean the restoration of aquatic ecosystem after pollution. Differently, the repetitive exposure of 1 mg/L Ag NPs exhibited the evident inhibition on metabolism, abundance, and function of denitrifiers on Day 60, due to the accumulated amount of Ag NPs with the increased dosing number, indicating that the accumulated toxicity on functional microorganic community of repetitive exposure in less toxic concentration. Our study highlights the importance of Ag NPs entry pathways into aquatic ecosystem on their ecological risks, which affected dynamic responses of microbial function to Ag NPs.
Collapse
Affiliation(s)
- Songqi Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Sujie Shan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
5
|
Ju CJ, Niyazi S, Cao WY, Wang Q, Chen RP, Yu L. Characteristics and comparisons of the aerobic and anaerobic denitrification of a Klebsiella oxytoca strain: Performance, electron transfer pathway, and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117787. [PMID: 36965422 DOI: 10.1016/j.jenvman.2023.117787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The performance and electron (e-) transfer mechanisms of anaerobic and aerobic denitrification by strain Klebsiella were investigated in this study. The RT-PCR results demonstrated that the membrane bound nitrate reductase gene (narG) and Cu-nitrite reductase gene (nirK) were responsible for both aerobic and anerobic denitrification. The extreme low gene relative abundance of nirK might be responsible for the severe accumulation of NO2--N (nitrogen in the form of NO2- ion) under anaerobic condition. Moreover, the nitrite reductase (Nir) activity was 0.31 μg NO2--N min-1 mg-1 protein under anaerobic conditions, which was lower than that under aerobic conditions (0.38 μg NO2--N min-1 mg-1 protein). By using respiration chain inhibitors, the e- transfer pathways of anaerobic and aerobic denitrification of Klebsiella strain were constructed. Fe-S protein and Complex III were the core components under anaerobic conditions, while Coenzyme Q (CoQ), Complexes I and III played a key role in aerobic denitrification. Nitrogen assimilation was found to be the main way to generate NH4+-N (nitrogen in the form of NH4+ ion) during anaerobic denitrification, and also served as the primary nitrogen removal way under aerobic condition. The results of this study may help to improve the understanding of the core components of strain Klebsiella during aerobic and anaerobic denitrifications, and may suggest potential applications of the strain for nitrogen-containing wastewater.
Collapse
Affiliation(s)
- Cheng-Jia Ju
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shareen Niyazi
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Yin Cao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Xie J, Zou X, Chang Y, Liu H, Cui MH, Zhang TC, Xi J, Chen C. A feasibility investigation of a pilot-scale bioelectrochemical coupled anaerobic digestion system with centric electrode module for real membrane manufacturing wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 368:128371. [PMID: 36423756 DOI: 10.1016/j.biortech.2022.128371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The large-scale application of bioelectrochemical coupled anaerobic digestion (BES-AD) is limited by the matching of electrode configuration and the applicability of real wastewater. In this study, a pilot-scale BES-AD system with an effective system volume of 5 m3 and a 1 m3 volume of a carbon fiber brush electrode module was constructed and tested for treatment of the membrane manufacturing wastewater. The results showed that the BOD5/COD of the wastewater was increased from 0.238 to 0.398 when the applied voltage was 0.9 V. The pollutants such as N, N-Dimethylacetamide and glycerol in wastewater were degraded significantly. The microorganisms in the electrode modules were spatially enriched. The fermenters (Norank_f__ML635J-40_aquatic_group, 6.55 %; unclassified_f__Propionibacteriaceae, 5.25 %) and degraders (Corynebacterium, 29.31 %) were mostly enriched at the bottom, while electroactive bacteria (Pseudomonas, 29.39 %, Geobacter, 7.86 %) were mostly enriched at the top. Combined with the economical construction and operation cost ($1708.8/m3 and $0.76/m3) of the BES-AD system.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Jiajian Xi
- Suzhou Sujing Environmental Engineering Co., Ltd, Suzhou 215200, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
7
|
Wang L, Hu Z, Hu M, Zhao J, Zhou P, Zhang Y, Zheng X, Zhang Y, Hu ZT, Pan Z. Cometabolic biodegradation system employed subculturing photosynthetic bacteria: A new degradation pathway of 4-chlorophenol in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127670. [PMID: 35878775 DOI: 10.1016/j.biortech.2022.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
4-chlorophenol (4-CP) as a toxic persistent pollutant is quite difficult treatment by using traditional biological processes. Herein, photosynthetic bacteria (PSB) driven cometabolic biodegradation system associated with exogeneous carbon sources (e.g., sodium acetate) has been demonstrated as an effective microbial technique. The biodegradation rate (ri) can be at 0.041 d-1 with degradation efficiency of 93% in 3094 lx. Through the study of subculturing PSB in absence of NaCl, it was found that 50% inoculation time can be saved but keeping a similar 4-CP biodegradation efficiency in scale-up salinity system. A new plausible biodegradation pathway for 4-CP in 4th G PSB cometabolic system is proposed based on the detected cyclohexanone generation followed by ring opening. It is probably ascribed to the increasement of Firmicutes and Bacteroidetes at phyla level classified based on microbial community. This study contributes to a new insight into cometabolic technology for chlorophenol treatment in industrial hypersaline wastewater.
Collapse
Affiliation(s)
- Liang Wang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhongce Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Peijie Zhou
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yongjie Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
8
|
Yu KH, Can F, Ergenekon P. Nitric oxide and nitrite removal by partial denitrifying hollow-fiber membrane biofilm reactor coupled with nitrous oxide generation as energy recovery. ENVIRONMENTAL TECHNOLOGY 2022; 43:2934-2947. [PMID: 33779527 DOI: 10.1080/09593330.2021.1910348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen oxide (NOx) emissions cause significant impacts on the environment and must therefore be controlled even more stringently. This requires the development of cost-effective removal strategies which simultaneously create value-added by-products or energy from the waste. This study aims to treat gaseous nitric oxide (NO) by hollow-fibre membrane biofilm reactor (HFMBfR) in the presence of nitrite (NO2-) and evaluate nitrous oxide (N2O) emissions formed as an intermediate product during the denitrification process. Accumulated N2O can be utilised in methane oxidation as an oxidant to produce energy. In the first stage of the study, the HFMBfR was operated by feeding only gaseous NO as the nitrogen source. During this period, the best performance was achieved with 92% NO removal efficiency (RE). In the second stage, both NO gas and NO2- were supplied to the system, and 91% NO and 99% NO2- reduction were achieved simultaneously with the maximum N2O generation of 386 ± 31 ppm. Lower influent carbon to nitrogen (C/N) ratios, such as 4.5 and 2.0, and higher NO2--N loading rate of 158 mg N day-1 favoured N2O generation. An improved NO removal rate and N2O accumulation were seen with the increasing amount of PO43- in the medium. The 16S rDNA sequencing analysis revealed that Alicycliphilus denitrificans and Pseudomonas putida were the dominant species. The study shows that an HFMBfR can be successfully used to eliminate both NO2- and gaseous NO and simultaneously generate N2O by adjusting the system parameters such as C/N ratio, NO2- and PO43- loading.
Collapse
Affiliation(s)
- Khin Hnin Yu
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| | - Faruk Can
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Pınar Ergenekon
- Department of Environmental Engineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
9
|
Wu L, An Z, Zhou J, Chen F, Liu B, Qi L, Yin G, Dong H, Liu M, Hou L, Zheng Y. Effects of Aquatic Acidification on Microbially Mediated Nitrogen Removal in Estuarine and Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5939-5949. [PMID: 35465670 DOI: 10.1021/acs.est.2c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acidification of estuarine and coastal waters is anticipated to influence nitrogen (N) removal processes, which are critical pathways for eliminating excess N from these ecosystems. We found that denitrification rates decreased significantly under acidified conditions (P < 0.05), which reduced by 41-53% in estuarine and coastal sediments under an approximately 0.3 pH reduction of the overlying water. However, the N removal rates through the anaerobic ammonium oxidation (anammox) process were concomitantly promoted under the same acidification conditions (increased by 47-109%, P < 0.05), whereas the total rates of N loss were significantly inhibited by aquatic acidification (P < 0.05), as denitrification remained the dominant N removal pathway. More importantly, the emission of nitrous oxide (N2O) from estuarine and coastal sediments was greatly stimulated by aquatic acidification (P < 0.05). Molecular analyses further demonstrated that aquatic acidification also altered the functional microbial communities in estuarine and coastal sediments; and the abundance of denitrifiers was significantly reduced (P < 0.05), while the abundance of anammox bacteria remained relatively stable. Collectively, this study reveals the effects of acidification on N removal processes and the underlying mechanisms and suggests that the intensifying acidification in estuarine and coastal waters might reduce the N removal function of these ecosystems, exacerbate eutrophication, and accelerate global climate change.
Collapse
Affiliation(s)
- Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
10
|
Wan R, Li X, Zha Y, Zheng X, Huang H, Li M. Short- and long-term effects of decabromodiphenyl ether (BDE-209) on sediment denitrification using a semi-continuous microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118589. [PMID: 34843852 DOI: 10.1016/j.envpol.2021.118589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/17/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of decabromodiphenyl ether (BDE-209) resulted in its deposition in environmental media and biological matrices. However, to date, few studies focused on the effect of BDE-209 on microorganisms, and those available were investigated via an enclosed system completely cutting off the communication between testing system and its native environment. Herein, 4.0 mg/g BDE-209 acute exposure induced a 20% decline of NOX-N (the sum of NO3--N and NO2--N) removal efficiency and a significant accumulation of NO2--N and N2O. These inhibitory effects presented in a BDE-209 concentration-dependent manner. Using a semi-continuous microcosm, the inhibitory effects of BDE-209 on denitrification were observed to be significantly enhanced with the extending of exposure duration. Denitrifying genes assay illustrated that BDE-209 has an insignificant effect on the global abundance of denitrifying bacteria because of microbial exchange with its overlying water. But the utilization of electron donor (carbon substrate), the activity of electron transport system and denitrifying enzymes were significantly inhibited by BDE-209 exposure in a exposure-duration-dependent manner. Finally, insufficient electron donor and lower efficiency of electron transport and utilization on denitrifying enzymes deteriorated the denitrification performance. These results provided a new insight into BDE-209 influence on denitrification in the natural environment.
Collapse
Affiliation(s)
- Rui Wan
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Minghui Li
- School of Ecology and Environment, Anhui Normal University, 189 South of Jiuhua Road, Wuhu, Anhui, 241002, China.
| |
Collapse
|
11
|
Cai J, Qaisar M, Ding A, Zhang J, Xing Y, Li Q. Insights into microbial community in microbial fuel cells simultaneously treating sulfide and nitrate under external resistance. Biodegradation 2021; 32:73-85. [PMID: 33442823 DOI: 10.1007/s10532-021-09926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
The effect of electricity, induced by external resistance, on microbial community performance is investigated in Microbial Fuel Cells (MFCs) involved in simultaneous biotransformation of sulfide and nitrate. In the experiment, three MFCs were operated under different external resistances (100 Ω, 1000 Ω and 10,000 Ω), while one MFC was operated with open circuit as control. All MFCs demonstrate good capacity for simultaneous sulfide and nitrate biotransformation regardless of external resistance. MFCs present similar voltage profile; however, the output voltage has positive relationship with external resistance, and the MFC1 with lowest external resistance (100 Ω) generated highest power density. High-throughput sequencing confirms that taxonomic distribution of suspended sludge in anode chamber encompass phylum level to genus level, while the results of principal component analysis (PCA) suggest that microbial communities are varied with external resistance, which external resistance caused the change of electricity generation and substrate removal at the same, and then leads to the change of microbial communities. However, based on Pearson correlation analyses, no strong correlation is evident between community diversity indices (ACE index, Chao index, Shannon index and Simpson index) and the electricity (final voltage and current density). It is inferred that the performance of electricity did not significantly affect the diversity of microbial communities in MFCs biotransforming sulfide and nitrate simultaneously.
Collapse
Affiliation(s)
- Jing Cai
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Aqiang Ding
- Department of Environmental Science, College of Resource and Environmental Science, Chongqing University, Chongqing, China
| | - Jiqiang Zhang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yajuan Xing
- College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| | - Qiangbiao Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, No.18 Xuezheng Street, Hangzhou, Zhejiang Province, China
| |
Collapse
|
12
|
Carreira C, Nunes RF, Mestre O, Moura I, Pauleta SR. The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 2020; 25:927-940. [PMID: 32851479 DOI: 10.1007/s00775-020-01812-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/12/2020] [Indexed: 11/27/2022]
Abstract
Increasing atmospheric concentration of N2O has been a concern, as it is a potent greenhouse gas and promotes ozone layer destruction. In the N-cycle, release of N2O is boosted upon a drop of pH in the environment. Here, Marinobacter hydrocarbonoclasticus was grown in batch mode in the presence of nitrate, to study the effect of pH in the denitrification pathway by gene expression profiling, quantification of nitrate and nitrite, and evaluating the ability of whole cells to reduce NO and N2O. At pH 6.5, accumulation of nitrite in the medium occurs and the cells were unable to reduce N2O. In addition, the biochemical properties of N2O reductase isolated from cells grown at pH 6.5, 7.5 and 8.5 were compared for the first time. The amount of this enzyme at acidic pH was lower than that at pH 7.5 and 8.5, pinpointing to a post-transcriptional regulation, though pH did not affect gene expression of N2O reductase accessory genes. N2O reductase isolated from cells grown at pH 6.5 has its catalytic center mainly as CuZ(4Cu1S), while that from cells grown at pH 7.5 or 8.5 has it as CuZ(4Cu2S). This study evidences that an in vivo secondary level of regulation is required to maintain N2O reductase in an active state.
Collapse
Affiliation(s)
- Cíntia Carreira
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Rute F Nunes
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Olga Mestre
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Isabel Moura
- Biological Chemistry Lab, LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
13
|
Machado Dos Santos Pinto R, Weigelhofer G, Diaz-Pines E, Guerreiro Brito A, Zechmeister-Boltenstern S, Hein T. River-floodplain restoration and hydrological effects on GHG emissions: Biogeochemical dynamics in the parafluvial zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136980. [PMID: 32014785 DOI: 10.1016/j.scitotenv.2020.136980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
The parafluvial zone is frequently exposed to drying-rewetting cycles with critical consequences for the biogeochemistry of soil and sediment in river-floodplain landscapes. Upon restoration of the hydrological connectivity, substantial changes in biogeochemical processes are expected. The effects of water fluctuation on the magnitude of GHG emissions were investigated in the parafluvial zone of a restored river floodplain in Austria. Sediment composition, DOM quality and N2O, CO2, CH4 fluxes were quantified during distinct hydrological periods (intermittent, desiccation and post flood) and along a hydrological gradient. The hydrological gradient ranged from non-flooded plots in the floodplain soil (used as reference plots after restoration), to rarely-flooded and frequently flooded sediment plots in the parafluvial zone. Enhanced biogeochemical turnover rates were identified during the intermittent period, when N2O and CO2 emissions peaked. In particular, the frequently flooded plots showed significantly higher CO2 and CH4 emissions compared to non-flooded and rarely-flooded plots. This indicates a strong effect of water level fluctuation on GHG emissions, with higher emissions occurring during transitional stages of drying and rewetting. Strong positive relationships were found between individual GHG fluxes, suggesting a tight link between C and N cycles. Both the C and N cycles are dependent on similar substrate characteristics that are governed by the quality of the DOM pool. Interestingly, drier sediments in the rarely-flooded plots were also active areas for emissions. This highlights the importance to include dry phases and sites in the overall C and N emission estimates of riverine landscapes. From the restoration point of view, N2O emissions in the parafluvial zone did not differ significantly from the emissions in the reference plots, whereas CO2 and CH4 fluxes did. When making management decisions to restore connectivity, one needs to carefully consider the interplay between nutrient removal from water versus GHG emissions, to reach maximum environmental benefits.
Collapse
Affiliation(s)
- Renata Machado Dos Santos Pinto
- WasserCluster Lunz GmbH - Inter-university Center for Aquatic Ecosystem Research, 3293 Lunz am See, Austria; LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | - Gabriele Weigelhofer
- WasserCluster Lunz GmbH - Inter-university Center for Aquatic Ecosystem Research, 3293 Lunz am See, Austria; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | - Eugenio Diaz-Pines
- Institute of Soil Research, University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | - António Guerreiro Brito
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of Lisbon, 1349-017 Lisbon, Portugal.
| | | | - Thomas Hein
- WasserCluster Lunz GmbH - Inter-university Center for Aquatic Ecosystem Research, 3293 Lunz am See, Austria; Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| |
Collapse
|
14
|
|