1
|
Jernfors T, Lavrinienko A, Vareniuk I, Landberg R, Fristedt R, Tkachenko O, Taskinen S, Tukalenko E, Mappes T, Watts PC. Association between gut health and gut microbiota in a polluted environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169804. [PMID: 38184263 DOI: 10.1016/j.scitotenv.2023.169804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Animals host complex bacterial communities in their gastrointestinal tracts, with which they share a mutualistic interaction. The numerous effects these interactions grant to the host include regulation of the immune system, defense against pathogen invasion, digestion of otherwise undigestible foodstuffs, and impacts on host behaviour. Exposure to stressors, such as environmental pollution, parasites, and/or predators, can alter the composition of the gut microbiome, potentially affecting host-microbiome interactions that can be manifest in the host as, for example, metabolic dysfunction or inflammation. However, whether a change in gut microbiota in wild animals associates with a change in host condition is seldom examined. Thus, we quantified whether wild bank voles inhabiting a polluted environment, areas where there are environmental radionuclides, exhibited a change in gut microbiota (using 16S amplicon sequencing) and concomitant change in host health using a combined approach of transcriptomics, histological staining analyses of colon tissue, and quantification of short-chain fatty acids in faeces and blood. Concomitant with a change in gut microbiota in animals inhabiting contaminated areas, we found evidence of poor gut health in the host, such as hypotrophy of goblet cells and likely weakened mucus layer and related changes in Clca1 and Agr2 gene expression, but no visible inflammation in colon tissue. Through this case study we show that inhabiting a polluted environment can have wide reaching effects on the gut health of affected animals, and that gut health and other host health parameters should be examined together with gut microbiota in ecotoxicological studies.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland.
| | - Anton Lavrinienko
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland; Laboratory of Food Systems Biotechnology, Institute of Food, Nutrition and Health, ETH Zürich, Zürich, Switzerland
| | - Igor Vareniuk
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Rikard Fristedt
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Olena Tkachenko
- Department of Cytology, Histology and Reproductive Medicine, Taras Shevchenko National University of Kyiv, 01033, Ukraine
| | - Sara Taskinen
- Department of Mathematics and Statistics, University of Jyväskylä, FI-40014, Finland
| | - Eugene Tukalenko
- Department of Radiobiology and Radioecology, Institute for Nuclear Research of NAS of Ukraine, 020000, Ukraine
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Finland
| |
Collapse
|
2
|
Malik RJ, Bruns MAV, Bell TH, Eissenstat DM. Phylogenetic Signal, Root Morphology, Mycorrhizal Type, and Macroinvertebrate Exclusion: Exploring Wood Decomposition in Soils Conditioned by 13 Temperate Tree Species. FORESTS 2022; 13:536. [PMID: 36936196 PMCID: PMC10022739 DOI: 10.3390/f13040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Woodlands are pivotal to carbon stocks, but the process of cycling C is slow and may be most effective in the biodiverse root zone. How the root zone impacts plants has been widely examined over the past few decades, but the role of the root zone in decomposition is understudied. Here, we examined how mycorrhizal association and macroinvertebrate activity influences wood decomposition across diverse tree species. Within the root zone of six predominantly arbuscular mycorrhizal (AM) (Acer negundo, Acer saccharum, Prunus serotina, Juglans nigra, Sassafras albidum, and Liriodendron tulipfera) and seven predominantly ectomycorrhizal (EM) tree species (Carya glabra, Quercus alba, Quercus rubra, Betula alleghaniensis, Picea rubens, Pinus virginiana, and Pinus strobus), woody litter was buried for 13 months. Macroinvertebrate access to woody substrate was either prevented or not using 0.22 mm mesh in a common garden site in central Pennsylvania. Decomposition was assessed as proportionate mass loss, as explained by root diameter, phylogenetic signal, mycorrhizal type, canopy tree trait, or macroinvertebrate exclusion. Macroinvertebrate exclusion significantly increased wood decomposition by 5.9%, while mycorrhizal type did not affect wood decomposition, nor did canopy traits (i.e., broad leaves versus pine needles). Interestingly, there was a phylogenetic signal for wood decomposition. Local indicators for phylogenetic associations (LIPA) determined high values of sensitivity value in Pinus and Picea genera, while Carya, Juglans, Betula, and Prunus yielded low values of sensitivity. Phylogenetic signals went undetected for tree root morphology. Despite this, roots greater than 0.35 mm significantly increased woody litter decomposition by 8%. In conclusion, the findings of this study suggest trees with larger root diameters can accelerate C cycling, as can trees associated with certain phylogenetic clades. In addition, root zone macroinvertebrates can potentially limit woody C cycling, while mycorrhizal type does not play a significant role.
Collapse
Affiliation(s)
- Rondy J. Malik
- Kansas Biological Survey, The University of Kansas, 2101 Constant Ave, Lawrence, KS 66045, USA
- Correspondence:
| | - Mary Ann V. Bruns
- Department of Ecosystem Science and Management, Penn State University, University Park, PA 16802, USA
| | - Terrence H. Bell
- Department of Plant Pathology and Environmental Microbiology, Penn State University, University Park, PA 16802, USA
| | - David M. Eissenstat
- Department of Ecosystem Science and Management, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Car C, Gilles A, Armant O, Burraco P, Beaugelin‐Seiller K, Gashchak S, Camilleri V, Cavalié I, Laloi P, Adam‐Guillermin C, Orizaola G, Bonzom J. Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evol Appl 2022; 15:203-219. [PMID: 35233243 PMCID: PMC8867709 DOI: 10.1111/eva.13282] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
Despite the ubiquity of pollutants in the environment, their long-term ecological consequences are not always clear and still poorly studied. This is the case concerning the radioactive contamination of the environment following the major nuclear accident at the Chernobyl nuclear power plant. Notwithstanding the implications of evolutionary processes on the population status, few studies concern the evolution of organisms chronically exposed to ionizing radiation in the Chernobyl exclusion zone. Here, we examined genetic markers for 19 populations of Eastern tree frog (Hyla orientalis) sampled in the Chernobyl region about thirty years after the nuclear power plant accident to investigate microevolutionary processes ongoing in local populations. Genetic diversity estimated from nuclear and mitochondrial markers showed an absence of genetic erosion and higher mitochondrial diversity in tree frogs from the Chernobyl exclusion zone compared to other European populations. Moreover, the study of haplotype network permitted us to decipher the presence of an independent recent evolutionary history of Chernobyl exclusion zone's Eastern tree frogs caused by an elevated mutation rate compared to other European populations. By fitting to our data a model of haplotype network evolution, we suspected that Eastern tree frog populations in the Chernobyl exclusion zone have a high mitochondrial mutation rate and small effective population sizes. These data suggest that Eastern tree frog populations might offset the impact of deleterious mutations because of their large clutch size, but also question the long-term impact of ionizing radiation on the status of other species living in the Chernobyl exclusion zone.
Collapse
Affiliation(s)
- Clément Car
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - André Gilles
- UMR RECOVERINRAEAix‐Marseille Université, Centre Saint‐CharlesMarseilleFrance
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Pablo Burraco
- Animal EcologyDepartment of Ecology and GeneticsEvolutionary Biology CentreUppsala UniversityUppsalaSweden
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | - Sergey Gashchak
- Chornobyl Center for Nuclear SafetyRadioactive Waste and RadioecologySlavutychUkraine
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | - Patrick Laloi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| | | | - Germán Orizaola
- IMIB‐Biodiversity Research Institute (Univ. Oviedo‐CSIC‐Princip. Asturias)Universidad de OviedoMieres‐AsturiasSpain
- Department Biology Organisms and SystemsZoology UnitUniversity of OviedoOviedo‐AsturiasSpain
| | - Jean‐Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN)PSE‐ENV/SRTE/LECOCadaracheFrance
| |
Collapse
|
4
|
Møller AP, Czeszczewik D, Erritzøe J, Flensted-Jensen E, Laursen K, Liang W, Walankiewicz W. Citizen Science for Quantification of Insect Abundance on Windshields of Cars Across Two Continents. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.657178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The abundance and the diversity of insects in Europe have declined considerably during recent decades, while it remains unclear whether similar changes may also have occurred elsewhere. Here we used citizen science for quantifying the abundance of flying insects on windshields of cars across Europe and to a smaller extent in China. We used the abundance of insects killed against windshields of cars during 3,530 transects for a total distance of 83,019 km made by 50 observers as estimates of insect abundance. A total of 124,606 insects were recorded, or approximately 1.5 insect per km. The abundance of insects killed against windshields was highly repeatable among days for the same locality, showing consistent estimates of abundance. The main determinants of insect abundance were features of cars (driving speed and car model that can be considered noise of no biological significance), local weather (temperature, cloud cover and wind speed) and variation across the season and the day. We tested for differences in the abundance of flying insects killed on windshields of cars predicting and finding (1) a reduction in insect abundance in areas with ionizing radiation at Chernobyl compared to uncontaminated control sites in the neighborhood, (2) a reduction in the abundance of flying insects in Western compared to Eastern Europe, (3) a reduction in the abundance of flying insects killed on windshields from southern to northern Europe compared to latitudinal samples of insects from southern to northern China, and (4) a difference in abundance of insects killed on windshields of cars in Spain with a significant interaction between Spain and Denmark. Thus a number of abiotic and biotic factors accounted for temporal and spatial heterogeneity in abundance of insects, providing a useful tool for monitoring and studying determinants of spatial and temporal patterns of insect abundance. This also implies that our estimate of insect abundance may be relevant for the study of competition and for interactions at higher trophic levels.
Collapse
|
5
|
Nutrient Imbalance of the Host Plant for Larvae of the Pale Grass Blue Butterfly May Mediate the Field Effect of Low-Dose Radiation Exposure in Fukushima: Dose-Dependent Changes in the Sodium Content. INSECTS 2021; 12:insects12020149. [PMID: 33572324 PMCID: PMC7916146 DOI: 10.3390/insects12020149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
The pale grass blue butterfly Zizeeria maha is sensitive to low-dose radioactive pollution from the Fukushima nuclear accident in the field but is also highly tolerant to radioactive cesium (137Cs) in an artificial diet in laboratory experiments. To resolve this field-laboratory paradox, we hypothesize that the butterfly shows vulnerability in the field through biochemical changes in the larval host plant, the creeping wood sorrel Oxalis corniculata, in response to radiation stress. To test this field-effect hypothesis, we examined nutrient contents in the host plant leaves from Tohoku (mostly polluted areas including Fukushima), Niigata, and Kyushu, Japan. Leaves from Tohoku showed significantly lower sodium and lipid contents than those from Niigata. In the Tohoku samples, the sodium content (but not the lipid content) was significantly negatively correlated with the radioactivity concentration of cesium (137Cs) in leaves and with the ground radiation dose. The sodium content was also correlated with other nutrient factors. These results suggest that the sodium imbalance of the plant may be caused by radiation stress and that this nutrient imbalance may be one of the reasons that this monophagous butterfly showed high mortality and morphological abnormalities in the field shortly after the accident in Fukushima.
Collapse
|
6
|
Beaugelin-Seiller K, Garnier-Laplace J, Della-Vedova C, Métivier JM, Lepage H, Mousseau TA, Møller AP. Dose reconstruction supports the interpretation of decreased abundance of mammals in the Chernobyl Exclusion Zone. Sci Rep 2020; 10:14083. [PMID: 32826946 PMCID: PMC7442794 DOI: 10.1038/s41598-020-70699-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
We re-analyzed field data concerning potential effects of ionizing radiation on the abundance of mammals collected in the Chernobyl Exclusion Zone (CEZ) to interpret these findings from current knowledge of radiological dose–response relationships, here mammal response in terms of abundance. In line with recent work at Fukushima, and exploiting a census conducted in February 2009 in the CEZ, we reconstructed the radiological dose for 12 species of mammals observed at 161 sites. We used this new information rather than the measured ambient dose rate (from 0.0146 to 225 µGy h−1) to statistically analyze the variation in abundance for all observed species as established from tracks in the snow in previous field studies. All available knowledge related to relevant confounding factors was considered in this re-analysis. This more realistic approach led us to establish a correlation between changes in mammal abundance with both the time elapsed since the last snowfall and the dose rate to which they were exposed. This relationship was also observed when distinguishing prey from predators. The dose rates resulting from our re-analysis are in agreement with exposure levels reported in the literature as likely to induce physiological disorders in mammals that could explain the decrease in their abundance in the CEZ. Our results contribute to informing the Weight of Evidence approach to demonstrate effects on wildlife resulting from its field exposure to ionizing radiation.
Collapse
Affiliation(s)
- Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SRTE, Cadarache, Bâtiment 183, BP3, 13115, Saint Paul lez Durance Cedex, France.
| | - Jacqueline Garnier-Laplace
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV, Bâtiment 28, BP 17, 92262, Fontenay-aux-Roses Cedex, France
| | - Claire Della-Vedova
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SRTE, Cadarache, Bâtiment 183, BP3, 13115, Saint Paul lez Durance Cedex, France
| | - Jean-Michel Métivier
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SEREN, Cadarache, Bâtiment 153, BP3, 13115, Saint Paul lez Durance Cedex, France
| | - Hugo Lepage
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, PSE-ENV/SRTE, Cadarache, Bâtiment 183, BP3, 13115, Saint Paul lez Durance Cedex, France
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Anders Pape Møller
- Laboratoire d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, 91405, Orsay Cedex, France
| |
Collapse
|
7
|
Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, Smith JT, Bonzom JM, Gagnaire B, Adam-Guillermin C, Gashchak S, Jha AN, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy - The effects of ionising radiation on the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106033. [PMID: 31451195 DOI: 10.1016/j.jenvrad.2019.106033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom; School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom.
| | - N Horemans
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - K E Raines
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - G Orizaola
- Universidad de Oviedo - Campus de Mieres, Edificio de Investigación 5a Planta, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - P Laanen
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium; University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - H C Whitehead
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - J E Burrows
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - M C Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| | - J-M Bonzom
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | - B Gagnaire
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | | | - S Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - A de Menezes
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - N Willey
- Centre for Research in Bioscience, Dept. of Applied Sciences, University of the West of England, Frenchay, BS16 1QY, Bristol, United Kingdom
| | - D Spurgeon
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| |
Collapse
|
8
|
Kesäniemi J, Jernfors T, Lavrinienko A, Kivisaari K, Kiljunen M, Mappes T, Watts PC. Exposure to environmental radionuclides is associated with altered metabolic and immunity pathways in a wild rodent. Mol Ecol 2019; 28:4620-4635. [PMID: 31498518 PMCID: PMC6900138 DOI: 10.1111/mec.15241] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Wildlife inhabiting environments contaminated by radionuclides face putative detrimental effects of exposure to ionizing radiation, with biomarkers such as an increase in DNA damage and/or oxidative stress commonly associated with radiation exposure. To examine the effects of exposure to radiation on gene expression in wildlife, we conducted a de novo RNA sequencing study of liver and spleen tissues from a rodent, the bank vole Myodes glareolus. Bank voles were collected from the Chernobyl Exclusion Zone (CEZ), where animals were exposed to elevated levels of radionuclides, and from uncontaminated areas near Kyiv, Ukraine. Counter to expectations, we did not observe a strong DNA damage response in animals exposed to radionuclides, although some signs of oxidative stress were identified. Rather, exposure to environmental radionuclides was associated with upregulation of genes involved in lipid metabolism and fatty acid oxidation in the livers - an apparent shift in energy metabolism. Moreover, using stable isotope analysis, we identified that fur from bank voles inhabiting the CEZ had enriched isotope values of nitrogen: such an increase is consistent with increased fatty acid metabolism, but also could arise from a difference in diet or habitat between the CEZ and elsewhere. In livers and spleens, voles inhabiting the CEZ were characterized by immunosuppression, such as impaired antigen processing, and activation of leucocytes involved in inflammatory responses. In conclusion, exposure to low dose environmental radiation impacts pathways associated with immunity and lipid metabolism, potentially as a stress-induced coping mechanism.
Collapse
Affiliation(s)
- Jenni Kesäniemi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Toni Jernfors
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Anton Lavrinienko
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Kati Kivisaari
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Mikko Kiljunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Phillip C Watts
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|