1
|
Adams M, Issaka E, Chen C. Anammox-based technologies: A review of recent advances, mechanism, and bottlenecks. J Environ Sci (China) 2025; 148:151-173. [PMID: 39095154 DOI: 10.1016/j.jes.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 08/04/2024]
Abstract
The removal of nitrogen via the ANAMMOX process is a promising green wastewater treatment technology, with numerous benefits. The incessant studies on the ANAMMOX process over the years due to its long start-up and high operational cost has positively influenced its technological advancement, even though at a rather slow pace. At the moment, relatively new ANAMMOX technologies are being developed with the goal of treating low carbon wastewater at low temperatures, tackling nitrite and nitrate accumulation and methane utilization from digestates while also recovering resources (phosphorus) in a sustainable manner. This review compares and contrasts the handful of ANAMMOX -based processes developed thus far with plausible solutions for addressing their respective bottlenecks hindering full-scale implementation. Ultimately, future prospects for advancing understanding of mechanisms and engineering application of ANAMMOX process are posited. As a whole, technological advances in process design and patents have greatly contributed to better understanding of the ANAMMOX process, which has greatly aided in the optimization and industrialization of the ANAMMOX process. This review is intended to provide researchers with an overview of the present state of research and technological development of the ANAMMOX process, thus serving as a guide for realizing energy autarkic future practical applications.
Collapse
Affiliation(s)
- Mabruk Adams
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China; Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Eliasu Issaka
- School of Environmental and Safety Engineering, Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 2155009, China.
| |
Collapse
|
2
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Yang B, Sun J, Wang Z, Duan Y. Sustainable biochar application in anammox process: Unveiling novel pathways for enhanced nitrogen removal and efficient start-up at low temperature. BIORESOURCE TECHNOLOGY 2024; 402:130773. [PMID: 38701987 DOI: 10.1016/j.biortech.2024.130773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This study explored the use of biochar to accelerate the establishment of anaerobic ammonium oxidation (anammox) reactors operating at 15 ± 1℃. Incorporating 10 g/L bamboo charcoal in S1 accelerated the start-up of anammox in 87 days, which was significantly shorter than 103 days in S0 (without biochar). After 140 days, S1 exhibited a 10.9 % increase in nitrogen removal efficiency due to a 28.9 % elevation in extracellular polymeric substances, bolstering anammox bacterial resilience. Predominant anammox bacteria (Cadidatus Brocadia and Cadidatus Jettenia) showed relative abundances of 3.19 % and 0.38 % in S1, respectively, which were significantly higher than 0.40 % and 0.05 % in S0. Biochar provides favorable habitats for the enrichment of anammox bacteria and accelerates the establishment of anammox at low temperatures. This finding holds promise for enhancing the efficiency of anammox in cold climates and advancing sustainable wastewater nitrogen removal.
Collapse
Affiliation(s)
- Biao Yang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Jiawei Sun
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Zhongyu Wang
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| | - Yun Duan
- School of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
4
|
Ponce-Jahen SJ, Cercado B, Estrada-Arriaga EB, Rangel-Mendez JR, Cervantes FJ. Anammox with alternative electron acceptors: perspectives for nitrogen removal from wastewaters. Biodegradation 2024; 35:47-70. [PMID: 37436663 PMCID: PMC10774155 DOI: 10.1007/s10532-023-10044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023]
Abstract
In the context of the anaerobic ammonium oxidation process (anammox), great scientific advances have been made over the past two decades, making anammox a consolidated technology widely used worldwide for nitrogen removal from wastewaters. This review provides a detailed and comprehensive description of the anammox process, the microorganisms involved and their metabolism. In addition, recent research on the application of the anammox process with alternative electron acceptors is described, highlighting the biochemical reactions involved, its advantages and potential applications for specific wastewaters. An updated description is also given of studies reporting the ability of microorganisms to couple the anammox process to extracellular electron transfer to insoluble electron acceptors; particularly iron, carbon-based materials and electrodes in bioelectrochemical systems (BES). The latter, also referred to as anodic anammox, is a promising strategy to combine the ammonium removal from wastewater with bioelectricity production, which is discussed here in terms of its efficiency, economic feasibility, and energetic aspects. Therefore, the information provided in this review is relevant for future applications.
Collapse
Affiliation(s)
- Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico
| | - Bibiana Cercado
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C., Parque Tecnológico Querétaro Sanfandila, Querétaro, 76703, Pedro Escobedo, Mexico
| | - Edson Baltazar Estrada-Arriaga
- Subcoordinación de Tratamiento de Aguas Residuales, Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, C.P. 62550, Morelos, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª Sección, SLP78216, San Luis Potosí, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México (UNAM), Blvd. Juriquilla 3001, 76230, Querétaro, Mexico.
| |
Collapse
|
5
|
Deng J, Wu Z, Li YY, Liu J. Energy-neutral municipal wastewater treatment based on partial denitrification-anammox driven by side-stream sulphide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163790. [PMID: 37121318 DOI: 10.1016/j.scitotenv.2023.163790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023]
Abstract
"Low-carbon" has become an important evaluation index of modernisation construction. In the area of wastewater treatment has also caused considerable concern. Anaerobic ammonium oxidation (anammox) is a novel autotrophic nitrogen removal process that provides an opportunity for low-carbon remodelling of municipal wastewater treatment plants (MWTPs). The stable supply of nitrite is of great significance for the application of anammox. As a process with stable nitrite supply, partial denitrification (PD) is of great significance in the coupling nitrogen removal with anammox in municipal wastewater. Furthermore, innovation of the low-carbon nitrogen removal process can enable the recovery of abundant bioenergy resource from MWTPs. The low-carbon nitrogen removal via PD-anammox process and the bioenergy recovery for municipal wastewater in the previous studies has been summarised. On this basis, a novel energy-neutralisation municipal wastewater treatment process based on partial denitrification-anammox driven by sulphide produced in the side-stream has been proposed. The long-term retention of mainstream anammox and improvement of energy recovery efficiency under the requirement of ensuring nitrogen removal require additional detailed investigation.
Collapse
Affiliation(s)
- Jiayuan Deng
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Zhangsong Wu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
6
|
Guo Z, Ahmad HA, Tian Y, Zhao Q, Zeng M, Wu N, Hao L, Liang J, Ni SQ. Extensive data analysis and kinetic modelling of dosage and temperature dependent role of graphene oxides on anammox. CHEMOSPHERE 2022; 308:136307. [PMID: 36067812 DOI: 10.1016/j.chemosphere.2022.136307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is carbon friendly biological nitrogen removal process, and recently more focus is given to improving the anammox activity. Because of its high adsorption and modifiability, graphene and its derivative in wastewater treatment have received much attention. However, the specific effects and mechanisms of graphene oxide (GO) and reduced graphene oxide (RGO) on anammox are still controversial. Extensive data analysis was performed to explore the effects of GO and RGO on anammox. Statistical analysis revealed that 100 mg/L GO significantly promoted the anammox process, while 200 mg/L of GO inhibited the anammox process. The promotion of anammox performance under the influence of RGO was dependent on the temperature. The Logistic model was utilized for depicting the variation of nitrogen removal efficiency under promoting dosage of graphene oxides. A neural network model-based analysis was performed to reach anammox's potential mechanisms under the influence of two graphene oxides. Spearman correlation analysis showed that GO and RGO had significant positive correlations with nitrogen removal efficiency and specific anammox activity (p < 0.01), especially for RGO. In addition, the abundance of Planctomycetes and Nitrospirae was positively correlated with the addition of graphene oxides. This work comprehensively unraveled the role of graphene oxide materials on the anammox process and provided practical directions for the enhancement of anammox.
Collapse
Affiliation(s)
- Zheng Guo
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China; Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuhe Tian
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Qingyu Zhao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300384, China
| | - Linlin Hao
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300384, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
7
|
Zhang B, Wang J, Huang JJ, Razaqpur AG, Han X, Fan L. Promotion of anammox process by different graphene-based materials: Roles of particle size and oxidation degree. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154816. [PMID: 35341875 DOI: 10.1016/j.scitotenv.2022.154816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO) and reduced graphene oxide (RGO) have been applied in the anaerobic ammonium oxidation (anammox) process for nitrogen removal as electron shuttles. However, there is still controversy about their efficacy. In this study, nine graphene-based materials with a gradient of three particle sizes (large (l), medium (m) and small (s) sizes) and oxidation degrees, were used to compare their effects on the anammox process efficiency. The graphene-based materials include GO and its reduced products (RGO250 and RGO800) obtained at temperatures of 250 °C and 800 °C respectively. It was observed that their enhancements on the anammox process were in the order of GO > RGO800 > RGO250. In detail, at the dose of 100 mg/L, specific anammox activities (SAA) were promoted by 6.7% (l-GO), 4.9% (l-RGO800), 11.5% (m-GO), 7.3% (m-RGO800), 13.2% (s-GO) and 8.3% (s-RGO800) compared to the control respectively; while RGO250 with the same dose inhibited the process. In addition, the enhancement of the anammox process was increasing with the decreasing size of GO and RGO800. The nitrite reductase (NIR) activity was greatly increased by up to 24.9% with the presence of GO, which might be attributed to organized and specific electron transport with oxygen functional groups. The finding of hydroxyl on RGO and increasing content of oxygen determined after reaction detected by Fourier transform infrared spectroscopy and energy dispersive spectrometer respectively, indicated the essential condition for RGO's function on transferring electrons for key enzymes in annamox bacteria. Most importantly, O/C (Oxygen/Carbon) ratios of graphene-based materials had greater effects on the promotion of the anammox process than the particle size and electrical conductivity.
Collapse
Affiliation(s)
- Beichen Zhang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jingshu Wang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Abdul Ghani Razaqpur
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China.
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing 100022, China
| | - Liang Fan
- College of Environmental Science and Engineering, Sino-Canadian Joint R&D Center for Water and Environmental Safety, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
8
|
Gao D, Li Y, Liang H. Biofilm carriers for anaerobic ammonium oxidation: Mechanisms, applications, and roles in mainstream systems. BIORESOURCE TECHNOLOGY 2022; 353:127115. [PMID: 35395366 DOI: 10.1016/j.biortech.2022.127115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic ammonium oxidation (ANAMMOX) process was proposed as the most promising nitrogen removal process. Biofilm carriers were demonstrated to effectively enhance the anaerobic ammonium oxidating bacteria (AnAOB) retention. This paper reviews the effect of carrier properties on the AnAOB biofilm development according to the biofilm development process and the application state-of-art of three major kinds of conventional carriers, organic-based, inorganic-based carriers, and gel carriers, from the view of system performance and functional microorganisms. The carrier modification methods and purpose are thoroughly summarized and classified into three categories corresponding to various carrier defects. Four important aspects of the desirable carrier for the mainstream ANAMMOX process were proposed, including providing spatial configuration, enhancing the biomass retention, reinforcing the activity, and improving the growth environment, which needs to combine the advantages of organic and inorganic materials. Eventually, the future application directions of novel carriers for the ANAMMOX-based process were also highlighted.
Collapse
Affiliation(s)
- Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
9
|
Wang L, Gu W, Liu Y, Liang P, Zhang X, Huang X. Challenges, solutions and prospects of mainstream anammox-based process for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153351. [PMID: 35077796 DOI: 10.1016/j.scitotenv.2022.153351] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonia oxidation (anammox) process has a promising application prospect for the mainstream deammonification of municipal wastewater due to its high efficiency and low energy consumption. In this paper, challenges and solutions of mainstream anammox-based process are summarized by analyzing the literature of recent ten years. Slow growth rate of anammox bacteria is a main challenge for mainstream anammox-based process, and enhancement of bacteria retention has been recognized to be necessary. Compared with directly increasing sludge retention time (SRT) with membrane bioreactors or sequencing batch reactors, culturing anammox bacteria in the form of biofilm or granule sludge is more promising for its feasibility of eliminating nitrite oxidizing bacteria (NOB). Besides, adding external electron donors or conductive materials and enriching the concentration of ammonia with absorption materials have also been proved helpful to improve the activity of anammox bacteria. Other challenges include the elimination of NOB and achieving ideal ratio of NH4+ and NO2-. To solve these problems and achieve stable partial nitrification, composite control strategies based on low SRT and limited aeration are needed based on the special characteristics of ammonia oxidizing bacteria (AOB) and NOB. When treating actual wastewater, interference of low temperature and components in the influent is another problem. Relatively high activity of anammox bacteria has been realized after artificial acclimation at low temperature and the mechanism was also preliminary explored. Different pre-treatment sections have been designed to reduce the concentration of COD and S2- from the influent. As for the nitrate produced by the anammox reaction, coupling processes are useful to reduce the concentration of nitrate in the effluent. In brief, suitable reactor and coupling process should be selected according to the temperature, influent quality and discharge targets of different regions. The future prospects of the mainstream anammox-based process are also put forward.
Collapse
Affiliation(s)
- Lisheng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Wancong Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Zhang X, Ding S, Lv H, Cui G, Yang M, Wang Y, Guan T, Li XD. Microbial controls on heavy metals and nutrients simultaneous release in a seasonally stratified reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1937-1948. [PMID: 34363164 DOI: 10.1007/s11356-021-15776-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The eutrophication of reservoirs can change the physicochemical parameters of water, thus affecting the migration and transformation of heavy metals. At present, there is insufficient research on the coupling mechanisms between nutrients and heavy metals, especially between heavy metals in suspended particles. In this paper, spatial and temporal distribution characteristics of nutrients dissolved heavy metals, and heavy metals in suspended particles were analyzed in a seasonally stratified reservoir. Combined with the nitrogen and phosphorus biogeochemical process, the coupling mechanisms between heavy metals and nutrients were discussed. The results showed that the Aha Reservoir had temperature and dissolved oxygen stratification in April and July. The reduction and dissolution of Fe and Mn oxide/hydroxide and the resuspension of sediments might result in a simultaneous increase in the concentrations of nutrients, dissolved heavy metals and heavy metals in suspended particles in hypolimnion in July and October. In the presence of dissimilatory iron-reducing bacteria (DRIB), the dissolution of iron-bound phosphorus in sediments and suspended particulate matter (SPM) might lead to the simultaneous release of iron and phosphorus into the water. The dissolution of metal sulfides in the sediments and SPM under the action of dissimilatory nitrate reduction to ammonium (DNRA) bacteria might lead to the simultaneous release of ammonia nitrogen and heavy metals into the water. Due to the coupling between nitrogen and phosphorus and heavy metals, seasonal stratified reservoir may face the risk of periodic simultaneous pollution of eutrophication and heavy metals in summer and autumn. This research provides theoretical support for the treatment of heavy metal and eutrophication combined pollution in karst areas.
Collapse
Affiliation(s)
- Xuecheng Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shiyuan Ding
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Environmental Geochemistry, Guiyang, 550081, China.
| | - Hong Lv
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Gaoyang Cui
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
- The College of Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Mengdi Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yiyao Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Tianhao Guan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Huang TH, Tung FT, Chen GF, Chen WH. Variations of N concentrations and microbial community in the start-up of anammox using anaerobic heterotrophic sludge: Influence of a long reaction-phase time and comparison of the efficiencies of attached-versus suspended-growth cultures. CHEMOSPHERE 2022; 287:132151. [PMID: 34517235 DOI: 10.1016/j.chemosphere.2021.132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic sludge was capable of producing anaerobic ammonium oxidation (anammox) cultures. However, the low activity of anammox bacteria in the seed sludge often led to a long time for stable anammox to initiate. The objective of this study was to investigate the influence of an extended reaction-phase time in the sequencing batch reactor (SBR) on the rapid startup of anaerobic ammonium oxidation (anammox) using anaerobic heterotrophic bacteria as the seed sludge. After the startup, suspended and attached bacteria in anammox were separately analyzed for comparison. The variations of nitrogen concentrations and shifts of the microbial community structures were studied. The results showed that anammox occurred after a long reaction-phase time in the SBR with the efficient removals of NH4+ (96.4%) and NO2- (99.8%). The effective NO2- treatment before anammox startup was attributable to inevitable denitrification or dissimilatory nitrate reduction (e.g., Denitratisoma). The occurrence of anammox was supported by the anammox stoichiometry, bacteria diversity variation, and principal component analysis. The overall nitrogen removal rate (NRR) and nitrogen removal efficiency (NRE) was 0.07 kg/m3-d and 92.8%, respectively. The relative molar quantities of NH4+ and NO2- removed as well as N2 and NO3- formed were 1(1):1.29(1.32):1.45(1.02):0.15(0.26), as the numbers in the parentheses represent the theoretical values. Denitratisoma and Desulfatiglans dominated in the seed sludge, whereas Candidatus_Jettenia abundances were significantly higher in anammox attached- (26.0%) and suspended-growth cultures (14.5%). Fifty-three genera were simultaneously identified in all samples, suggesting their importance in the startup of anammox from anaerobic sludge. Candidatus_Jettenia was observed to be more associated with the growth of anammox biofilm (the abundances were 26.0% and 14.5% in attached- and suspended-growth cultures, respectively) and supported the fine nitrogen removal performance in the attached-growth cultures.
Collapse
Affiliation(s)
- Tsung-Hsien Huang
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Fang-Tsen Tung
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Guan-Fu Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Wei-Hsiang Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Aerosol Science and Research Center, National Sun Yat-sen University, Kaohsiung, 804, Taiwan; Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Liu L, Xu S, Wang F, Yan Z, Tian Z, Ji M. Effect of exogenous N-acyl-homoserine lactones on the anammox process at 15 ℃: Nitrogen removal performance, gene expression and metagenomics analysis. BIORESOURCE TECHNOLOGY 2021; 341:125760. [PMID: 34454237 DOI: 10.1016/j.biortech.2021.125760] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
In this study, C6-HSL and C8-HSL were separately introduced into anammox biofilm reactors to facilitate the anammox performance at 15 ℃. After operation 138 d, total nitrogen removal efficiencies in reactors with amendment C6-HSL or C8-HSL at 15 ℃ reached 76.2% and 74.6%, respectively. Content of extracellular polymeric substances increased by 19.8%, 67.7% and 121.2% in control group, C6-HSL and C8-HSL addition group, respectively. Genes associated with nitrogen removal (i.e., hzo, hzsB, nirS, and ccsB) showed higher expression level at amendment C6-HSL or C8-HSL group. Metagenomics analysis found that amendment of C6-HSL or C8-HL resulted in an increased abundance of genes related to the tricarboxylic acid cycle, amino sugar and nucleotide sugar metabolism, and also genes associated with amino acid biosynthesis pathways. Overall, amendment C6-HSL or C8-HSL had been confirmed as the effective method to improve the performance of anammox bioreactor at 15 ℃.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Sihan Xu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
13
|
Yin S, Li J, Dong H, Qiang Z. Unraveling the nitrogen removal properties and microbial characterization of "Candidatus Scalindua"-dominated consortia treating seawater-based wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147470. [PMID: 33975101 DOI: 10.1016/j.scitotenv.2021.147470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
"Candidatus Scalindua", as known as marine anammox bacteria (MAB), was engineered to remove nitrogen from seawater-based wastewater (SWW). In this study, "Candidatus Scalindua" was successfully enriched within 106 days with marine sediments as inoculated sludge. The operating temperature was 20 ± 2 °C, and influent pH was 7.5 ± 0.1. Ammonia (NH4+-N) removal rate (ARR) was 0.53 kg/(m3·d) with the NH4+-N loading rate of 0.68 kg/(m3·d), and nitrite (NO2--N) removal rate (NRR) was 0.57 kg/(m3·d) at 0.89 kg/(m3·d) NO2--N loading rate. Nitrogen removal was negatively affected at an influent NO2- above 224 mg/L, which decreased the ARR and NRR to 0.36 and 0.31 kg/(m3·d), respectively. The genus "Ca. Scalindua" dominated the reactor, and it synergistically coexisted with Marinicella to achieve efficient nitrogen removal. This work would help to better understand the nitrogen removal properties and microbial characterization of MAB in SWW wastewater treatment under low temperature.
Collapse
Affiliation(s)
- Shuyan Yin
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jin Li
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Evariste L, Braylé P, Mouchet F, Silvestre J, Gauthier L, Flahaut E, Pinelli E, Barret M. Graphene-Based Nanomaterials Modulate Internal Biofilm Interactions and Microbial Diversity. Front Microbiol 2021; 12:623853. [PMID: 33841352 PMCID: PMC8032548 DOI: 10.3389/fmicb.2021.623853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/28/2021] [Indexed: 02/04/2023] Open
Abstract
Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), possess unique properties triggering high expectations for the development of new technological applications and are forecasted to be produced at industrial-scale. This raises the question of potential adverse outcomes on living organisms and especially toward microorganisms constituting the basis of the trophic chain in ecosystems. However, investigations on GBMs toxicity were performed on various microorganisms using single species that are helpful to determine toxicity mechanisms but fail to predict the consequences of the observed effects at a larger organization scale. Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L−1, their effects on the diatom physiology, the structure, and the metabolism of bacterial communities were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L−1, influenced the taxonomic composition of diatom-associated bacterial consortium, and increased transiently the bacterial activity related to carbon cycling, with weak toxicity toward the diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial consortium, whereas it influenced more strongly the diatom physiology. When compared to the results from the literature using single species tests, our study suggests that diatoms benefited from diatom-bacteria interactions and that the biofilm was able to maintain or recover its carbon-related metabolic activities when exposed to GBMs.
Collapse
Affiliation(s)
- Lauris Evariste
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Paul Braylé
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Florence Mouchet
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jérôme Silvestre
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, Toulouse, France
| | - Eric Pinelli
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Maialen Barret
- Laboratoire d'écologie fonctionnelle et environnement, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
15
|
Effect of biomass immobilization and reduced graphene oxide on the microbial community changes and nitrogen removal at low temperatures. Sci Rep 2021; 11:840. [PMID: 33436937 PMCID: PMC7804202 DOI: 10.1038/s41598-020-80747-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/28/2020] [Indexed: 11/08/2022] Open
Abstract
The slow growth rate and high optimal temperatures for the anaerobic ammonium oxidation (anammox) bacteria are significant limitations of the anammox processes application in the treatment of mainstream of wastewater entering wastewater treatment plant (WWTP). In this study, we investigate the nitrogen removal and microbial community changes in sodium alginate (SA) and sodium alginate–reduced graphene oxide (SA-RGO) carriers, depending on the process temperature, with a particular emphasis on the temperature close to the mainstream of wastewater entering the WWTP. The RGO addition to the SA matrix causes suppression of the beads swelling, which intern modifies the mechanical properties of the gel beads. The effect of the temperature drop on the nitrogen removal rate was reduced for biomass entrapped in SA and SA-RGO gel beads in comparison to non-immobilized biomass, this suggests a ‘‘protective” effect caused by immobilization. However, analyses performed using next-generation sequencing (NGS) and qPCR revealed that the microbial community composition and relative gene abundance changed significantly, after the implementation of the new process conditions. The microbial community inside the gel beads was completely remodelled, in comparison with inoculum, and denitrification contributed to the nitrogen transformation inside the beads.
Collapse
|
16
|
Elreedy A, Ismail S, Ali M, Ni SQ, Fujii M, Elsamadony M. Unraveling the capability of graphene nanosheets and γ-Fe 2O 3 nanoparticles to stimulate anammox granular sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111495. [PMID: 33069150 DOI: 10.1016/j.jenvman.2020.111495] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, we investigated the potentials of nanomaterials to enhance anaerobic ammonium oxidation (anammox) process, in terms of nitrogen removal, microbial enrichment, and activity of key enzymes. Graphene nanosheets (GNs) and γ-Fe2O3 nanoparticles (NPs) were selected due to their catalytic functions as conductive material and electron shuttles, respectively. The obtained results revealed that the optimum dosage of GNs (10 mg/L) boosted the nitrogen removal rate (NRR) by 46 ± 3.1% compared to the control, with maximum NH4+-N and NO2--N removal of 86.5 ± 2.7% and 97.1 ± 0.5%, respectively. Moreover, hydrazine dehydrogenase (HDH) enzyme activity was augmented by 1.1-fold when using 10 mg/L GNs. The presence of GNs promoted the anammox granulation via enhancement of hydrophobic interaction of extracellular polymeric substances (EPS). Regarding the use of γ-Fe2O3 NPs, 100 mg/L dose increased NRR by 55 ± 3.8%; however, no contribution to HDH enzyme activity and a decrease in EPS compositions were observed. Given that the abiotic use of γ-Fe2O3 NPs further resulted in high adsorption efficiency (~92%), we conclude that the observed promotion due to γ-Fe2O3 NPs was mainly abiotic. Moreover, the 16S rRNA analysis revealed that the relative abundance of genus C. Jettenia (anammox related bacteria) increased from 11.9% to 12.3% when using 10 mg/L GNs, while declined to 8.3% at 100 mg/L γ-Fe2O3 NPs. Eventually, nanomaterials could stimulate the efficiency of anammox process, and this promotion and associated mechanism depend on their dose and composition.
Collapse
Affiliation(s)
- Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Sanitary Engineering Department, Alexandria University, Alexandria, 21544, Egypt
| | - Sherif Ismail
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; Environmental Engineering Department, Zagazig University, Zagazig, 44519, Egypt.
| | - Manal Ali
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Civil Engineering Department, Aswan University, Aswan, 81511, Egypt
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Mohamed Elsamadony
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Department of Public Works Engineering, Faculty of Engineering, Tanta University, 31521, Tanta City, Egypt
| |
Collapse
|
17
|
Liu L, Ji M, Wang F, Tian Z, Wang T, Wang S, Wang S, Yan Z. Insight into the short-term effect of fulvic acid on nitrogen removal performance and N-acylated- L-homoserine lactones (AHLs) release in the anammox system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135285. [PMID: 31822421 DOI: 10.1016/j.scitotenv.2019.135285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Fulvic acid (FA) can serve as electron shuttles between bacteria and electron acceptors. It explored the short-term effect of FA dose on nitrogen removal performance and N-acylated-L-homoserine lactones (AHLs) release change in the anaerobic ammonium oxidation (anammox) system. The results demonstrated that the total inorganic nitrogen removal efficiency increased with the FA dosages from 0.5 mM to 1 mM. FA addition improved anammox bacteria activity, together with extracellular polymeric substances production. FA addition from 0.5 mM to 1 mM stimulated AHLs release in both water and biomass phases, which indicated that the quorum sensing could be improved. These findings revealed that the addition of FA could improve quorum sensing and then enhance nitrogen removal performance.
Collapse
Affiliation(s)
- Lingjie Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Fen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China.
| | - Zhongke Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Tianyi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Shuya Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Siyu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Zhao Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| |
Collapse
|
18
|
Tomaszewski M, Cema G, Ciesielski S, Łukowiec D, Ziembińska-Buczyńska A. Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction. WATER RESEARCH 2019; 156:71-81. [PMID: 30904712 DOI: 10.1016/j.watres.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Because of its energy efficiency, the anaerobic ammonium oxidation (anammox) process has been recognized as the most promising biological nitrogen removal process, but its implementation in mainstream wastewater treatment plants is limited by its relatively high optimal temperature (30 °C). Recently, it was shown that during short-term batch experiments, reduced graphene oxide (RGO) displayed accelerated reaction activity at low temperatures (10-15 °C). In this study, the long-term effects of RGO on the low-temperature anammox process in a sequencing batch reactor (SBR), are studied for the first time, including different methods of interaction. The results presented here show that RGO can stimulate anammox activity up to 17% through two factors: bacterial growth stimulation, which was especially significant at higher temperatures (>15 °C), and an increase of the anammox reaction rate, which occurred only below 15 °C. The bacterial community structure was not influenced by addition of RGO. Moreover, after incubation in an anammox bioreactor, RGO showed signs of degradation and chemical changes as evidenced by the presence of oxygen and calcium on its surface. According to the literature and the obtained results, it is proposed that RGO is oxidized and oxygen is reduced by the organic mediator that is involved in the enzymatic reactions. However, activated sludge is a very complex structure created by numerous, undefined microorganisms, which makes it difficult to determine the exact oxidation mechanism.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| | - Dariusz Łukowiec
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18a, 44-100 Gliwice, Poland
| | | |
Collapse
|