1
|
Remor PV, Isidro J, Saez C, Figueiredo SA, Vilar VJP, Rodrigo MA. Cork barriers for the remediation of soils polluted with lindane. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132296. [PMID: 37619282 DOI: 10.1016/j.jhazmat.2023.132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
The in-situ removal of lindane from spiked soil was studied using cork barriers combined with electrokinetic and ohmic heating soil remediation processes. Both vertical and horizontal cork barriers have been evaluated to retain pollutants mobilized by electro-osmotic flow or volatilized by ohmic heating. Moreover, the addition of surfactant solutions in electrolyte wells has been evaluated to promote the dragging of lindane by electrokinetic fluxes. Results indicated that the drag of lindane by liquid flows is not as important as expected, opposite to what happened with the dragging by gaseous flows. The retention of gaseous lindane was also confirmed in adsorption tests carried out in a column packed with cork granules. The addition of surfactant had a very limited effect on the mobility of lindane, and dragging of this species to the electrode wells or to a permeable reactive barrier. On the contrary, the reactivity of lindane during the electrochemical treatments is relevant due to the electrokinetic basic front promoting the in-situ conversion of lindane into less chlorinated pollutants.
Collapse
Affiliation(s)
- Paula V Remor
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM) - Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE) - Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071 Ciudad Real, Spain
| | - Julia Isidro
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071 Ciudad Real, Spain
| | - Sónia A Figueiredo
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Vítor J P Vilar
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM) - Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE) - Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario, s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
2
|
Huang Z, Wang D, Ayele BA, Zhou J, Srivastava I, Pan D, Wang Z, Chen Q. Enhancement of auxiliary agent for washing efficiency of diesel contaminated soil with surfactants. CHEMOSPHERE 2020; 252:126494. [PMID: 32443261 DOI: 10.1016/j.chemosphere.2020.126494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
We used five types of surfactants assisted with sodium salts, including sodium tartrate (ST), sodium chloride (SC), and humic acid sodium (HAS) as auxiliary agents for soil washing to remove diesel from contaminated soil. Decontamination enhancement of diesel polluted soil washing with biosurfactant and H2O2 was examined, which showed higher effectiveness for newly contaminated soil. An increase in temperature and sodium salt addition exhibited a profound enhancement in diesel removal from aged contaminated soils. Compared to ST and SC, HAS exhibited a higher removal efficiency with saponin washing for aged diesel contaminated soil by lowering surface tension, shifting zeta potential, and increasing the number of micelles. Phytotoxicity experiments showed no significant inhibition of germination of lettuce, arugula, and cucumber with 0.2 g L-1 saponin incubation. Conversely, there was a promotion on the root extension of lettuce and cucumber except for arugula. Similarly, the addition of 2% HAS (wight of saponin) improved on root growth of lettuce, arugula, and cucumber, increasing by 25%, 5%, and 22% at the period of 14 d, respectively. Because of excellent removal efficiency and non-toxicity, enhanced wash with saponin and HAS might be considered in the future design of full-scale remediation processes of diesel contaminated soil.
Collapse
Affiliation(s)
- Zhaolu Huang
- Department of Environmental Science and Engineering College, Donghua University, Shanghai, 201620, China; Departments of Bioengineering, Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA; Carle Foundation Hospital, Urbana, IL, 61801, USA; Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, IL, 61820, USA
| | - Daoyuan Wang
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Befkadu Abayneh Ayele
- Department of Environmental Science and Engineering College, Donghua University, Shanghai, 201620, China
| | - Juan Zhou
- Department of Environmental Science and Engineering College, Donghua University, Shanghai, 201620, China
| | - Indrajit Srivastava
- Departments of Bioengineering, Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA; Carle Foundation Hospital, Urbana, IL, 61801, USA; Illinois Sustainable Technology Center, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, IL, 61820, USA
| | - Zhen Wang
- Departments of Bioengineering, Materials Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Quanyuan Chen
- Department of Environmental Science and Engineering College, Donghua University, Shanghai, 201620, China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|