1
|
Bhat BA, Jadon N, Dubey L, Mir SA. Facile Synthesis of a Crystalline Zinc Sulfide/Chitosan Biopolymer Nanocomposite: Characterization and Application for Photocatalytic Degradation of Textile Dyes and Anticancer Activity. ACS OMEGA 2024; 9:24425-24437. [PMID: 38882115 PMCID: PMC11170694 DOI: 10.1021/acsomega.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 06/18/2024]
Abstract
In the present study, we have synthesized a zinc sulfide/chitosan (ZS/CS) nanocomposite by utilizing simple, economical, and environmentally friendly methods. The synthesized nanomaterials were characterized by different analytical techniques such as XRD, FE-SEM, EDS, and FTIR to determine the phase structure, morphology, and elemental composition. FTIR spectroscopy was used to confirm the functional groups of the synthesized zinc sulfide (ZS) nanoparticles and ZS/CS composite. Besides, the optical properties of the as-synthesized nanocomposite was analyzed by a UV-visible spectrophotometer, and the estimated band gap energy is ∼3.03 eV. The photocatalytic efficiency of the synthesized ZS/CS nanocomposite was investigated against two textile dyes, Crystal Violet (CV) and Acid Red-I (AR-I), under UV-visible light irradiation. The nanocomposite showed excellent photocatalytic activity against the dyes, and photodegradation was estimated to be about 93.44 and 90.67% for CV and AR-I, respectively. The nanocomposite was reused for three consecutive cycles. The results revealed that the photocatalyst displayed good reusability during the photocatalytic decomposition and thus is considered a cost-effective and promising photocatalyst in degrading dye pollutants. The kinetic study proved that the pseudo-first-order reaction kinetics was followed by the degradation process. We also examined the anticancer activity of ZS and ZS/CS against human breast and myelogenous leukemia cancer cell lines, namely, MCF-7 and K-562, and the half minimal inhibitory concentrations were found to be less than 50 μg/mL.
Collapse
Affiliation(s)
- Bilal Ahmad Bhat
- School of Studies in Environmental Science (IGAEERE), Jiwaji University, Gwalior 474011, India
| | - Nimisha Jadon
- School of Studies in Environmental Chemistry, Jiwaji University, Gwalior 474011, India
| | - Laxmi Dubey
- Department of Botany, SMS, Govt. Model Science College, Gwalior 474009, India
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Odisha 768019, India
| |
Collapse
|
2
|
Kalidasan K, Mallapur S, Vishwa P, Kandaiah S. Type II NdWO 3/g-C 3N 4n– n Heterojunction for Visible-Light-Driven Photocatalyst: Exploration of Charge Transfer in Nd 3+ Ion-Doped WO 3/g-C 3N 4 Composite. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kavya Kalidasan
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| | - Srinivas Mallapur
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| | - Prashanth Vishwa
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| | - Sakthivel Kandaiah
- Department of Chemistry, REVA University, Kattigenahalli, Yelahanka, Bangalore560064, India
| |
Collapse
|
3
|
Synthesis, Characterization, and Solar Photo-Activation of Chitosan-Modified Nickel Magnetite Bio-Composite for Degradation of Recalcitrant Organic Pollutants in Water. Catalysts 2022. [DOI: 10.3390/catal12090983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalysis is a promising process for decomposing harmful organic pollutants in water. In this study, solar/photocatalytic degradation of two model azo dyes, i.e., methylene blue (MB) and methyl red (MR), in water usinga nanostructured chitosan-modified nickel magnetite (CS-NM) bio-composite was investigated. The CS-NM bio-composite was synthesized through a co-precipitation method and characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), thermogravimetry (TGA), and UV-Vis spectroscopy. FTIR analysis showed the uniform incorporation and conjugation of nickel magnetite (NM) into the chitosan (CS) polymer matrix. SEM showed that the average particle size was 0.5 μm. The TGA results revealed the good thermal stability of the prepared bio-composite at 300 °C. The point of zero charge was calculated as 7.5. The effect of water quality and process parameters, such as concentration of dyes, catalyst dose, solution pH, and temperatures, was investigated, for application purposes. The solar/CS-NM photocatalysis resulted in 99 and 96% degradation of individual MB and MR (C0 = 50 ppm), respectively, in 90 min. The degradation of MB and MR by solar/CS-NM photocatalysis followed pseudo-first-order kinetics, with observed rate constants (k) of 0.077 and 0.072 min−1, respectively. The CS-NM photocatalyst showed high recyclability, represented by only a 4–6% loss in the photocatalytic efficiency, after four cycles. The results showed that solar/CS-NM photocatalysis is an efficient technique for degrading recalcitrant organic pollutants, such as azo dyes, in water environments.
Collapse
|
4
|
Wang J, Wang Z, Wang W, Wang Y, Hu X, Liu J, Gong X, Miao W, Ding L, Li X, Tang J. Synthesis, modification and application of titanium dioxide nanoparticles: a review. NANOSCALE 2022; 14:6709-6734. [PMID: 35475489 DOI: 10.1039/d1nr08349j] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) has been heavily investigated owing to its low cost, benign nature and strong photocatalytic ability. Thus, TiO2 has broad applications including photocatalysts, Li-ion batteries, solar cells, medical research and so on. However, the performance of TiO2 is not satisfactory due to many factors such as the broad band gap (3.01 to 3.2 eV) and fast recombination of electron-hole pairs (10-12 to 10-11 s). Plenty of work has been undertaken to improve the properties, such as structural and dopant modifications, which broaden the applications of TiO2. This review mainly discusses the aspects of TiO2-modified nanoparticles including synthetic methods, modifications and applications.
Collapse
Affiliation(s)
- Jinqi Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Zhiheng Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wei Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xiaoli Hu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jixian Liu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xuezhong Gong
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Wenli Miao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Linliang Ding
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Xinbo Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
5
|
Zhang J, Chen Z, Guo R, Shan D, Zhao Y, Linghu X, Shu Y, Wang B. Synthesis of nano-sized Ag3PW12O40/ZnO heterojunction as a photocatalyst for degradation of organic pollutants under simulated sunlight. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
6
|
Ni T, Cui X, Li Q, Yan Y, Wang F, Yang Z, Chang K, Liu G. N, S-CDs Decorated Mesoporous TiO2 Composite with Improved Photocatalytic Activity under Visible Light. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Zhao Z, Liu J, Sa G, Xu A. Electronic properties and photodegradation ability of Nd-TiO2 for phenol. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Wang S, Chen Z, Zhao Y, Sun C, Li J. High photocatalytic activity over starfish-like La-doped ZnO/SiO2 photocatalyst for malachite green degradation under visible light. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Li J, Li B, Sui G, Du L, Zhuang Y, Zhang Y, Zou Y. Removal of volatile organic compounds from air using supported ionic liquid membrane containing ultraviolet-visible light-driven Nd-TiO2 nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130023] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Bai K, Hao J, Yang Y, Qian A. The effect of hydrothermal temperature on the properties of SBA-15 materials. Heliyon 2020; 6:e04436. [PMID: 32793822 PMCID: PMC7413981 DOI: 10.1016/j.heliyon.2020.e04436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/12/2020] [Accepted: 07/09/2020] [Indexed: 11/30/2022] Open
Abstract
In present work, ordered mesoporous material SBA-15 was synthesized by using poly (alkylene oxide) block copolymer (Pluronic P123) as template and ethylsilicate as silica source in weak acid environment in a wide range of temperature. The focus of synthesis research was high hydrothermal temperature. The obtained products were characterized by various techniques, including XRD, N2 sorption isotherms, FTIR spectroscopy and thermogravimetric. The effect of hydrothermal temperature on the specific surface area, pore volume and pore size of SBA-15 products was investigated systematically. As the hydrothermal temperature increases from the 100–120 °C, the specific surface area and the pore volume of the mesoporous molecular sieve increase greatly. When the hydrothermal temperature increase further, the pore volume of the mesoporous molecular sieve increase continually. But the specific surface area decrease significantly. When the hydrothermal temperature is too high (over 140 °C), the order degree begins to decrease, So the specific surface area and pore volume decrease significantly because the pores structure have significant destruction and collapse. Mechanism and structural characteristics of P123 block copolymer could explain in detail the effect of hydrothermal temperature on the property and structure of mesoporous molecular sieve SBA-15.
Collapse
Affiliation(s)
- Kaiyu Bai
- National Demonstration Center for Experimental Chemistry Education (Shanxi University), School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan, 030006, People's Republic of China
| | - Junsheng Hao
- National Demonstration Center for Experimental Chemistry Education (Shanxi University), School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan, 030006, People's Republic of China
| | - Yongxing Yang
- National Demonstration Center for Experimental Chemistry Education (Shanxi University), School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan, 030006, People's Republic of China
- Corresponding author.
| | - Aniu Qian
- Institute of Resources and Environment Engineering, Shanxi University, Wucheng Road 92, Taiyuan, 030006, People's Republic of China
- Corresponding author.
| |
Collapse
|
11
|
Naing HH, Wang K, Li Y, Mishra AK, Zhang G. Sepiolite supported BiVO 4 nanocomposites for efficient photocatalytic degradation of organic pollutants: Insight into the interface effect towards separation of photogenerated charges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137825. [PMID: 32217434 DOI: 10.1016/j.scitotenv.2020.137825] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/20/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Although the construction of clay-supported photocatalyst is a promising strategy to develop the low cost and high activity photocatalyst, only few works researched the effect of their interfaces on the photocatalytic performance. Herein, a monoclinic BiVO4/sepiolite nanocomposite was fabricated as case to study the transport mechanism of photogenerated carries based on the interfaces effect. The obtained BiVO4/sepiolite nanocomposites exhibited excellent visible light photocatalytic performance. The photocatalytic degradation rates of antibiotic tetracyclines (TCs) and methylene blue (MB) by the nanocomposites are 2 and 5.34 times higher than that by pure BiVO4 under visible light irradiation. XPS and Raman spectra confirmed the strong interfaces effect existing between BiVO4 and sepiolite clay. Moreover, PL and transient photocurrent response suggested that the strong interfaces effect effectively promoted the separation of photogenerated electron-hole pairs and further enhanced the photocatalytic performance. In addition, the results of trapping experiments revealed that the photo-induced holes (h+) were the dominant active species in the photocatalytic mechanism. This work illuminates the photocatalytic mechanism of monoclinic BiVO4/sepiolite nanocomposites and provides a novel strategy for designing the clay-supported photocatalyst for degradation of organic pollutants.
Collapse
Affiliation(s)
- Htet Htet Naing
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Kai Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Ajay Kumar Mishra
- Nanotechnology and Water Sustainability Unit, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1709 Rooderport, Johannesburg, South Africa
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
12
|
Effective Interactions of Ag Nanoparticles on the Surface of SBA-15 in Performing Deep Desulfurization of Real Diesel Fuel. Catalysts 2020. [DOI: 10.3390/catal10050593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
SBA-15 materials as-synthesized and impregnated with Ag nanoparticles were applied to perform adsorptive desulfurization of real diesel fuel. High-angle annular dark-field scanning transmission electron microscopy and field-emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (HAADF-STEM-EDX and FESEM-EDX) and X-ray photoelectron spectroscopy (XPS) results confirmed that there is uniform distribution of Ag nanodomains on the surface and in the channels of a 2AgSBA-15 (2% Ag) sample. The interaction between sulfur compounds and adsorbent mainly occurred via π-complexation mechanisms, as observed via XPS and equilibrium data. The kinetic results for 2AgSBA-15 were better fitted to the pseudo-second-order model (R2 > 0.9999), indicating that the determining step of the adsorptive process is chemisorption, whereas the equilibrium results were better fitted to the Langmuir model (R2 > 0.9994), thus indicating that the adsorption occurs on the adsorbent surface monolayer with significant adsorption capacity (qm = 20.30 mgS/g), approximately two times greater than that observed for pure SBA-15. The mean desulfurization reached by the adsorbents was up to 86.8% for six recycling steps.
Collapse
|
13
|
Aziz A, Ali N, Khan A, Bilal M, Malik S, Ali N, Khan H. Chitosan‑zinc sulfide nanoparticles, characterization and their photocatalytic degradation efficiency for azo dyes. Int J Biol Macromol 2020; 153:502-512. [PMID: 32126200 DOI: 10.1016/j.ijbiomac.2020.02.310] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 01/27/2023]
Abstract
Herein, chitosan‑zinc sulfide nanoparticles (CS-ZnS-NPs) were developed as an efficient photocatalyst for the degradation of toxic dyes. The as-synthesized CS-ZnS-NPs were analyzed using XRD, FTIR, SEM, and EDS. The functional groups of CS-ZnS-NPs were validated with FTIR spectroscopy. The SEM envisaged the average particle size as 40 nm, whereas EDS interpreted the compositional analysis of the nanocomposite. XRD analysis illustrated the crystallinity and hexagonal crystal structure of the CS-ZnS-NPs. The photocatalytic efficiency of CS-ZnS-NPs was evaluated using two carcinogenic azo dyes, Acid Brown 98 and Acid Black 234. A UV lamp (254 nm) was used as an irradiation source during the photocatalytic degradation of dyes. At the optimum conditions, the synthesized CS-ZnS-NPs showed 96.7% degradation for Acid Black 234 in 100 min and 92.6% for Acid Brown 98 in 165 min. The degradation phenomena followed pseudo-first-order kinetics. The values of rate constant (k) were 0.01464 and 0.04096 min-1 with correlation coefficient (R2) of 0.98891 and 0.99406 for Acid Brown 98 and Acid Black 234, respectively. The CS-ZnS-NPs were easily recovered and recycled for four successive batches. The results showed that CS-ZnS-NPs are considered as highly productive, cost-effective and promising photocatalyst in degrading pollutants in several consecutive cycles.
Collapse
Affiliation(s)
- Aisha Aziz
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China; Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Sumeet Malik
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| |
Collapse
|
14
|
Li S, Guo M, Wang X, Gao K. Fabrication and photocatalytic activity of LaFeO
3
ribbon‐like nanofibers. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shudan Li
- School of Food EngineeringHarbin University Harbin China
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of EducationShanxi Normal University Linfen China
| | - Meiling Guo
- School of Food EngineeringHarbin University Harbin China
| | - Xiuhua Wang
- School of Food EngineeringHarbin University Harbin China
| | - Kun Gao
- School of Food EngineeringHarbin University Harbin China
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of EducationShanxi Normal University Linfen China
| |
Collapse
|
15
|
Bai L, Wang S, Wang Z, Hong E, Wang Y, Xia C, Wang B. Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO 2-SBA-15 nanocatalyst. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:516-525. [PMID: 30831348 DOI: 10.1016/j.envpol.2019.02.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
High-efficiency nanophotocatalysts with large specific surface areas have a broad range of application prospects in the catalytic oxidation treatment of organic pollutants in wastewater. A chemical method was used to synthesize a TiO2 nanophotocatalyst with a mesoporous structure upon which a rare earth metal (Nd) was deposited, namely Nd-TiO2-SBA-15 (NTS). The prepared NTS was characterized using X-ray diffractometry, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectrometry. The photocatalytic mechanism was explored using scavenger experiments with photoinduced carriers combined with total organic carbon and UV-Vis measurements. At the same time, the kinetic properties of the NTS photocatalytic degradation of methyl orange (MO) were evaluated. The results showed that the deposition of TiO2 nanoparticles on the surface of the SBA-15 molecular sieve did not change the mesoporous structure, and Nd was uniformly distributed on the surface of the nanophotocatalyst. The photogenerated holes of the NTS played an important role in the photocatalysis process. In addition, the synthesized NTS had good adaptability in the range of pH 2-10. At pH 4, the reaction rate constant (k) of the MO photocatalytic degradation by NTS was 0.011825 mg·(L·min)-1, and the adsorption equilibrium constant (K) was 0.051359 L mg-1. In addition, the photocatalytic degradation rate of MO by NTS remained above 70%, even when the NTS was recycled four times. The NTS showed a good performance after recycling. This work provides a good foundation for the large-scale application of NTS.
Collapse
Affiliation(s)
- Liming Bai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province, 161000, China
| | - Shuo Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang Province, 161000, China
| | - Zhiyu Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Enlv Hong
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yu Wang
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161000, China
| | - Chunhui Xia
- Pharmacy Department, Qiqihar Medical University, Qiqihar, Heilongjiang Province, 161000, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, P. R. China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|