1
|
Yue T, Tong Y, Gao J, Yuan Y, Wang L, Wei H. High-precision spatio-temporal variations and future perspectives of multiple air pollutant emissions from Chinese biomass-fired industrial boilers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167982. [PMID: 37866610 DOI: 10.1016/j.scitotenv.2023.167982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Biomass-fired industrial boilers (BFIBs) are one of the neglected and important anthropogenic sources of air pollutants. A comprehensive boiler-based emission inventory of multiple air pollutants from BFIBs in China in 2020 was first developed based on the activity level database and updated emission factors. Results showed that national emissions of air pollutants from BFIBs in 2020 were estimated to be 11.5 kt of PM, 10.8 kt of PM10, 7.4 kt of PM2.5, 40.5 kt of SO2, 79.8 kt of NOx, 4.2 kt of organic carbon (OC), 1.0 kt of elemental carbon (EC), 31.7 kt of nonmethane volatile organic compounds (NMVOCs), 15.9 kt of NH3, and 116.5 t of five trace metals (Hg, Cr, Cd, Pb, and As), respectively. Air pollutant emissions exhibited significant spatio-temporal heterogeneity. Monthly air pollutant emissions varied by geographical division due to the combined effects of industrial production and winter heating demand. These emissions were mainly concentrated in the eastern coastal region, with Guangdong, Guangxi, Fujian, Jiangsu, and Zhejiang being the five provinces having the highest emissions. In addition, scenario predictions indicate that as the pollution and carbon reduction strategy is implemented, air pollutant emissions from BFIBs in China could become well controlled, with PM, NOx, SO2, and Hg emissions in 2050 projected to be 3.0-8.3 kt, 36.5-75.7 kt, 16.2-32.8 kt, and 0.52-0.87 t, respectively. Our results can provide a highly spatio-temporal resolution inventory of multiple air pollutant emissions from BFIBs for air quality modelling and support the formulation of air pollution control policies for biomass fuel utilization in the context of the pollution and carbon reduction strategy.
Collapse
Affiliation(s)
- Tao Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yali Tong
- Centre of Air Pollution Control and Carbon Neutrality, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China.
| | - Jiajia Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yue Yuan
- Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Haicheng Wei
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
2
|
Wang D, Li Z, Wang Q. Estimation of mercury uptake and distinction of corn cultivation in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167508. [PMID: 37788774 DOI: 10.1016/j.scitotenv.2023.167508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Corn cultivation potentially plays a vital role in the global mercury (Hg) biogeochemical cycle. Nevertheless, there have been limited studies quantifying the Hg mass flow during corn cultivation. This study focuses on Hg uptake by corn plants in China, integrating data from both sample collection and prior studies, resulting in 400 datasets. The findings reveal that the Hg in corn plants is mainly incorporated in leaves (45.5 %-47.5 %) and husks (14.5 %-15.7 %). Despite a decrease in total gaseous Hg (TGM) concentrations in the atmosphere over time, annual Hg uptake by corn cultivation in China has risen from 72.0 (ranging from 47.6 to 96.3) tons (2009-2014) to 84.3 (ranging from 51.9 to 109.6) tons (2015-2020) due to the increasing in corn kernel production. Spatial analysis demonstrates regional disparities in Hg uptake, primarily influenced by corn kernel production, TGM levels, and soil Hg content. Furthermore, temporal analysis reveals a shift in the fate of Hg in corn plants, which can be attributed to variations in corn straw treatment policy or methods. From 2009 to 2014, a substantial amount of absorbed Hg by corn plants was re-released into the atmosphere (48.9 %) due to corn residues burning, whereas, between 2015 and 2020, a greater proportion of Hg ended up accumulating in the soil (51.1 %) after the imposition of the straw burning ban in China. Prior to the ban (2009-2014), corn cultivation contributed approximately 7.7 tons of Hg input to soil annually, with a range from 1.7 to 13.5. However, following the ban (2015-2020), Hg input into the soil increased by approximately 4.5 times, reaching 34.5 (ranging from 17.5 to 52.6) tons per year. These findings emphasize the significant risks associated with soil Hg pollution caused by corn cultivation due to the straw burning ban.
Collapse
Affiliation(s)
- Dan Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Zhonggen Li
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China
| | - Qingfeng Wang
- Department of Resources and Environment, Zunyi Normal College, Zunyi 563006, PR China.
| |
Collapse
|
3
|
Sayers CJ, Evers DC, Ruiz-Gutierrez V, Adams E, Vega CM, Pisconte JN, Tejeda V, Regan K, Lane OP, Ash AA, Cal R, Reneau S, Martínez W, Welch G, Hartwell K, Teul M, Tzul D, Arendt WJ, Tórrez MA, Watsa M, Erkenswick G, Moore CE, Gerson J, Sánchez V, Purizaca RP, Yurek H, Burton MEH, Shrum PL, Tabares-Segovia S, Vargas K, Fogarty FF, Charette MR, Martínez AE, Bernhardt ES, Taylor RJ, Tear TH, Fernandez LE. Mercury in Neotropical birds: a synthesis and prospectus on 13 years of exposure data. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1096-1123. [PMID: 37907784 PMCID: PMC10622370 DOI: 10.1007/s10646-023-02706-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Environmental mercury (Hg) contamination of the global tropics outpaces our understanding of its consequences for biodiversity. Knowledge gaps of pollution exposure could obscure conservation threats in the Neotropics: a region that supports over half of the world's species, but faces ongoing land-use change and Hg emission via artisanal and small-scale gold mining (ASGM). Due to their global distribution and sensitivity to pollution, birds provide a valuable opportunity as bioindicators to assess how accelerating Hg emissions impact an ecosystem's ability to support biodiversity, and ultimately, global health. We present the largest database on Neotropical bird Hg concentrations (n = 2316) and establish exposure baselines for 322 bird species spanning nine countries across Central America, South America, and the West Indies. Patterns of avian Hg exposure in the Neotropics broadly align with those in temperate regions: consistent bioaccumulation across functional groups and high spatiotemporal variation. Bird species occupying higher trophic positions and aquatic habitats exhibited elevated Hg concentrations that have been previously associated with reductions in reproductive success. Notably, bird Hg concentrations were over four times higher at sites impacted by ASGM activities and differed by season for certain trophic niches. We developed this synthesis via a collaborative research network, the Tropical Research for Avian Conservation and Ecotoxicology (TRACE) Initiative, which exemplifies inclusive, equitable, and international data-sharing. While our findings signal an urgent need to assess sampling biases, mechanisms, and consequences of Hg exposure to tropical avian communities, the TRACE Initiative provides a meaningful framework to achieve such goals. Ultimately, our collective efforts support and inform local, scientific, and government entities, including Parties of the United Nations Minamata Convention on Mercury, as we continue working together to understand how Hg pollution impacts biodiversity conservation, ecosystem function, and public health in the tropics.
Collapse
Affiliation(s)
- Christopher J Sayers
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
- Centro de Innovación Científica Amazónica, Puerto Maldonado, Madre de Dios, 17000, Peru.
| | - David C Evers
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | | | - Evan Adams
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia M Vega
- Centro de Innovación Científica Amazónica, Puerto Maldonado, Madre de Dios, 17000, Peru
- Department of Biology, Center for Energy, Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jessica N Pisconte
- Centro de Innovación Científica Amazónica, Puerto Maldonado, Madre de Dios, 17000, Peru
| | - Vania Tejeda
- Centro de Innovación Científica Amazónica, Puerto Maldonado, Madre de Dios, 17000, Peru
| | - Kevin Regan
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Oksana P Lane
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Abidas A Ash
- Environmental Research Institute, University of Belize, Price Center Road, P.O. Box 340, Belmopan, Cayo District, Belize
| | - Reynold Cal
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - Stevan Reneau
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - Wilber Martínez
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - Gilroy Welch
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - Kayla Hartwell
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - Mario Teul
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - David Tzul
- Foundation for Wildlife Conservation, Tropical Education Center, 28 George Price Highway, P.O. Box 368, La Democracia, Belize District, Belize
| | - Wayne J Arendt
- International Institute of Tropical Forestry, USDA Forest Service, 1201 Calle Ceiba, Jardín Botánico Sur, San Juan, 00926-1119, Puerto Rico
| | - Marvin A Tórrez
- Instituto Interdisciplinario de Ciencias Naturales, Universidad Centroamericana, Managua, Nicaragua
| | - Mrinalini Watsa
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, P.O. Box 120551, San Diego, CA, 92112, USA
- Field Projects International, Escondido, CA, 92029, USA
| | | | - Caroline E Moore
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, P.O. Box 120551, San Diego, CA, 92112, USA
| | - Jacqueline Gerson
- Department of Earth & Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Victor Sánchez
- Instituto de Investigación en Ecología y Conservación, Trujillo, Peru
| | - Raúl Pérez Purizaca
- Universidad Nacional de Piura, Urb. Miraflores S/N, Castilla, 20002, Piura, Peru
| | - Helen Yurek
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Mark E H Burton
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Peggy L Shrum
- Department of Fisheries and Wildlife Biology, Clemson University, Clemson, SC, 29634, USA
| | | | - Korik Vargas
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Finola F Fogarty
- Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
- Toucan Ridge Ecology and Education Society, 27.5 Miles Hummingbird Hwy, Stann Creek, Belize
| | - Mathieu R Charette
- Toucan Ridge Ecology and Education Society, 27.5 Miles Hummingbird Hwy, Stann Creek, Belize
| | - Ari E Martínez
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, CA, 95064, USA
| | | | - Robert J Taylor
- Department of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Timothy H Tear
- Center for Mercury Studies, Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Luis E Fernandez
- Centro de Innovación Científica Amazónica, Puerto Maldonado, Madre de Dios, 17000, Peru
- Department of Biology, Center for Energy, Environment and Sustainability, Wake Forest University, Winston-Salem, NC, 27106, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Richter L, Amouroux D, Tessier E, Fostier AH. Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon. CHEMOSPHERE 2023; 339:139779. [PMID: 37567261 DOI: 10.1016/j.chemosphere.2023.139779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Mercury (Hg) emissions from forest fires, especially tropical forests such as the Amazonian forest, were shown to contribute significantly to the atmospheric mercury budget, but new methods are still necessary to improve the traceability and to reduce the great uncertainties related to this emission source. Recent studies have shown that the combustion process can result in Hg stable isotope fractionation that allows tracking coal combustion Hg emissions, as influenced by different factors such as combustion temperature. The main goal of the present study was, therefore, to investigate for the first time the potential of Hg stable isotopes to trace forest fire Hg emissions and pathways. More specifically, small-scale and a large scale prescribed forest fire experiments were conducted in the Brazilian Amazonian forest to study the impact of fire severity on Hg isotopic composition of litter, soil, and ash samples and associated Hg isotope fractionation pathways. In the small-scale experiment, no difference was found in the mercury isotopic composition of the samples collected before and after burning. In contrast, the larger-scale experiment resulted in significant mass dependent fractionation (MDF δ202Hg) in soils and ash suggesting that higher combustion temperature influence Hg isotopic fractionation with the emission of lighter Hg isotopes to the atmosphere and enrichment with heavier Hg in ashes. As for coal combustion, mass independent fractionation was not observed. To our knowledge, these results are the first to highlight the potential of forest fires to cause Hg isotopic fractionation, depending on the fire severity. The results also allowed to establish an isotopic fingerprint for tropical forest fire Hg emissions that corresponds to a mixture of litter and soil Hg isotopic composition (resulting atmospheric δ202Hg, Δ200Hg and Δ199Hg were -1.79 ± 0.24‰, -0.05 ± 0.04‰ and -0.45 ± 0.12‰, respectively).
Collapse
Affiliation(s)
- Larissa Richter
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Anne Hélène Fostier
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Xu Z, Wang Z, Niu X, Tao J, Fan M, Wang B, Zhang M, Zhang X. High-resolution atmospheric mercury emission from open biomass burning in China: Integration of localized emission factors and multi-source finer resolution remote sensing data. ENVIRONMENT INTERNATIONAL 2023; 178:108102. [PMID: 37572495 DOI: 10.1016/j.envint.2023.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Mercury (Hg) emissions from open biomass burning represent one of the largest Hg inputs to the atmosphere, with considerable effects on the atmospheric Hg budget. However, there is currently large uncertainty in the inventory of Hg emissions from open biomass burning in China due to limitations on the coarse resolution of burned area products, rough biomass data, and the unavailability of suitable emission factors (EFs). In this study, we developed high tempo-spatial resolution (30 m) and long time-series (2000-2019) atmospheric Hg emission inventories from open biomass burning using the Global Annual Burned Area Map (GABAM) product, high-resolution biomass map, Landsat-based tree cover datasets as well as local EFs in China. The results showed that the average annual Hg emission from open biomass burning in China amounted to 172.6 kg during 2000-2019, with a range of 63-398.5 kg. The largest Hg emissions were found in cropland (72%), followed by forest (25.9%), and grassland (2.1%). On a regional level, Northeast China (NE) and Southwest China (SW) were the two main contributors, together accounting for more than 60% of total Hg emissions. The temporal distribution of Hg emissions showed that the peaks occurred in 2003 and 2014. This is a comprehensive estimation of Hg emissions from open biomass burning in China by integrating various high-resolution remotely sensed data and nationwide localized EFs, which has important implications for understanding the role of open biomass burning in China in regional and global atmospheric Hg budget.
Collapse
Affiliation(s)
- Zehua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangwei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiang Niu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jinhua Tao
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Fan
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Wang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Meigen Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaoshan Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Zhang B, Shen Z, Sun J, Zhang L, He K, Zhang Y, Xu H, Lv J, Cao L, Li J, Liu S, Cao J. County-level and monthly resolution multi-pollutant emission inventory for residential solid fuel burning in Fenwei Plain, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121815. [PMID: 37182576 DOI: 10.1016/j.envpol.2023.121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
The Fenwei Plain (FWP) in central China is the fourth largest plain nationwide. This region has experienced severe air pollution during the past decades, largely due to residential solid fuel burning. A regional-scale emission inventory covering multi-pollutants was currently unavailable for this area due to the lack of localized emission factors (EFs) from various sources. In this study, localized EFs derived from previous in situ measurements and detailed county-level activity data were used to develop an emission inventory of particulate and gaseous pollutants for the source sector of five residential solid fuels in the FWP in 2020. Emissions of particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5), organic carbon (OC), elemental carbon (EC), ions, polycyclic aromatic hydrocarbons (PAHs), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and volatile organic compounds (VOCs) were estimated to be 230-290, 89-160, 20-29, 31-54, 0.93-22, 2100-3600, 64-87, 9.3-12, and 45-92 Gg/yr, respectively. The county-level distribution characteristics differed between pollutant species due to their different EFs and consumption patterns of solid fuels. Shouyang County emitted most for all pollutants (2.66%-4.91% of the region total) except PM2.5 and SO2, for which Xiangfen and Hongtong County emitted the most (2.64% and 2.90%), respectively. Emissions were higher in cold (SO2 during November to January, other pollutants during November to February) than warm months. Uncertainties in this newly developed emission inventory were estimated to be 25.2%-69.8%, much lower than those of existing ones, demonstrating the reliability of this inventory. Gini coefficients indicated that EC, PAHs, NOx, and VOC emissions exhibited evident regional disparities, e.g., Yuncheng and Jinzhong had high pollution levels despite low economic output. Future emission control policies should first focus on developing regions with high pollution in FWP.
Collapse
Affiliation(s)
- Bin Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenxing Shen
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jian Sun
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Kun He
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yue Zhang
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongmei Xu
- Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jing Lv
- Shaanxi Environmental Monitoring Center Station, Xi'an, 710054, China
| | - Lei Cao
- Shaanxi Environmental Monitoring Center Station, Xi'an, 710054, China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Suixin Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710049, China
| |
Collapse
|
7
|
Fisher JA, Schneider L, Fostier AH, Guerrero S, Guimarães JRD, Labuschagne C, Leaner JJ, Martin LG, Mason RP, Somerset V, Walters C. A synthesis of mercury research in the Southern Hemisphere, part 2: Anthropogenic perturbations. AMBIO 2023; 52:918-937. [PMID: 36952094 PMCID: PMC10073395 DOI: 10.1007/s13280-023-01840-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental mercury (Hg) contamination is a global concern requiring action at national scales. Scientific understanding and regulatory policies are underpinned by global extrapolation of Northern Hemisphere Hg data, despite historical, political, and socioeconomic differences between the hemispheres that impact Hg sources and sinks. In this paper, we explore the primary anthropogenic perturbations to Hg emission and mobilization processes that differ between hemispheres and synthesize current understanding of the implications for Hg cycling. In the Southern Hemisphere (SH), lower historical production of Hg and other metals implies lower present-day legacy emissions, but the extent of the difference remains uncertain. More use of fire and higher deforestation rates drive re-mobilization of terrestrial Hg, while also removing vegetation that would otherwise provide a sink for atmospheric Hg. Prevalent Hg use in artisanal and small-scale gold mining is a dominant source of Hg inputs to the environment in tropical regions. Meanwhile, coal-fired power stations continue to be a significant Hg emission source and industrial production of non-ferrous metals is a large and growing contributor. Major uncertainties remain, hindering scientific understanding and effective policy formulation, and we argue for an urgent need to prioritize research activities in under-sampled regions of the SH.
Collapse
Affiliation(s)
- Jenny A. Fisher
- Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Larissa Schneider
- College of Asia and the Pacific, Australian National University, Coombs Bld 9 Fellows Rd, Acton, Canberra, ACT 2601 Australia
| | - Anne-Hélène Fostier
- Instituto de Química/Unicamp, Rua Josué de Castro, s/n – Cidade Universitária, Campinas, SP 13083-970 Brazil
| | - Saul Guerrero
- College of Asia and the Pacific, Australian National University, Coombs Bld 9 Fellows Rd, Acton, Canberra, ACT 2601 Australia
| | - Jean Remy Davée Guimarães
- Lab. de Traçadores, Instituto de Biofísica, Centro de Ciências da Saúde, Bloco G, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, CEP 21941-902 Brazil
| | - Casper Labuschagne
- South African Weather Service c/o CSIR Environmentek, 11 Jan Cilliers Street, Stellenbosch, 7599 South Africa
| | - Joy J. Leaner
- Department of Environmental Affairs and Development Planning, Western Cape Government, Property Building, 1 Dorp Street, Cape Town, 8001 Western Cape South Africa
| | - Lynwill G. Martin
- South African Weather Service c/o CSIR Environmentek, 11 Jan Cilliers Street, Stellenbosch, 7599 South Africa
- Atmospheric Chemistry Research Group, Chemical Resource Beneficiation, North-West University, Potchefstroom, 2520 South Africa
| | - Robert P. Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 USA
| | - Vernon Somerset
- Department of Chemistry, CPUT, CPUT Bellville Campus, Bellville, 7535 Western Cape South Africa
| | - Chavon Walters
- Council for Scientific and Industrial Research, 11 Jan Cilliers Street, Stellenbosch, 7599 South Africa
| |
Collapse
|
8
|
Emissions of Toxic Substances from Biomass Burning: A Review of Methods and Technical Influencing Factors. Processes (Basel) 2023. [DOI: 10.3390/pr11030853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
In the perspective of energy sustainability, biomass is the widely used renewable domestic energy with low cost and easy availability. Increasing studies have reported the health impacts of toxic substances from biomass burning emissions. To make proper use of biomass as residential solid energy, the evaluation of its health risks and environmental impacts is of necessity. Empirical studies on the characteristics of toxic emissions from biomass burning would provide scientific data and drive the development of advanced technologies. This review focuses on the emission of four toxic substances, including heavy metals, polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and volatile organic compounds (VOCs) emitted from biomass burning, which have received increasing attention in recent studies worldwide. We focus on the developments in empirical studies, methods of measurements, and technical factors. The influences of key technical factors on biomass burning emissions are combustion technology and the type of biomass. The methods of sampling and testing are summarized and associated with various corresponding parameters, as there are no standard sampling methods for the biomass burning sector. Integration of the findings from previous studies indicated that modern combustion technologies result in a 2–4 times reduction, compared with traditional stoves. Types of biomass burning are dominant contributors to certain toxic substances, which may help with the invention or implementation of targeted control technologies. The implications of previous studies would provide scientific evidence to push the improvements of control technologies and establish appropriate strategies to improve the prevention of health hazards.
Collapse
|
9
|
Zhang C, Li J, Zhao W, Yao Q, Wang H, Wang B. Open biomass burning emissions and their contribution to ambient formaldehyde in Guangdong province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155904. [PMID: 35569659 DOI: 10.1016/j.scitotenv.2022.155904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (HCHO) plays a vital role in atmospheric chemistry and O3 formation. Open biomass burning (OBB) is considered to be an important source of HCHO; however, its quantitative contribution to ambient HCHO remains poorly understood due to the lack of reliable high-resolution emission inventories. In this study, a satellite-based method coupled with local emission factors was developed to estimate the hourly primary emissions of HCHO and volatile organic compound (VOC) precursors from OBB in Guangdong (GD) Province of southern China. Furthermore, the contribution of OBB to ambient HCHO was quantified using the Community Multi-scale Air Quality model. The results suggested that in average OBB emissions contributed 5293 tons of primary HCHO per year, accounting for ~14% of the total anthropogenic HCHO emissions in GD. The ambient HCHO concentration ranged from 0.3 ppbv to 8.7 ppbv during normal days, and from 8 ppbv to 45 ppbv in downwind area during OBB impacted days. The monthly contribution of OBB to local HCHO levels reached up to 50% at locations with frequent fires and over 70% during a forest fire event. Ambient HCHO was heavily affected by primary OBB emissions near the source region and by the oxidation of OBB-emitted VOCs in the downwind area. Secondary HCHO formation from OBB emissions was enhanced during photochemical pollution episodes, especially under conditions of high O3 and low NOx. OBB-emitted ethene was identified as the most important VOC precursor of HCHO and contributed to the formation of ~50% of the secondary HCHO. The HCHO formation potential of cropland fires was 26% higher than that of forest fires. Our results suggest that OBB can elevate ambient HCHO levels significantly. Thus, strict control policies on OBB should be implemented, especially for open burning agricultural residues in upwind areas on serious photochemical pollution days.
Collapse
Affiliation(s)
- Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Wenlong Zhao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Qian Yao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| |
Collapse
|
10
|
Atmospheric Modelling of Mercury in the Southern Hemisphere and Future Research Needs: A Review. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mercury is a toxic pollutant that can negatively impact the population’s health and the environment. The research on atmospheric mercury is of critical concern because of the diverse process that this pollutant suffers in the atmosphere as well as its deposition capacity, which can provoke diverse health issues. The Minamata Convention encourages the protection of the adverse effects of mercury, where research is a part of the strategies and atmospheric modelling plays a critical role in achieving the proposed aim. This paper reviews the study of modelling atmospheric mercury based on the southern hemisphere (SH). The article discusses diverse aspects focused on the SH such as the spatial distribution of mercury, its emissions projections, interhemispheric transport, and deposition. There has been a discrepancy between the observed and the simulated values, especially concerning the seasonality of gaseous elemental mercury and total gaseous mercury. Further, there is a lack of research about the emissions projections in the SH and mercury deposition, which generates uncertainty regarding future global scenarios. More studies on atmospheric mercury behaviour are imperative to better understand the SH’s mercury cycle.
Collapse
|
11
|
Temporal variation and potential origins of atmospheric speciated mercury at a remote island in South China Sea based on two-year field measurement data. Sci Rep 2021; 11:5678. [PMID: 33707484 PMCID: PMC7952567 DOI: 10.1038/s41598-021-84434-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/10/2021] [Indexed: 12/04/2022] Open
Abstract
This study explored the temporal variation, gas-particle partition, and potential origins of atmospheric speciated mercury at a remote island in the South China Sea. Two-year data of three mercury species was measured at the Taiping Island. Air masses were clustered into five transport routes (A-E) to resolve the potential origins of atmospheric mercury. Field measurement showed that the concentration of gaseous elemental mercury (GEM) (1.33 ± 0.52 ng/m3) was close to the GEM background level of Northern Hemisphere, while those of GOM and PHg were 13.39 ± 3.58 and 94.33 ± 30.25 pg/m3, respectively. Both regular and intensive samplings concluded a consistent trend of higher mercury level in winter and spring than that in summer and fall. GEM dominated atmospheric mercury in all seasons (86.2–98.5%), while the highest partition of particle-bound mercury (PHg) was observed in winter (13.8%). The highest GEM concentrations were observed for Route A originating from central China and western Taiwan Island, and followed by Routes D and E from the Philippines, Malaysia, and Indonesia, while the lowest concentrations of GEM were observed for Routes B and C originating from North China, Korea, and Japan. Most importantly, high correlation of GEM versus levoglucosan and K+ in PM2.5 (r = 0.764 and 0.758, p < 0.01) confirmed that GEM was mainly emitted from biomass burning sources at the surrounding countries.
Collapse
|
12
|
Wu J, Kong S, Wu F, Cheng Y, Zheng S, Qin S, Liu X, Yan Q, Zheng H, Zheng M, Yan Y, Liu D, Ding S, Zhao D, Shen G, Zhao T, Qi S. The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. ENVIRONMENT INTERNATIONAL 2020; 142:105812. [PMID: 32497934 DOI: 10.1016/j.envint.2020.105812] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Biomass burning (BB) has significant impacts on air quality, climate and human health. In China, the BB emission has changed substantially over the past decades while the multi-year variation held high uncertainty and the driving forces have addressed little attention. Here, this research aimed to conduct a comprehensive and systematic analysis of BB variation in China and provided precise and targeted BB emission reduction suggestions. The moving of high emission for BB from 2003 to 2014 was clearly identified, by the view of reliable emission estimation and anthropogenic impacts. Multiple satellite products, field survey, time varying biomass loading data and measured emission factors were adopted to better estimating BB emission and reducing the uncertainty. Social-economic analysis was added to assess the anthropogenic impacts on high emission variation quantitatively. Results showed that the cumulative BB emissions of OC, EC, CH4, NOX, NMVOC, SO2, NH3, CO, CO2, PM2.5 and PM10 during 2003-2014 were 1.6 × 104, 5.64 × 103, 3.57 × 104, 1.7 × 104, 5.44 × 104, 2.96 × 103, 6.77 × 103, 6.5 × 105, 1.15 × 107, 5.26 × 104 and 6.04 × 104 Gg, respectively. Crop straw burning (in-field and domestic) in northeast China plain (NEP), north China plain (NCP), northern arid and semiarid region and loess plateau were the key sources, averagely contributed 73% for all the pollutants emission. While domestic straw burning and firewood burning in Sichuan basin (SB), Yunnan-Guizhou plateau and southern China were main contributors, averagely accounting for 70% of all the pollutants emission. On regional level, high emissions were mainly found in SB, NCP and NEP. Temporally, high emissions were mainly found in crop sowing harvesting and heating seasons. From 2003 to 2014, the BB emission for different biomass species has changed significantly in different regions. High emission has gradually moved from SB to NCP and NEP. Firewood burning and domestic straw burning emission decreased by 47% and 14% in SB, respectively. In-field straw burning emission increased by 52% and 231% in NCP and NEP respectively and domestic straw burning emission increased by 62% in NEP. Emissions from heating season have decreased while emissions in corn harvest season were continuously increased. Analysis of Environmental kuznets curve, agricultural productivity level, human burning habits, rural energy structure and local control policies revealed the internal human driving strength of the variation for BB emission. The unbalanced development of social economy and the policy bias were primary drivers of limiting the BB management. BB emission will alleviate in NCP and aggravate in NEP. For the further emission reduction, effective measures for corn sources management, straw returning and rural energy utilization should be systematically considered. This research provides a clear evidence for the multi-year variation pattern of BB emissions, which is critical for pollution prediction, air quality modeling and targeted mitigation strategies for the key regions of China.
Collapse
Affiliation(s)
- Jian Wu
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Fangqi Wu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yi Cheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shurui Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Si Qin
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xi Liu
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Qin Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Huang Zheng
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mingming Zheng
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yingying Yan
- Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Shuo Ding
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Delong Zhao
- Beijing Weather Modification Office, Beijing 100089, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Tianliang Zhao
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shihua Qi
- Department of Environmental Science and Technology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
13
|
Chen B, Wang XB, Li YL, Yang Q, Li JS. Energy-induced mercury emissions in global supply chain networks: Structural characteristics and policy implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:87-97. [PMID: 30903907 DOI: 10.1016/j.scitotenv.2019.03.215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 05/22/2023]
Abstract
Mercury emission flows in the global supply chains have evolved into an ever-increasing complex network. However, the underlying structural features remain unknown. Therefore, the global embodied mercury flow network was constructed to reveal the characteristics of energy-induced mercury emissions embodied in international trade at both national and sectoral scales. The small-world nature of the global mercury flows network was identified at both scales. Results showed that the global mercury flow network can be divided into 4 national communities, within which the spillover effects of the interventions in one region spread more easily. Detecting the mercury-intensive supply-chain clusters highlights the importance of monitoring these clusters that dominate mercury emissions in global supply chains, which could offer insights on where policy can be implemented effectively. Moreover, vital regions (e.g., mainland China, the USA, and Germany) and sectors (e.g., Petroleum, Chemical and Non-Metallic Mineral Products, Metal Products and Electrical and Machinery in mainland China) for global mercury control have been unveiled by using an integrated centrality measurement system. Our results highlight that, for the overall mercury reduction, regional and even global collaboration should be enhanced along with efforts in individual regions, and enterprises in these important sectors should invest more to green their cluster-wise supply chains.
Collapse
Affiliation(s)
- B Chen
- Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing 100871, PR China
| | - X B Wang
- Institute of Software, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Y L Li
- Laboratory of Systems Ecology and Sustainability Science, College of Engineering, Peking University, Beijing 100871, PR China
| | - Q Yang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - J S Li
- Institute of Blue and Green Development, Shandong University, Weihai, 264209, PR China.
| |
Collapse
|