1
|
Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172276. [PMID: 38583634 DOI: 10.1016/j.scitotenv.2024.172276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.
Collapse
Affiliation(s)
- Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenqian Shao
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Li S, Lu S, Li X, Hou X, Zhao X, Xu X, Zhao N. Effects of Spring Drought and Nitrogen Addition on Productivity and Community Composition of Degraded Grasslands. PLANTS (BASEL, SWITZERLAND) 2023; 12:2836. [PMID: 37570989 PMCID: PMC10421370 DOI: 10.3390/plants12152836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
To explore whether there were differences among the patterns of response of grasslands with different levels of degradation to extreme drought events and nitrogen addition, three grasslands along a degradation gradient (extremely, moderately, and lightly degraded) were selected in the Bashang area of northern China using the human disturbance index (HDI). A field experiment with simulated extreme spring drought, nitrogen addition, and their interaction was conducted during the growing seasons of 2020 and 2021. The soil moisture, aboveground biomass, and composition of the plant community were measured. The primary results were as follows. (1) Drought treatment caused soil drought stress, with moderately degraded grassland being the most affected, which resulted in an 80% decrease in soil moisture and a 78% decrease in aboveground biomass. The addition of nitrogen did not mitigate the impact of drought. Moreover, the aboveground net primary production (ANPP) in 2021 was less sensitive to spring drought than in 2020. (2) The community composition changed after 2 years of drought treatment, particularly for the moderately degraded grasslands with annual forbs, such as Salsola collina, increasing significantly in biomass proportion, which led to a trend of exacerbated degradation (higher HDI). This degradation trend decreased under the addition of nitrogen. (3) The variation in drought sensitivities of the ANPP was primarily determined by the proportion of plants based on the classification of degradation indicators in the community, with higher proportions of intermediate degradation indicator species exhibiting more sensitivity to spring drought. These findings can help to provide scientific evidence for the governance and restoration of regional degraded grassland under frequent extreme weather conditions.
Collapse
Affiliation(s)
- Shaoning Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Shaowei Lu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Xiaohui Li
- Huamugou Forest Farm, Hexigten Banner, Chifeng City, Inner Mongolia Autonomous Region, Chifeng 025350, China
| | - Xingchen Hou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Xi Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing 102203, China
| | - Xiaotian Xu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| | - Na Zhao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (S.L.); (S.L.)
- Beijing Yanshan Forest Ecosystem Positioning Observation and Research Station, Beijing 100093, China
| |
Collapse
|
3
|
Francesca S, Cirillo V, Raimondi G, Maggio A, Barone A, Rigano MM. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2021. [PMID: 33923424 DOI: 10.3390/iecps2020-08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Abiotic stresses adversely affect crop production causing yield reductions in important crops, including tomato (Solanum lycopersicum L.). Among the different abiotic stresses, drought is considered to be the most critical one, since limited water availability negatively impacts plant growth and development, especially in arid and semi-arid areas. The aim of this study was to understand how biostimulants may interact with critical physiological response mechanisms in tomato under limited water availability and to define strategies to improve tomato performances under drought stress. We investigated the physiological responses of the tomato genotype 'E42' grown in open fields under optimal conditions (100% irrigation) and limited water availability (50% irrigation) treated or not with a novel protein hydrolysate-based biostimulant (CycoFlow, Agriges, BN, Italy). Plants treated with the protein hydrolysate showed a better water status and pollen viability, which also resulted in higher yield under drought stress compared to untreated plants. The treatment with the biostimulant had also an effect on antioxidant contents and activity in leaves and fruits depending on the level of irrigation provided. Altogether, these results indicate that the application of protein hydrolysates on tomato improved plant performances under limited water availability and in different experimental fields.
Collapse
Affiliation(s)
- Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| |
Collapse
|
4
|
Casadesús A, Polo J, Munné-Bosch S. Hormonal Effects of an Enzymatically Hydrolyzed Animal Protein-Based Biostimulant (Pepton) in Water-Stressed Tomato Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:758. [PMID: 31249580 PMCID: PMC6582703 DOI: 10.3389/fpls.2019.00758] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/24/2019] [Indexed: 05/12/2023]
Abstract
Biostimulants may promote growth or alleviate the negative effects of abiotic stress on plant growth eventually resulting in enhanced yields. We examined the mechanism of action of an enzymatically hydrolyzed animal protein-based biostimulant (Pepton), which has previously been shown to benefit growth and yield in several horticultural crops, particularly under stressful conditions. Tomato plants were exposed to well-watered and water-stressed conditions in a greenhouse and the hormonal profiling of leaves was measured during and after the application of Pepton. Results showed that the Pepton application benefited antioxidant protection and exerted a major hormonal effect in leaves of water-stressed tomatoes by increasing the endogenous content of indole-3-acetic acid (auxin), trans-zeatin (cytokinin), and jasmonic acid. The enhanced jasmonic acid content may have contributed to an increased production of tocochromanols because plastochromanol-8 concentration per unit of chlorophyll was higher in Pepton-treated plants compared to controls. In conclusion, the tested Pepton application may exert a positive effect on hormonal balance and the antioxidant system of plants under water stress in an economically important crop, such as tomato plants.
Collapse
Affiliation(s)
- Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Polo
- R&D Department, APC Europe S.L., Granollers, Spain
- *Correspondence: Javier Polo,
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, Spain
| |
Collapse
|