1
|
Pickering L, Castro-Gutierrez V, Holden B, Haley J, Jarvis P, Campo P, Hassard F. How bioaugmentation for pesticide removal influences the microbial community in biologically active sand filters. CHEMOSPHERE 2024; 363:142956. [PMID: 39074664 DOI: 10.1016/j.chemosphere.2024.142956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Removing pesticides from biological drinking water filters is challenging due to the difficulty in activating pesticide-degrading bacteria within the filters. Bioaugmented bacteria can alter the filter's microbiome, affecting its performance either positively or negatively, depending on the bacteria used and their interaction with native microbes. We demonstrate that adding specific bacteria strains can effectively remove recalcitrant pesticides, like metaldehyde, yielding compliance to regulatory standards for an extended period. Our experiments revealed that the Sphingobium CMET-H strain was particularly effective, consistently reducing metaldehyde concentrations to levels within regulatory compliance, significantly outperforming Acinetobacter calcoaceticus E1. This success is attributed to the superior acclimation and distribution of the Sphingobium strain within the filter bed, facilitating more efficient interactions with and degradation of the pesticide, even when present at lower population densities compared to Acinetobacter calcoaceticus E1. Furthermore, our study demonstrates that the addition of pesticide-degrading strains significantly impacts the filter's microbiome at various depths, despite these strains making up less than 1% of the total microbial community. The sequence in which these bacteria are introduced influences the system's ability to degrade pesticides effectively. This research shows the potential of carefully selected and dosed bioaugmented bacteria to improve the pesticide removal capabilities of water filtration systems, while also highlighting the dynamics between bioaugmented and native microbial communities. Further investigation into optimizing bioaugmentation strategies is suggested to enhance the resilience and efficiency of drinking water treatment systems against pesticide contamination.
Collapse
Affiliation(s)
- Laura Pickering
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Victor Castro-Gutierrez
- Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, 11501, Costa Rica
| | | | - John Haley
- UK Water Industry Research Limited, London, UK
| | - Peter Jarvis
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Pablo Campo
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Francis Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
2
|
Onyango J, Kitaka N, van Bruggen JJA, Irvine K, Simaika J. Agricultural intensification in Lake Naivasha Catchment in Kenya and associated nutrients and pesticides pollution. Sci Rep 2024; 14:18539. [PMID: 39122722 PMCID: PMC11315982 DOI: 10.1038/s41598-024-67460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Investments in agricultural intensification in sub-Saharan Africa aim to fulfill food and economic demands. However, the increased use of fertilizers and pesticides poses ecological risks to water bodies in agricultural catchments. This study focused on assessing the impact of agricultural intensification on nutrient and pesticide pollution in the L. Naivasha catchment in Kenya. The research revealed significant changes in the catchment's agricultural landscape between 1989 and 2019, driven by intensified agricultural expansion. As a result, nutrient and pesticide emissions have worsened the lake's trophic status, shifting it towards hypereutrophic conditions. The study found a weak relationship between total nitrogen (TN) and sum dichlorodiphenyltrichloroethane (∑DDT), indicating that an increase in TN slightly predicted a reduction in ∑DDT. Analysis also showed potential phosphorus (P) limitation in the lake. Additionally, the observed ratio between dichlorodiphenyldichloroethane and dichlorodiphenyldichloroethylene (DDD:DDE) and (DDE + DDD):DDT ratios suggest recent use of banned DDT in the catchment. The study concludes that the transformation of L. Naivasha landscape shows unsustainable agricultural expansion with reduced forest cover, increased croplands, and increased pesticide contamination. This reflects a common issue in sub-Saharan Africa, that sustainable catchment management must address, specifically for combined pollutants, to support water quality and achieve the SDGs in agriculture.
Collapse
Affiliation(s)
- Joel Onyango
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands.
- Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700AA, Wageningen, The Netherlands.
- African Centre for Technology Studies (ACTS), P.O. Box 45917, 00100, Nairobi, Kenya.
| | | | - J J A van Bruggen
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands
| | - Kenneth Irvine
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands
- Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700AA, Wageningen, The Netherlands
| | - John Simaika
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands
- Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| |
Collapse
|
3
|
Van Opstal NV, Gabioud EA, Seehaus MS, Pighini RJ, Repetti MR, Wilson MG, Wingeyer AB, Cuatrin AL, Regaldo LM, Gagneten AM, Sasal MC. Spatial distribution of pesticides in surface water of the Estacas stream (Argentine Espinal region) associated with crop production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43573-43585. [PMID: 36658320 DOI: 10.1007/s11356-023-25373-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The Espinal region (Entre Ríos, Argentina) has suffered land use changes caused by expansion of the agricultural frontier. This expansion has led to an increased use of pesticides. This study is aimed at better understanding the spatial distribution of pesticides in surface water of the Estacas stream, a representative basin of the Espinal region, associated with crop production. The location and proportion of area with soybean, maize, and wheat crops in each catchment area of the basin were estimated, and surface water samples were taken to perform a pesticide screening during a period of one year. Soybean represented approximately 71% of the total cultivated area of the basin, whereas maize and wheat accounted for 15% and 14%, respectively. The analysis of 125 analytes showed the presence of 19 pesticides. The pesticide load maps showed that atrazine was detected in an area of relatively low catchment compared to other pesticides as glyphosate, which is applied in all the agricultural fields of the basin. The load of metolachlor and S-metolachlor covered a large area of the basin. The highest recorded concentrations of these pesticides were 86 μg L-1 of atrazine, 24 μg L-1 of metolachlor, 19 μg L-1 of glyphosate, and 15 μg L-1 of S-metolachlor. The results allow better understanding the environmental distribution of pesticides associated with pest control in the crops of the basin studied, the doses and times of application, and the variation in the rainfall in the basin. This study provides relevant information about how aquatic ecosystems in agricultural basins receive the diffuse contribution of pesticides, representing potential sources of water pollution. Also, the results allow supporting the design of agricultural practices and politics to improve land-use planning for the development of sustainable basins.
Collapse
Affiliation(s)
- Natalia Veronica Van Opstal
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina.
| | - Emmanuel Adrian Gabioud
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina
| | - Mariela Soledad Seehaus
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina
| | - Ramiro Joaquin Pighini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Maria Rosa Repetti
- Facultad de Ingeniería Química (FIQ), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Marcelo German Wilson
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina
| | - Ana Beatriz Wingeyer
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina
| | - Alejandra Lorena Cuatrin
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina
| | - Luciana Maria Regaldo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Laboratorio de Ecotoxicología, Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias (FHUC), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Ana Maria Gagneten
- Laboratorio de Ecotoxicología, Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias (FHUC), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Maria Carolina Sasal
- Departamento de Recursos Naturales y Gestión Ambiental, Estación Experimental Agropecuaria Paraná, Instituto Nacional de Tecnología Agropecuaria (INTA), Entre Ríos, Paraná, Argentina
| |
Collapse
|
4
|
Kaczorowska MA, Bożejewicz D, Witt K. The Application of Polymer Inclusion Membranes for the Removal of Emerging Contaminants and Synthetic Dyes from Aqueous Solutions-A Mini Review. MEMBRANES 2023; 13:132. [PMID: 36837635 PMCID: PMC9968195 DOI: 10.3390/membranes13020132] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Pollution of the environment, including water resources, is currently one of the greatest challenges due to emerging new contaminants of anthropogenic origin. Of particular concern are emerging organic pollutants such as pharmaceuticals, endocrine disruptors, and pesticides, but also other industrial pollutants, for example, synthetic dyes. The growing demand for environmentally friendly and economical methods of removing emerging contaminants and synthetic dyes from wastewater resulted in increased interest in the possibility of using techniques based on the application of polymer inclusion membranes (PIMs) for this purpose. PIM-based techniques are promising methods for eliminating emerging contaminants and synthetic dyes from aqueous solutions, including wastewater, due to high efficiency, membranes versatility, ease/low cost of preparation, and high selectivity. This review describes the latest developments related to the removal of various emerging contaminants and synthetic dyes from aqueous solutions using PIMs over the past few years, with particular emphasis on research aimed at increasing the effectiveness and selectivity of PIMs, which may contribute to wider use of these methods in the future.
Collapse
|
5
|
Datry T, Truchy A, Olden JD, Busch MH, Stubbington R, Dodds WK, Zipper S, Yu S, Messager ML, Tonkin JD, Kaiser KE, Hammond JC, Moody EK, Burrows RM, Sarremejane R, DelVecchia AG, Fork ML, Little CJ, Walker RH, Walters AW, Allen D. Causes, Responses, and Implications of Anthropogenic versus Natural Flow Intermittence in River Networks. Bioscience 2022. [DOI: 10.1093/biosci/biac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
Rivers that do not flow year-round are the predominant type of running waters on Earth. Despite a burgeoning literature on natural flow intermittence (NFI), knowledge about the hydrological causes and ecological effects of human-induced, anthropogenic flow intermittence (AFI) remains limited. NFI and AFI could generate contrasting hydrological and biological responses in rivers because of distinct underlying causes of drying and evolutionary adaptations of their biota. We first review the causes of AFI and show how different anthropogenic drivers alter the timing, frequency and duration of drying, compared with NFI. Second, we evaluate the possible differences in biodiversity responses, ecological functions, and ecosystem services between NFI and AFI. Last, we outline knowledge gaps and management needs related to AFI. Because of the distinct hydrologic characteristics and ecological impacts of AFI, ignoring the distinction between NFI and AFI could undermine management of intermittent rivers and ephemeral streams and exacerbate risks to the ecosystems and societies downstream.
Collapse
Affiliation(s)
- Thibault Datry
- INRAE , UR RiverLy, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne France
| | - Amélie Truchy
- INRAE , UR RiverLy, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne France
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington , Seattle Washington, United States
| | - Michelle H Busch
- Department of Biology, University of Oklahoma , Norman, Oklahoma, United States
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University , Nottingham, England, United Kingdom
| | - Walter K Dodds
- Division of Biology, Kansas State University , Manhattan, Kansas, United States
| | - Sam Zipper
- Kansas Geological Survey, University of Kansas , Lawrence, Kansas, United States
| | - Songyan Yu
- Australian Rivers Institute, School of Environment and Science, Griffith University , Nathan, Queensland, Australia
| | - Mathis L Messager
- Department of Geography, McGill University , Montreal, Quebec, Canada
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury , Auckland, New Zealand
| | - Kendra E Kaiser
- Department of Geosciences, Boise State University , Boise, Idaho, United States
| | - John C Hammond
- Department of Ecosystem Science and Sustainability, Colorado State University , Fort Collins, Colorado, United States
| | - Eric K Moody
- Department of Biology, Middlebury College , Middlebury, Vermont, United States
| | - Ryan M Burrows
- School of Ecosystem and Forest Sciences, University of Melbourne , Burnley Campus, Burnley, Victoria, Australia
| | - Romain Sarremejane
- INRAE , UR RiverLy, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne France
| | - Amanda G DelVecchia
- Department of Biology, Duke University , Durham, North Carolina, United States
| | - Megan L Fork
- Department of Biology, West Chester University , West Chester, Pennsylvania, United States
| | - Chelsea J Little
- Department of Biology, West Chester University , West Chester, Pennsylvania, United States
| | - Richard H Walker
- Department of Biology and Chemistry, Upper Iowa University , Fayette, Iowa, United States
| | - Annika W Walters
- Department of Zoology and Physiology, Program in Ecology, University of Wyoming , Larame, Wyoming, United States
| | - Daniel Allen
- Department of Ecosystem Science and Management, Pennsylvania State University , University Park, Pennsylvania, United States
| |
Collapse
|
6
|
Cassidy R, Jordan P, Farrow L, Floyd S, McRoberts C, Morton P, Doody D. Reducing MCPA herbicide pollution at catchment scale using an agri-environmental scheme. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156080. [PMID: 35605857 DOI: 10.1016/j.scitotenv.2022.156080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In river catchments used as drinking water sources, high pesticide concentrations in abstracted waters require an expensive treatment step prior to supply. The acid herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA) is particularly problematic as it is highly mobile in the soil-water environment following application. Here, an agri-environmental scheme (AES) was introduced to a large-scale catchment (384 km2) to potentially reduce the burden of pesticides in the water treatment process. The main measure offered was contractor application of glyphosate by weed wiping as a substitute for boom spraying of MCPA, supported by educational and advisory activities. A combined innovation applied in the assessment was, i) a full before-after-control-impact (BACI) framework over four peak application seasons (April to October 2018 to 2021) where a neighbouring catchment (386 km2) did not have an AES and, ii) an enhanced monitoring approach where river discharge and MCPA concentrations were measured synchronously in each catchment. During peak application periods the sample resolution was every 7 h, and daily during quiescent winter periods. This sampling approach enabled flow- and time-weighted concentrations to be established, and a detailed record of export loads. These loads were up to 0.242 kg km-2 yr-1, and over an order of magnitude higher than previously reported in the literature. Despite this, and accounting for inter-annual and seasonal variations in river discharges, the AES catchment indicated a reduction in both flow- and time-weighted MCPA concentration of up to 21% and 24%, respectively, compared to the control catchment. No pollution swapping was detected. Nevertheless, the percentage of MCPA occurrences above a 0.1 μg L-1 threshold did not reduce and so the need for treatment was not fully resolved. Although the work highlights the advantages of catchment management approaches for pollution reduction in source water catchments, it also indicates that maximising participation will be essential for future AES.
Collapse
Affiliation(s)
- Rachel Cassidy
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK.
| | - Phil Jordan
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK
| | - Luke Farrow
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Stewart Floyd
- Food Research Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Colin McRoberts
- Food Research Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Phoebe Morton
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Donnacha Doody
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| |
Collapse
|
7
|
Atcheson K, Mellander PE, Cassidy R, Cook S, Floyd S, McRoberts C, Morton PA, Jordan P. Quantifying MCPA load pathways at catchment scale using high temporal resolution data. WATER RESEARCH 2022; 220:118654. [PMID: 35635916 DOI: 10.1016/j.watres.2022.118654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2-of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km-2 by catchment area, or 0.55 kg km-2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.
Collapse
Affiliation(s)
- Kevin Atcheson
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK.
| | - Per-Erik Mellander
- Agricultural Catchments Programme, Teagasc, Johnstown Castle, Wexford, Ireland
| | - Rachel Cassidy
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Sally Cook
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK
| | - Stewart Floyd
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Colin McRoberts
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Phoebe A Morton
- Agri-Environment Branch, Agri-Food and Biosciences Institute, Belfast, UK
| | - Phil Jordan
- School of Geography and Environmental Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
8
|
Castro-Gutierrez VM, Pickering L, Cambronero-Heinrichs JC, Holden B, Haley J, Jarvis P, Jefferson B, Helgason T, Moir JW, Hassard F. Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrix. WATER RESEARCH 2022; 211:118071. [PMID: 35063927 DOI: 10.1016/j.watres.2022.118071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Metaldehyde is a polar, mobile, low molecular weight pesticide that is challenging to remove from drinking water with current adsorption-based micropollutant treatment technologies. Alternative strategies to remove this and compounds with similar properties are necessary to ensure an adequate supply of safe and regulation-compliant drinking water. Biological removal of metaldehyde below the 0.1 µg•L-1 regulatory concentration was attained in pilot-scale slow sand filters (SSFs) subject to bioaugmentation with metaldehyde-degrading bacteria. To achieve this, a library of degraders was first screened in bench-scale assays for removal at micropollutant concentrations in progressively more challenging conditions, including a mixed microbial community with multiple carbon sources. The best performing strains, A. calcoaceticus E1 and Sphingobium CMET-H, showed removal rates of 0.0012 µg•h-1•107 cells-1 and 0.019 µg•h-1•107 cells-1 at this scale. These candidates were then used as inocula for bioaugmentation of pilot-scale SSFs. Here, removal of metaldehyde by A. calcoaceticus E1, was insufficient to achieve compliant water regardless testing increasing cell concentrations. Quantification of metaldehyde-degrading genes indicated that aggregation and inadequate distribution of the inoculum in the filters were the likely causes of this outcome. Conversely, bioaugmentation with Sphingobium CMET-H enabled sufficient metaldehyde removal to achieve compliance, with undetectable levels in treated water for at least 14 d (volumetric removal: 0.57 µg•L-1•h-1). Bioaugmentation did not affect the background SSF microbial community, and filter function was maintained throughout the trial. Here it has been shown for the first time that bioaugmentation is an efficient strategy to remove the adsorption-resistant pesticide metaldehyde from a real water matrix in upscaled systems. Swift contaminant removal after inoculum addition and persistent activity are two remarkable attributes of this approach that would allow it to effectively manage peaks in metaldehyde concentrations (due to precipitation or increased application) in incoming raw water by matching them with high enough degrading populations. This study provides an example of how stepwise screening of a diverse collection of degraders can lead to successful bioaugmentation and can be used as a template for other problematic adsorption-resistant compounds in drinking water purification.
Collapse
Affiliation(s)
- V M Castro-Gutierrez
- Department of Biology, University of York, Heslington, York, UK; Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK; Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, 11501, Costa Rica
| | - L Pickering
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - J C Cambronero-Heinrichs
- Environmental Pollution Research Center (CICA), University of Costa Rica, Montes de Oca, 11501, Costa Rica
| | - B Holden
- UK Water Industry Research Limited, London, UK
| | - J Haley
- UK Water Industry Research Limited, London, UK
| | - P Jarvis
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - B Jefferson
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK
| | - T Helgason
- Department of Biology, University of York, Heslington, York, UK
| | - J W Moir
- Department of Biology, University of York, Heslington, York, UK
| | - F Hassard
- Cranfield University, College Road, Cranfield, Bedfordshire MK43 0AL, UK.
| |
Collapse
|
9
|
Catchment-Scale Participatory Mapping Identifies Stakeholder Perceptions of Land and Water Management Conflicts. LAND 2022. [DOI: 10.3390/land11020300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Competing socioecological demands and pressures on land and water resources have the potential to increase land use conflict. Understanding ecosystem service provisioning and trade-offs, competing land uses, and conflict between stakeholder groups in catchments is therefore critical to inform catchment management and the sustainable use of natural resources. We developed a novel stakeholder engagement methodology that incorporates participatory conflict mapping in three catchments with a short questionnaire to identify the perceptions of 43 participants from four key land and water management stakeholder groups: environmental regulators, water industry practitioners, the farm advisor community, and academics. The participatory mapping exercise produced heat maps of perceived conflict and land use competition, providing spatial detail of the complex combination of land use issues faced by catchment managers. Distinct, localised hotspots were identified in areas under pressure from flooding, abstraction, and urbanisation; as well as more dispersed issues of relevance at the landscape scale, such as from farming, forestry, energy production, and tourism. Subsequent regression modelling linked perceived conflict to land cover maps and identified coastal, urban, and grassland areas as the most likely land cover types associated with conflict in the study catchments. Our approach to participatory conflict mapping provides a novel platform for catchment management and can facilitate increased cooperation among different catchment stakeholders. In turn, land and water management conflicts can be recognised and their underlying drivers and likely solutions identified in an effort to better manage competing demands on catchment resources.
Collapse
|
10
|
Thomine E, Mumford J, Rusch A, Desneux N. Using crop diversity to lower pesticide use: Socio-ecological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150156. [PMID: 34509833 DOI: 10.1016/j.scitotenv.2021.150156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The farming practices adopted since the end of the Second World War, based on large areas of monocultures and chemical use, have adversely affected the health of farmers and consumers and dramatically reduced farmland biodiversity. As a consequence, many studies over more than twenty years have stated that agriculture is facing three main challenges: (1) feeding the growing world population (2) with more environmentally friendly products (3) at a reasonable return for the producer. Increasing the efficacy of biocontrol could be one lever for agriculture to meet these expectations. In this study we propose implementation of a relatively under-researched system based on the management of landscape level crop diversity that would reduce demand for pesticide use and increase conservation biocontrol. The principle of manipulating crop diversity over space and time at a landscape scale is to optimize resource continuity, such as food and shelter for natural enemies to increase biocontrol services, reduce pest outbreaks and crop losses. The feasibility of such management options is discussed in relation to environmental, social and economic aspects. The operational and institutional inputs and conditions needed to make the system work are explored, as well as the potential added values of such a system for different stakeholders.
Collapse
Affiliation(s)
- Eva Thomine
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France; L@bisen, ISEN Yncréa Ouest, 29200 Brest, France.
| | - John Mumford
- Imperial College London, Silwood Park Campus, Ascot SL5 7PY, United Kingdom
| | - Adrien Rusch
- INRAE, ISVV, Univ. Bordeaux, Bordeaux Sciences Agro, UMR SAVE, F-33883 Villenave d'Ornon, France
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|
11
|
Assessment of Environmental Pollution and Human Exposure to Pesticides by Wastewater Analysis in a Seven-Year Study in Athens, Greece. TOXICS 2021; 9:toxics9100260. [PMID: 34678955 PMCID: PMC8537104 DOI: 10.3390/toxics9100260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Pesticides have been used in large amounts around the world for decades and are responsible for environmental pollution and various adverse effects on human health. Analysis of untreated wastewater can deliver useful information on pesticides’ use in a particular area and allow the assessment of human exposure to certain substances. A wide-scope screening method, based on liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry, was applied, using both target and suspect screening methodologies. Daily composite influent wastewater samples were collected for seven or eight consecutive days in Athens between 2014 and 2020 and analyzed for 756 pesticides, their environmental transformation products and their human metabolites. Forty pesticides were quantified at mean concentrations up to 4.9 µg/L (tralkoxydim). The most abundant class was fungicides followed by herbicides, insect repellents, insecticides and plant growth regulators. In addition, pesticide transformation products and/or metabolites were detected with high frequency, indicating that research should be focused on them. Human exposure was evaluated using the wastewater-based epidemiology (WBE) approach and 3-ethyl-carbamoyl benzoic acid and cis-1,2,3,6-tetrahydrophthalimide were proposed as potential WBE biomarkers. Wastewater analysis revealed the presence of unapproved pesticides and indicated that there is an urgent need to include more transformation products in target databases.
Collapse
|
12
|
Campbell A, Audsley N, Port G. The Fate of Deroceras reticulatum Following Metaldehyde Poisoning. INSECTS 2021; 12:insects12040344. [PMID: 33924331 PMCID: PMC8070404 DOI: 10.3390/insects12040344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary The grey field slug, Deroceras reticulatum (Müller, 1774) (Agriolimacidae), is one of the most economically important crop pests and is a particular threat to oil seed rape and winter wheat. Without effective slug control, it is estimated that the loss of yield due to slug damage could equate to over £100 million annually for the UK agricultural sector. The molluscicide metaldehyde is one of the most common active ingredients used in slug pellets across the globe; however, its application presents a high risk of surface water pollution and threatens non-target wildlife. The control of slugs by metaldehyde relies on slugs consuming or being in contact with a pellet long enough to receive a lethal dose; otherwise, a slug may recover from the dehydrating and paralysing effects of the molluscicide. This research explores the effect of different concentrations of metaldehyde on slug survival, paralysis and recovery after contact with metaldehyde, and highlights the prospect of slug paralysis being a major contributing factor to successful slug control. Abstract The concentration of a pesticide used in agriculture not only has implications for effectiveness of pest control but may also have significant wider environmental consequences. This research explores the acceptability of metaldehyde slug pellets at different concentrations by Deroceras reticulatum (Müller, 1774) (Agriolimacidae), and the changes in the health status of the slug when allowed to recover. The highest metaldehyde concentration (5%) yielded the highest slug mortality; however, it also produced the highest proportion of unpoisoned slugs, suggesting the highest level of pellet rejection. Pellets with 1% metaldehyde were as effective as 3% pellets in paralysing a significant proportion of the population after initial pellet exposure; however, more slugs were able to recover from metaldehyde poisoning at 1% metaldehyde compared with 3%. There was no statistically significant difference between the mortality rate of slugs regardless of metaldehyde concentration, suggesting that a lower concentration of metaldehyde may be as effective as a higher concentration.
Collapse
Affiliation(s)
- Amy Campbell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Correspondence:
| | - Neil Audsley
- Fera Science Ltd., Sand Hutton York YO41 1LZ, UK;
| | - Gordon Port
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| |
Collapse
|
13
|
Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J. An extensive review on the consequences of chemical pesticides on human health and environment. JOURNAL OF CLEANER PRODUCTION 2021. [PMID: 0 DOI: 10.1016/j.jclepro.2020.124657] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
14
|
Purnell S, Kennedy R, Williamson E, Remesan R. Metaldehyde prediction by integrating existing water industry datasets with the soil and water assessment tool. WATER RESEARCH 2020; 183:116053. [PMID: 32623240 DOI: 10.1016/j.watres.2020.116053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Metaldehyde (a synthetic aldehyde pesticide used globally in agriculture) has been internationally identified as an emerging contaminant of concern. This study aimed to integrate existing water industry, publicly available and purchased licensed datasets with the open-access Soil and Water Assessment Tool (SWAT), to establish if these datasets could be used to effectively model metaldehyde in river catchments. To achieve the study aim, a SWAT model was developed and calibrated for the River Medway catchment (UK). The results of calibration (1994-2004) and validation (2005-2016) of average daily streamflow (m3/s) showed that the SWAT model could simulate water balance well (P-factor 0.68-0.85 and R-factor 0.54-0.82, NSE 0.42-0.60). Calibration (P-factor 0.72 and R-factor 1.35, NSE 0.31) and validation (P-factor 0.49 and R-factor 1.37, NSE 0.16) for daily soluble metaldehyde (mg active ingredient) load was also satisfactory. The most sensitive pesticide parameters for metaldehyde simulation included the timing and amount of pesticide (kg/ha) applied to the hydrological response units, the pesticide percolation coefficient and pesticide application efficiency. Outputs from this research demonstrate the potential application of SWAT in large complex catchments where routine monitoring is in place, but isn't designed explicitly for the purpose of predictive modelling. The implications of this, are significant, because they suggest that SWAT could be applied universally to catchments using existing water industry datasets. This would allow more efficient use of historical datasets and would be applicable in situations where resources are not available for additional targeted monitoring programmes.
Collapse
Affiliation(s)
- Sarah Purnell
- Environment and Public Health Research and Enterprise Group, Centre for Aquatic Environments, School of Environment and Technology, University of Brighton, Cockcroft Building, Lewes Road, Brighton, BN2 4GJ, United Kingdom.
| | - Rebecca Kennedy
- Southern Water Services Ltd., Southern House, Yeoman Road, Worthing, BN13 3NX, West Sussex, UK
| | - Elin Williamson
- Southern Water Services Ltd., Southern House, Yeoman Road, Worthing, BN13 3NX, West Sussex, UK
| | - Renji Remesan
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
15
|
Whelan MJ, Ramos A, Villa R, Guymer I, Jefferson B, Rayner M. A new conceptual model of pesticide transfers from agricultural land to surface waters with a specific focus on metaldehyde. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:956-972. [PMID: 32043103 DOI: 10.1039/c9em00492k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pesticide losses from agricultural land to water can result in the environmental deterioration of receiving systems. Mathematical models can make important contributions to risk assessments and catchment management. However, some mechanistic models have high parameter requirements which can make them difficult to apply in data poor areas. In addition, uncertainties in pesticide properties and applications are difficult to account for using models with long run-times. Alternative, simpler, conceptual models are easier to apply and can still be used as a framework for process interpretation. Here, we present a new conceptual model of pesticide behaviour in surface water catchments, based on continuous water balance calculations. Pesticide losses to surface waters are calculated based on the displacement of a limited fraction of the soil pore water during storm events occurring after application. The model was used to describe the behaviour of metaldehyde in a small (2.2 km2) under-drained catchment in Eastern England. Metaldehyde is a molluscicide which has been regularly detected at high concentrations in many drinking water supply catchments. Measured peak concentrations in stream water (to about 9 μg L-1) occurred in the first few storm events after application in mid-August. In each event, there was a quasi-exponential decrease in concentration during hydrograph recession. Peak concentrations decreased in successive events - responding to rainfall but reflecting an effective exhaustion in soil supply due to degradation and dissipation. Uncertain pesticide applications to the catchment were estimated using land cover analysis of satellite data, combined with a Poisson distribution to describe the timing of application. Model performance for both the hydrograph (after calibration of the water balance) and the chemograph was good and could be improved via some minor adjustments in assumptions which yield general insights into the drivers for pesticide transport. The use of remote sensing offers some promising opportunities for estimating catchment-scale pesticide applications and associated losses.
Collapse
Affiliation(s)
- M J Whelan
- Centre for Landscape & Climate Research, School of Geography, Geology and the Environment, University of Leicester, UK.
| | | | | | | | | | | |
Collapse
|