1
|
Assad J, Cho S, Dileo V, Gascoigne G, Hubberstey AV, Patterson D, Williams R. Contaminated sediment in the Detroit River provokes acclimated responses in wild brown bullhead (Ameiurus nebulosus) populations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106772. [PMID: 38039693 DOI: 10.1016/j.aquatox.2023.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
In a previous study, adaptive responses to a single polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), were identified in brown bullhead (Ameiurus nebulosus) captured from contaminated sites across the Great Lakes. The tumor suppressor p53 and phase I toxin metabolizing CYP1A genes showed a elevated and refractory response, respectively, up to the F1 generation (Williams and Hubberstey, 2014). As an extension to the first study, bullhead were exposed to sediment collected from sites along the Detroit River to see if these adaptive responses are attainable when fish from a contaminated site are exposed to a mixture of contaminants, instead of a single compound. p53 and CYP1A proteins were measured again with the addition of phase II glutathione-s-transferase (GST) activity in the present study. Three treatment groups were measured: acute (treated immediately), cleared (depurated for three months and subsequent treatment), and farm raised F1 offspring. All three treatment groups were exposed to clean and contaminated sediment for 24 and 96 h. Acute fish from contaminated sites exposed to contaminated sediment revealed an initial elevated p53 response that did not persist in fish after long-term contaminated sediment exposure. Acute fish from contaminated sites exposed to contaminated sediment revealed refractory CYP1A expression, which disappeared in cleared fish and whose F1 response overlapped with clean site F1 offspring. Decreasing GST activity was evident in both clean and contaminated fish over time, and only clean site fish responded to long-term contaminated sediment deliberately with increasing GST activity. Because p53 and CYP1A gene expression and GST activity responses did not overlap between contaminated fish treatment groups, our study suggests that contaminated fish have acclimated to the contaminants present in their environments and no evidence of adaptation could be detected within these biomarkers.
Collapse
Affiliation(s)
- J Assad
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - S Cho
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada
| | - V Dileo
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - G Gascoigne
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - A V Hubberstey
- Department of Biolomedical Sciences, University of Windsor, Windsor, ON N9B3P4, Canada
| | - D Patterson
- The College of Wooster 1189 Beall Ave., Wooster, Ohio 44691, United States
| | - R Williams
- Department of Biology, University of Windsor, Windsor, ON N9B3P4, Canada.
| |
Collapse
|
2
|
Ren T, Zhang C, Jin CZ, Jin FJ, Li T, Oh HM, Lee HG, Jin L. Description of Hymenobacter sediminicola sp. nov., isolated from contaminated sediment. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01846-9. [PMID: 37237242 DOI: 10.1007/s10482-023-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
A polyphasic taxonomic study was conducted on two Gram-negative, non-sporulating, non-motile bacterial strains, S2-20-2T and S2-21-1, isolated from a contaminated freshwater sediment in China. Comparative 16S rRNA gene sequence studies revealed a clear affiliation of two strains with Bacteroidetes, which showed the highest pairwise sequence similarities with Hymenobacter duratus BT646T (99.3%), Hymenobacter psychrotolerans Tibet-IIU11T (99.3%), Hymenobacter kanuolensis T-3T (97.6%), Hymenobacter swuensis DY53T (96.9%), Hymenobacter tenuis POB6T (96.8%), Hymenobacter seoulensis 16F7GT (96.7%), and Hymenobacter rigui KCTC 12533T (96.5%). The phylogenetic analysis based on 16S rRNA gene sequences showed that two strains formed a clear phylogenetic lineage with the genus Hymenobacter. Major fatty acids were identified as iso-C15:0, anteiso-C15:0, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c/t) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). Major cellular polar lipids were identified as phosphatidylethanolamine, three unidentified aminolipids, an unidentified aminophosopholipid and an unidentified lipid. The respiratory quinone was detected as MK-7 and the genomic DNA G + C content was determined to be 57.9% (genome) for type strain S2-20-2T and 57.7 mol% (HPLC) for strain S2-21-1. The observed ANI and dDDH values between strain S2-20-2T and its closely related strains were 75.7-91.4% and 21.2-43.9%, respectively. Based on physiological, biochemical, genetic and genomic characteristics, we propose that strains S2-20-2T and S2-21-1 represent a novel species of the genus Hymenobacter, for which the name Hymenobacter sediminicola sp. nov. is proposed. The type strain is S2-20-2T (= CGMCC 1.18734T = JCM 35801T).
Collapse
Affiliation(s)
- Tingting Ren
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Chengxiao Zhang
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Chun-Zhi Jin
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Feng-Jie Jin
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Taihua Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hyung-Gwan Lee
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Long Jin
- Co-Innovation Centre for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Yamamoto FY, Souza ATC, Paula VDCSD, Beverari I, Garcia JRE, Padial AA, de Souza Abessa DM. From molecular endpoints to modeling longer-term effects in fish embryos exposed to the elutriate from Doce River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157332. [PMID: 35870591 DOI: 10.1016/j.scitotenv.2022.157332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Sediments represent a major sink and also a main source of contaminants to aquatic environments. An environmental disaster from a mining dam breakage in 2015 in South-East Brazil re-suspended complex mixtures of chemicals deposited in the sediment, spreading contaminants along the Doce River Basin (DRB) major river course. While high levels of contaminants in sediment were well described, toxicological effects in aquatic organisms were poorly investigated. Thus, the effects of these potentially toxic chemicals were assessed in the present study through different endpoints (biochemical to populational levels) in fish embryos of the South-American silver catfish exposed to elutriates from different sites of the DRB. Despite no significant mortality observed, our results showed that exposure to the elutriates, especially those from the closest site to the dam collapse, caused higher deformities rates and DNA damage in the fish embryos than in the control group. Multivariate analysis showed that these sublethal effects may be related to the high levels of metals introduced by mining activities, compromising long-term survival and reproduction success. In addition, it was possible to observe the influence of other sources of pollutants along the river. According to our data, the mathematical model simulated a significant impact on the population density at longer-term exposure, for the sites that showed the most prominent toxicity responses. The fish embryo toxicity test proved to be an effective assay to assess the ecotoxicological effects of the pollutants from a major river contaminated by a mining dam collapse and showed that the survival rate per se was not a suitable endpoint to assess the toxicity of the pollutants. As a consequence, we contributed to shed a light on a potential underestimated impact of pollutants in sediments of the DRB on the native organisms at distinct biological levels of organizations.
Collapse
Affiliation(s)
| | | | | | - Isabella Beverari
- Institute of Biosciences, São Paulo State University, São Vicente, Brazil
| | | | - André Andian Padial
- Graduation Program in Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil; Analyses and Synthesis in Biodiversity Lab, Botany Department, Federal University Curitiba, Brazil.
| | | |
Collapse
|
4
|
Nilén G, Obamwonyi OS, Liem-Nguyen V, Engwall M, Larsson M, Keiter SH. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106175. [PMID: 35523058 DOI: 10.1016/j.aquatox.2022.106175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Osagie S Obamwonyi
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| | - Van Liem-Nguyen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
5
|
Saiki P, Mello-Andrade F, Gomes T, Rocha TL. Sediment toxicity assessment using zebrafish (Danio rerio) as a model system: Historical review, research gaps and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148633. [PMID: 34182436 DOI: 10.1016/j.scitotenv.2021.148633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Sediment is an important compartment in aquatic environments and acts as a sink for environmental pollutants. Sediment toxicity tests have been suggested as critical components in environmental risk assessment. Since the zebrafish (Danio rerio) has been indicated as an emerging model system in ecotoxicological tests, a scientometric and systematic review was performed to evaluate the use of zebrafish as an experimental model system in sediment toxicity assessment. A total of 97 papers were systematically analyzed and summarized. The historical and geographical distributions were evaluated and the data concerning the experimental design, type of sediment toxicity tests and approach (predictive or retrospective), pollutants and stressors, zebrafish developmental stages and biomarkers responses were summarized and discussed. The use of zebrafish to assess the sediment toxicity started in 1996, using mainly a retrospective approach. After this, research showed an increasing trend, especially after 2014-2015. Zebrafish exposed to pollutant-bound sediments showed bioaccumulation and several toxic effects, such as molecular, biochemical, morphological, physiological and behavioral changes. Zebrafish is a suitable model system to assess the toxicity of freshwater, estuarine and marine sediments, and sediment spiked in the laboratory. The pollutant-bound sediment toxicity in zebrafish seems to be overall dependent on physical and chemical properties of pollutants, experimental design, environmental factor, developmental stages and presence of organic natural matter. Overall, results showed that the zebrafish embryos and larvae are suitable model systems to assess the sediment-associated pollutant toxicity.
Collapse
Affiliation(s)
- Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Francyelli Mello-Andrade
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil; Federal Institute of Education, Science and Technology of Goiás (IFG), Câmpus Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
6
|
Sager E, Rossi A, Loughlin TM, Marino D, Torre FDELA. Multibiomarker responses in Danio rerio after exposure to sediment spiked with triclosan. AN ACAD BRAS CIENC 2021; 93:e20201938. [PMID: 34550207 DOI: 10.1590/0001-3765202120201938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Triclosan (TCS) is an antimicrobial and antimycotic agent widely used in personal care products. In aquatic environments, both TCS and its biomethylated more persistent form, methyl-triclosan (MeTCS), are usually detected in wastewater effluents and rivers, where are commonly adsorbed to suspended solids and sediments. The aim of this study was to evaluate biochemical and physiological effects in Danio rerio after a short term (2 days) and prolonged (21 days) exposures to sediment spiked with TCS acting as the source of the pollutant in the assay. The activities of catalase (CAT), glutathione-s transferase (GST) and superoxide dismutase (SOD), lipid peroxidation levels (LPO), total capacity against peroxyl radicals (ACAP), and acetylcholinesterase enzymatic activity (AChE) were measured in liver, gills, and brain. Most of TCS on the spiked sediment was biotransformed to MeTCS and promoted different adverse effects on D. rerio. Gills were the most sensitive organ after 2 day-exposure, showing lipid damage and increased SOD activity. After 21 days of exposure, liver was the most sensitive organ, showing lower ACAP, increased LPO levels, and SOD and CAT activities. This is the first study reporting the effects on biochemical markers in D. rerio from a MeTCS sink resulting from sediment spiked with TCS.
Collapse
Affiliation(s)
- Emanuel Sager
- Universidad Nacional de Luján (UNLu), Grupo de estudios de Contaminación Antrópica en Peces, Instituto de Ecología y Desarrollo Sustentable (CONICET- UNLu), Departamento de Ciencias Básicas, Luján, Ruta 5 y Avenida Constitución, 6700, Buenos Aires, Argentina
| | - Andrea Rossi
- UNL, Instituto Nacional de Limnología, CONICET, Paraje El Pozo, Ciudad Universitaria UNL, 3000, Santa Fe, Argentina.,UNL, Facultad de Humanidades y Ciencias, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Tomás Mac Loughlin
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, Calle 115 s/n, 1900 La Plata, Buenos Aires, Argentina
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente (CIM), FCEx-UNLP-CONICET, Calle 115 s/n, 1900 La Plata, Buenos Aires, Argentina
| | - Fernando DE LA Torre
- Universidad Nacional de Luján (UNLu), Grupo de estudios de Contaminación Antrópica en Peces, Instituto de Ecología y Desarrollo Sustentable (CONICET- UNLu), Departamento de Ciencias Básicas, Luján, Ruta 5 y Avenida Constitución, 6700, Buenos Aires, Argentina
| |
Collapse
|
7
|
Choi Y, Kim M, Ha SY, Han GM, Yim UH, Jung JH. Sediment quality assessment combining chemical and biological (non)target analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105883. [PMID: 34311228 DOI: 10.1016/j.aquatox.2021.105883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Aquatic sediments act as a storage for diverse mixtures of organic and inorganic contaminants. Nevertheless, most evaluations of contaminated sediments have been limited to the assessment of concentrations of target compounds and lethal effects on some test species. To identify the organic contaminants causing sub-lethal effects of contaminated sediment, this study combined chemical and biological (non)target analysis involving comprehensive two-dimensional gas chromatography coupled with a time-of-flight Mass Spectrometer (GCxGC/ToF-MS) analysis, embryonic malformation and high-throughput sequencing (RNA-seq) analysis on developing flounder. Polycyclic aromatic hydrocarbons were more abundant in the sediment extract of Yeongil Bay (SEY), while Jinhae Bay (SEJ) was contaminated with a large amount of unidentified chemicals. The unidentified chemicals of SEJ included branched alkanes, oxygenated cycloalkanes, heterogeneous hydrocarbons, and other unknown compounds. Percentage of pericardial edema was the highest in embryonic flounder exposed to SEY. Consistent with the morphogenesis results, the expression level of genes related to heart formation including the nkx2.5 and robo1 was greater in embryonic flounder exposed to SEY. In the analyses of differential gene expression profiles (cutoff P < 0.05), by RNA-seq, embryos exposed to SEJ showed changes related to cell differentiation, cell part morphogenesis, neurogenesis, and neuron development. Genes related to neurogenesis and positive regulation of molecular functions variated significantly in embryos exposed to SEY. These results demonstrated the advantages of combining target and non-target analysis to accurately evaluate the major chemical groups causing sediment toxicity. Therefore, this work provided a useful approach to tracking and revealing the causes of toxic effects and identifying potential toxic mechanisms.
Collapse
Affiliation(s)
- Youmi Choi
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sung Yong Ha
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Gi Myung Han
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Un Hyuk Yim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jee-Hyun Jung
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
8
|
Mittal K, Rahim AA, George S, Ghoshal S, Basu N. Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish ( Danio rerio). Nanotoxicology 2021; 15:527-541. [PMID: 33756094 DOI: 10.1080/17435390.2021.1897173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Silver (nAg) and titanium dioxide nanoparticles (nTiO2) are common engineered nanoparticles (ENPs) added into paint for their antimicrobial and whitening properties, respectively. Weathering of outdoor painted surfaces can release such ENPs, though little is known about the potential effects of released ENPs on aquatic species. The objective of this study was to characterize the toxicity of nAg and nTiO2 released from painted panels using fish liver cells (CRL2643) and zebrafish embryos (OECD 236 embryotoxicity test). Cells and embryos were exposed to suspensions of pristine nAg or nTiO2, panels (unpainted or painted with nAg or nTiO2) or base paint, after sonication. Cell viability and gene expression were assessed using resazurin assay and qPCR, respectively, while embryo mortality and deformities were scored visually via microscopic examination. In the cell studies, both paint-released nanoparticles did not affect viability, but paint-released nAg resulted in differential expression of a few genes including gclc and ncf1. In embryos, paint-released nAg increased mortality and incidence of deformities, whereas paint-released nTiO2 resulted in differential expression of several genes including gclc, ncf1, txnrd1, gpx1b, and cyp1c1 but without major phenotypic abnormalities. Comparing the two types of exposures, paint-released exposures affected both molecular (gene expression) and apical (embryotoxicity) endpoints, while pristine exposures affected the expression of some genes but had no apical effects. The differing effects of paint-released and pristine nanoparticle exposures suggest that further research is needed to further understand how paint coatings (and the products of their weathering and aging) may influence nanoparticle toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Krittika Mittal
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | | | - Saji George
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Chen GW, Lee DY, Chen PJ. Use of embedded Chelex chelating resin and sediment toxicity bioassays with medaka embryos to determine the bioavailability and toxicity of lead-contaminated sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140794. [PMID: 32731064 DOI: 10.1016/j.scitotenv.2020.140794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The aquatic sediment acts as a reservoir for multiple sources of pollutants including toxic metals. Most analytical methods used for estimating the bioavailability of sediment heavy metals have not been biologically validated by correlation with an aquatic organism's response. A reliable whole-sediment contacting toxicity assay using vertebrate species is lacking and the exposure routes for sediment metals are unclear. This study established a novel bio-analytical approach involving the Chelex-100 resin detection system and sediment toxicity assessment with embryo-larval stages of medaka fish (Oryzias latipes) to evaluate the bioavailability and toxicity of lead (Pb) contamination in sediment to fish. Treated fish exposed to the Pb-spiked artificial sediment with whole-sediment exposure showed more dose-dependent toxic responses than those from pore- or overlying-water exposure extracted from the same sediment. The Chelex-100 resin-extractable Pb content was highly correlated with mortality, total malformation and Pb bioaccumulation in medaka embryos or hatchlings from Pb-spiked sediment at environmentally relevant concentrations. The environmental sediment with higher contents of clay or organic carbon showed lower potency of releasing Pb from sediment to overlying water, as compared to those observed with artificial sediment. Our results suggest that the bio-analytical method can be practically applied in situ to evaluate the adverse effect of heavy metal-contaminated sediment on the aquatic ecosystem.
Collapse
Affiliation(s)
- Guan-Wei Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Dar-Yuan Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
10
|
Jijie R, Solcan G, Nicoara M, Micu D, Strungaru SA. Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134299. [PMID: 31505357 DOI: 10.1016/j.scitotenv.2019.134299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In natural environments, the aquatic organisms are exposed to complex mixtures of chemicals which may originate from natural sources or from anthropogenic activities. In this context, the aim of the study was to assess the potential effects that might occur when aquatic organisms are simultaneously exposed to multiple chemicals. For that, we have studied the acute effects of cadmium (0.2 μg L-1), nickel (10 μg L-1) and deltamethrin (2 μg L-1) as individual toxicants and as mixture on the behavioral responses, oxidative stress (SOD and GPx), body electrolytes and trace metals profiles of zebrafish (Danio rerio). So far the scientific literature did not report about the combined effects of pesticides and toxic metals on zebrafish behavior using a 3D tracking system. Compared with other studies, in the present paper we investigated the acute effects of two heavy metals associated with a pesticide on zebrafish, in the range of environmentally relevant concentrations. Thus, the environmental concentrations of cadmium and nickel in three rivers affected by urban activities and one river with protected areas as background control were measured. The observations that resulted in our study demonstrated that deltamethrin toxicity was significantly decreased in some of the behavioral variables and oxidative stress when combined with CdNi mixture. Consequently, our study supports previous works concerning the combined toxicity of environmental chemicals since their simultaneous presence in the aqueous environment may lead to higher or lower toxicological effects on biota than those reported from a single pollutant. Therefore, the evaluation of toxic effects of a single contaminant does not offer a realistic estimate of its impact against aqueous ecosystems. This study also supports the idea that the interactions between different chemical compounds which do not exceed the maximum permitted limits in environment may have benefits for aquatic life forms or be more toxic.
Collapse
Affiliation(s)
- Roxana Jijie
- Alexandru Ioan Cuza University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania
| | - Gheorghe Solcan
- University of Agricultural Science and Veterinary Medicine "Ion Ionescu de la Brad", Department of Molecular Biology, Histology and Embriology, Faculty of Veterinary Medicine, 8, Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Mircea Nicoara
- Alexandru Ioan Cuza University of Iași, Doctoral School of Geosciences, Faculty of Geography-Geology, B-dul Carol I, 700505 Iasi, Romania; Alexandru Ioan Cuza University of Iasi, Department of Biology, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania.
| | - Dragos Micu
- Romanian Waters National Authority, Dobrogea - Black Sea Basin Administration, Mircea cel Batran Blvd. 127, RO-900592 Constanta, Romania
| | - Stefan-Adrian Strungaru
- Alexandru Ioan Cuza University of Iasi, Department of Research, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania; Alexandru Ioan Cuza University of Iași, Doctoral School of Geosciences, Faculty of Geography-Geology, B-dul Carol I, 700505 Iasi, Romania.
| |
Collapse
|