1
|
Qin Y, Zhang M, Zhang F, Ozer SN, Feng Y, Sun W, Zhao Y, Xu Z. Achieving ultrafast and highly selective capture of radiotoxic tellurite ions on iron-based metal-organic frameworks through coordination bond-dominated conversion. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133780. [PMID: 38401213 DOI: 10.1016/j.jhazmat.2024.133780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Chemically durable and effective adsorbents for radiotoxic TeOx2- (TeIV and TeVI) anions remain in great demand for contamination remediation. Herein, a low-cost iron-based metal-organic framework (MIL-101(Fe)) was used as an adsorbent to capture TeOx2- anions from contaminated solution with ultrafast kinetics and record-high adsorption capacity of 645 mg g-1 for TeO32- and 337 mg g-1 for TeO42-, outperforming previously reported adsorbents. Extended X-ray absorption fine structure (EXAFS) and density functional theory (DFT) calculations confirmed that the capture of TeOx2- by MIL-101(Fe) was mediated by the unique C-O-Te and Fe-O-Te coordination bonds at corresponding optimal adsorption sites, which enabled the selective adsorption of TeOx2- from solution and further irreversible immobilization under the geological environment. Meanwhile, MIL-101(Fe) works steadily over a wide pH range of 4-10 and at high concentrations of competing ions, and it is stable under β-irradiation even at high dose of 200 kGy. Moreover, the MIL-101(Fe) membrane was fabricated to efficiently remove TeO32- ions from seawater for practical use, overcoming the secondary contamination and recovery problems in powder adsorption. Finally, the good sustainability of MIL-101(Fe) was evaluated from three perspectives of technology, environment, and society. Our strategy provides an alternative to traditional removal methods that should be attractive for Te contamination remediation.
Collapse
Affiliation(s)
- Yongbo Qin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Meng Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Fuhao Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Seda Nur Ozer
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yujing Feng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Wenlong Sun
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Yongming Zhao
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Zhanglian Xu
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| |
Collapse
|
2
|
Wu M, Teng X, Liang X, Zhang Y, Huang Z, Yin Y. Supporting nanoscale zero-valent iron onto shrimp shell-derived N-doped biochar to boost its reactivity and electron utilization for selenite sequestration. CHEMOSPHERE 2023; 319:137979. [PMID: 36736475 DOI: 10.1016/j.chemosphere.2023.137979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been widely used in the reductive removal of contaminants from water, yet it still fights against the inherent passive cover and the raise of medium pH. In this study, nZVI was supported onto a nitrogen-doped biochar (NBC) that was prepared by pyrolyzing shrimp shell for efficiently sequestrating aqueous selenite (Se(IV)). The resultant composite (NBC-nZVI) revealed a higher reactivity and electron utilization efficiency (EUE) than the bare nZVI in Se(IV) sequestration because of the positive charge, the buffering effect and the good conductivity of NBC. The kinetic rate and EUE of NBC-nZVI were increased by 143.4% and 15.3% compared to the bare nZVI, respectively, at initial pH of 3.0. The high removal capacity of 605.4 mg g-1 for NBC-nZVI was obtained at Se(IV) concentration of 1000 mg L-1, initial pH of 3.0, NBC-nZVI dosage of 1.0 g L-1 and contact time of 12 h. Moreover, NBC-nZVI exhibited a strong tolerance to solution pHs and coexisting compounds (e.g., humic acid) and could reduce the Se(IV) concentration from 5.0 mg L-1 to below the limit of drinking water (50 μg L-1) in real-world samples. This work exemplified a utilization of shrimp shell-derived NBC to simultaneously enhance the reactivity and EUE of nZVI for reductively removing contaminants.
Collapse
Affiliation(s)
- Mingyu Wu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xin Teng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xingtang Liang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China.
| | - Yanjun Zhang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yanzhen Yin
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, School of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China.
| |
Collapse
|
3
|
Sun F, Zhu Y, Liu X, Chi Z. Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): selenium removal mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27560-27569. [PMID: 36385336 DOI: 10.1007/s11356-022-24226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Se(IV) removal using nanoscale zero-valent iron (nZVI) has been extensively studied. Still, the synergistic removal of Se(IV) by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) has not been reported. In this study, nZVI/rGO was successfully synthesized for Se(IV) removal from wastewater. The effects of different environmental conditions (load ratio, dosage, initial pH) on Se(IV) removal by nZVI/rGO were investigated. When the load ratio is 10%, the dosage is 0.3 g/L, the initial pH is 3, and the removal rate is 99%. The adsorption isotherm and kinetics accorded with the Langmuir isotherm and first-order kinetics models (R2 > 0.99). The fitted maximum adsorption capacity reached up to 173.53 mg/g. NZVI/rGo and Se(IV) is a spontaneous endothermic reaction (△G < 0, △H > 0) and is characterized by EDS, XRD, and XPS before and after the reaction, to further clarify the reaction mechanism. The XPS narrow spectrum analysis suggested that Se(IV) was reduced to elemental selenium (Se(0)), while the intermediate Fe(II) was oxidized to form hydroxide precipitation. Therefore, nZVI/rGO was favored for Se-contaminated wastewater remediation.
Collapse
Affiliation(s)
- Feiyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Yuhuan Zhu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Xinyang Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China
| | - Zifang Chi
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
4
|
Matulová M, Duborská E, Matúš P, Urík M. Solid-Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System. Int J Mol Sci 2022; 24:315. [PMID: 36613759 PMCID: PMC9820544 DOI: 10.3390/ijms24010315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Selenium can be highly toxic in excess for both animals and humans. However, since its mobile forms can be easily adsorbed with ferric minerals, its mobility in the natural oxic environment is generally not an issue. Still, the removal and immobilization of the long-lived radioactive isotope 79Se from the contaminated anoxic waters is currently a significant concern. 79Se can be accessible in the case of radionuclides' leaching from radioactive waste disposals, where anoxic conditions prevail and where ferrous ions and Fe(II)-bearing minerals predominate after corrosion processes (e.g., magnetite). Therefore, reductive and adsorptive immobilizations by Fe(II)-bearing minerals are the primary mechanisms for removing redox-sensitive selenium. Even though the information on the sorptive interactions of selenium and Fe(II)-bearing minerals seems to be well documented, this review focuses specifically on the state of the available information on the effects of the redox properties of Fe(II)-bearing solid phases (e.g., ferrous oxides, hydroxides, sulfides, and carbonates) on selenium speciation via redox transformation and co-occurring coprecipitation.
Collapse
Affiliation(s)
- Michaela Matulová
- Radioactive Waste Repository Authority (SÚRAO), Dlážděná 6, 11000 Prague 1, Czech Republic
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
5
|
Wang K, Martinez AF, Simonelli L, Madé B, Hénocq P, Ma B, Charlet L. Redox Interaction between Selenite and Mackinawite in Cement Pore Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5602-5610. [PMID: 35417136 DOI: 10.1021/acs.est.2c00901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In cement-rich radioactive waste repositories, mackinawite (FeS) forms at the steel corrosion interface within reinforced concrete and potentially retards the transport of redox-sensitive radionuclides (e.g., 79Se) in porous cement media. Redox interactions between selenite and mackinawite under hyperalkaline conditions remain unclear and require further investigations. Here, using comprehensive characterization on both aqueous and solid speciation, we successfully monitored the whole interaction process between selenite and mackinawite under hyperalkaline conditions. The results show similar chemical environments for SeO32- and S2-/Sn2- at the mackinawite-water interface, verifying an immediate reduction. After 192 h of reaction, SeO32- was reduced to solid Se0 and SeS2 species, accompanied by the oxidation of S2-/Sn2- to S2O32- and Fe(II) to Fe(III) in mackinawite. Aqueous speciation results showed that ∼99% of aqueous selenium was present as Se4S nanoparticles due to the dissolution of Se from the solid. In parallel, ∼62% of S2-/Sn2- was released into the solution, with mackinawite transforming into magnetite, Fe(OH)3 and FeS2O3+ complexed to Cl- or OH- species, and magnetite subsequently dispersed in the solution. This study provides valuable data about the retardation mechanisms of redox-sensitive radionuclides by soluble iron sulfides, which is critical to advance our understanding of reactive concrete barriers used in nuclear waste disposal systems.
Collapse
Affiliation(s)
- Kaifeng Wang
- University of Grenoble Alpes and CNRS, ISTerre, BP 53, 38041 Grenoble Cedex 9, France
- Engineering Technology Center of Decommissioning and Remediation, China Institute of Atomic Energy, 102413 Beijing, China
| | | | - Laura Simonelli
- BL22 - CLAESS, ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Benoit Madé
- ANDRA, 1/7 rue Jean Monnet, Parc de la Croix Blanche, 92298 Chatenay-Malabry Cedex, France
| | - Pierre Hénocq
- ANDRA, 1/7 rue Jean Monnet, Parc de la Croix Blanche, 92298 Chatenay-Malabry Cedex, France
| | - Bin Ma
- University of Grenoble Alpes and CNRS, ISTerre, BP 53, 38041 Grenoble Cedex 9, France
- Laboratory for Waste Management, Paul Scherrer Institut (PSI), Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Laurent Charlet
- University of Grenoble Alpes and CNRS, ISTerre, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
6
|
Sun Y, Li M, Qu X, Zheng S, Alvarez PJJ, Fu H. Efficient Reduction of Selenite to Elemental Selenium by Liquid-Phase Catalytic Hydrogenation Using a Highly Stable Multiwalled Carbon Nanotube-Supported Pt Catalyst Coated by N-Doped Carbon. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29541-29550. [PMID: 34133112 DOI: 10.1021/acsami.1c05101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A stable catalyst, Pt/carbon nanotube (CNT) coated with N-doped carbon (Pt/CNT@CN), was designed to reduce selenite (Se(IV)) in water to elemental selenium by liquid-phase catalytic hydrogenation. Commercial Pt/C, pristine Pt/CNT, and carbon-coated Pt/CNT (Pt/CNT@C) were used for benchmarking. The Pt particles in Pt/CNT@CN were completely embedded beneath the coatings to minimize leaching and were not easily accessible to Se(IV). However, Schottky-Mott-type metal-carbon junctions that activate H2 were formed on the coated catalyst, facilitating effective reduction of Se(IV). The initial activity of Pt/CNT@CN (900.5 mg L-1 gcat-1 h-1) was two times higher than that of commercial Pt/C (448.6 mg L-1 gcat-1 h-1). The commercial Pt/C and uncoated Pt/CNT lost their initial activities during reuse and were almost inactive after 10 cycles due to significant Pt leaching (>90%) during the reaction and acid-washing regeneration processes. Pt/CNT@CN maintained 33% of the initial activity after the first cycle and stabilized over the following 9 cycles due to effective protection of Pt particles by carbon coatings. After 10 cycles, the activity of Pt/CNT@CN was over 20 times higher than that of Pt/C and uncoated Pt/CNT. Overall, catalytic hydrogenation using carbon-coated-supported Pt catalysts is an effective and promising approach to remove Se(IV) in water.
Collapse
Affiliation(s)
- Yuhan Sun
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Minghui Li
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse/School of the Environment, Nanjing University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
7
|
Wu J, Zhao J, Li H, Miao L, Hou J, Xing B. Simultaneous Removal of Selenite and Selenate by Nanosized Zerovalent Iron in Anoxic Systems: The Overlooked Role of Selenite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6299-6308. [PMID: 33843193 DOI: 10.1021/acs.est.0c08142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The application of nanosized zerovalent iron (nZVI) for reductive immobilization of selenite (Se(IV)) or selenate (Se(VI)) alone has been extensively investigated. However, as the predominant species, Se(IV) and Se(VI) usually coexist in the environment. Thus, it is essential to remove both species simultaneously in the solution by nZVI. Negligible Se(VI) removal (∼7%) by nZVI was observed in the absence of Se(IV). In contrast, the Se(VI) was completely removed in the presence of Se(IV), and the removal rate and electron selectivity of Se(VI) increased from 0.12 ± 0.01 to 0.29 ± 0.02 h-1 and from 1% to 4.5%, respectively, as the Se(IV) concentration increased from 0.05 to 0.20 mM. Se(IV) was rapidly removed by nZVI, and Se(VI) exerted minor influence on Se(IV) removal. Se(IV) promoted the generation of corrosion products that were mainly composed of magnetite (26%) and lepidocrocite (67%) based on the Fe K-edge XANES spectra and k3-weighted EXAFS analysis. Fe(II) released during the Se(IV) reduction was not the main reductant for Se(VI) but accelerated the transformation of F(0) to magnetite and lepidocrocite. The formation of lepidocrocite contributed to the enrichment of Se(VI) on the nZVI surface, and magnetite promoted electron transfer from Fe(0) to Se(VI). This study demonstrated that Se(IV) acted as an oxidant to activate nZVI, thus improving the reactivity of nZVI toward Se(VI), which displays a potential application of nZVI in the remediation of Se(IV)- and Se(VI)-containing water.
Collapse
Affiliation(s)
- Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Fang D, Wei S, Xu Y, Xiong J, Tan W. Impact of low-molecular weight organic acids on selenite immobilization by goethite: Understanding a competitive-synergistic coupling effect and speciation transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:694-704. [PMID: 31174097 DOI: 10.1016/j.scitotenv.2019.05.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
The interactions between low-molecular weight organic acids (LMWOAs) and selenium (Se) on mineral/water interfaces affect the release, immobilization and bioavailability of Se in nature. Herein, the effects of three environmentally relevant LMWOAs (i.e., oxalic (Oxa), succinic (Suc) and citric (Cit) acids) on Se(IV) adsorption to goethite under oxic conditions were investigated using batch experiments, speciation fractionation, and ATR-FTIR and XPS analyses. The LMWOAs exhibited a competitive-synergistic coupling effect on Se(IV) adsorption to goethite, which inhibited the adsorption rate of Se(IV) by 14.1, 13.3 and 8.0 times. However, immobilization of Se(IV) was simultaneously enhanced by 39.1%, 34.6% and 14.1% in the following order Oxa > Suc > Cit. The results obtained by fractionation of the adsorbed Se(IV) revealed that the enhancement was due to surface binding as well as speciation transformation from ligand-exchangeable Se(IV) into residual fractions, which increased by approximately 18% in the presence of the LMWOAs. The dissolution of goethite significantly improved due to the LMWOAs and decreased to different degrees as the concentration of Se(IV) increased. The monodentate mononuclear complexes (58.2%) and Lewis base sites bonded Se (41.8%) were the predominant surface species of Se(IV) in goethite-Se(IV) system. The ATR-FTIR and high-resolution XPS analyses demonstrated that the formation of ≡FeO(SeO)O-CO surface complexes (22.8-27.0%) occurred in the presence of LMWOAs, which could be closely correlated with the interface-mediated reduction of Se(IV). In addition, the predominant mechanism for the formation of residual Se is LMWOA specific, in which ferric selenite-like precipitation was dominant for Suc (10.6%) and Cit (11.6%) and reduction was dominant for Oxa (17.5%). Overall, LMWOAs play an important role in Se(IV) immobilization and speciation transformation and may facilitate understanding the Se bioavailability in rhizosphere soils under oxic conditions.
Collapse
Affiliation(s)
- Dun Fang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shiyong Wei
- Department of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China
| | - Yun Xu
- Department of Soil Quality, Wageningen University, P. O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|