1
|
Wang J, Yang Y, Wu J, Zhao K, Zhang X. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175240. [PMID: 39111445 DOI: 10.1016/j.scitotenv.2024.175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Biochar's interaction with soil-dwelling organisms, particularly earthworms, is crucial in ensuring the effective and secure utilization of biochar in the soil. This review introduces the application of biochar in soil, summarizes how earthworms respond to biochar-amended soil and the underlying factors that can influence their response, discusses the synergistic and antagonistic impacts of earthworm activity on the efficacy of biochar, and considers the feasibility of applying them together. A review of existing research has identified uncertainty in the effect of biochar exposure on earthworms, with biochar derived from animal wastes, produced at higher pyrolysis temperatures, and used at higher doses of biochar having more negative effects on earthworms. Habitat modification, toxicity release, particle effects, and contaminant immobilization are underlying factors in how biochar affects earthworm indicators. While biochar in contaminated soils may alleviate the stress of pollutants on earthworms by decreasing their bioaccumulation, this remedial effect is not always effective. Additionally, earthworm bioturbation can enhance the migration, fragmentation, and oxidation of biochar, while also stimulating extracellular enzymes that convert biochar into 'vermichar'. Earthworms and biochar can synergize well to improve soil fertility and remediate soil organic pollution, yet exhibit contrasting roles in soil C sequestration and immobilizing heavy metals in soil. These findings highlight both the advantages and risks of their co-application. Therefore, when considering the use of biochar alone or with earthworms, it is crucial to thoroughly assess its potential ecotoxicity on earthworms and other soil organisms, as well as the influence of bioturbation, such as that caused by earthworms, on the effectiveness of biochar.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxiang Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jizi Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keli Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiaokai Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang D, Chen L, Yang G, Xu Z, Lv L, Tang T, Wang Y. Biochemical and molecular-level effects of co-exposure to chlorpyrifos and lambda-cyhalothrin on the earthworm (Eisenia fetida). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116374. [PMID: 38677072 DOI: 10.1016/j.ecoenv.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Farmland soil organisms frequently encounter pesticide mixtures presented in their living environment. However, the underlying toxic mechanisms employed by soil animals to cope with such combined pollution have yet to be explored. This investigation aimed to reveal the changes in cellular and mRNA levels under chlorpyrifos (CPF) and lambda-cyhalothrin (LCT) co-exposures in earthworms (Eisenia fetida). Results exhibited that the combination of CPF and LCT triggered an acute synergistic influence on the animals. Most exposures resulted in significant alterations in the activities of total superoxide dismutase (T-SOD), copper/zinc superoxide dismutase (Cu/Zn-SOD), caspase 3, and carboxylesterase (CarE) compared to the basal level. Moreover, when exposed to chemical mixtures, the transcription levels of four genes [heat shock protein 70 (hsp70), gst, sod, and calreticulin (crt)] also displayed more pronounced changes compared with their individual exposures. These changes in determined parameters indicated the occurrence of oxidative stress, cell death, detoxification dysfunction, and endoplasmic reticulum damage after co-exposure to CPF and LCT in E. fetida. The comprehensive examination of mixture toxicities of CPF and LCT at different endpoints would help to understand the overall toxicity they cause to soil invertebrates. The augmented deleterious effect of these pesticides in a mixture suggested that mixture toxicity assessment was necessary for the safety evaluation and application of pesticide mixtures.
Collapse
Affiliation(s)
- Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Liping Chen
- Huzhou Agricultural Science and Technology Development Center, Zhejiang Province 313000, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
3
|
Vullo AI, Vullo DL, Basack SB. Assessment of intensive periurban agriculture soil quality applying biomarkers in earthworms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118535. [PMID: 37399620 DOI: 10.1016/j.jenvman.2023.118535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Periurban agriculture in Argentina is carried out by farmers without adequate control. The indiscriminate agrochemical application for productivity improvement negatively impacts the environment. The objective of this work was to test the quality of periurban agricultural soils by performing bioassays with Eisenia andrei as an indicator. Soils belonging to two orchards with intensive production (S: strawberry/broccoli crop plot and G: tomato/pepper crop greenhouse - Moreno District, Buenos Aires, Argentina) were sampled during 2015 and 2016. As subcellular biomarkers, cholinesterases (ChE), carboxylesterases (CaE), and glutathione-S-transferases (GST) activities were analysed in E. andrei (7-day exposure). While no effect on ChE activities was observed, CaE activities were significantly reduced 18% (S-2016 soil). GST activities were increased 35% and 30% by S-2016 and G-2016, respectively. CaE decrease together with GST increase could be indicative of a negative disturbance. Concerning whole organism biomarkers, reproduction (56-day exposure), avoidance (3-day exposure), and feeding activity (bait-lamina test, 3-day exposure) were analysed. A reduced cocoons' viability (50%), hatchability (55%), accompanied by a low number of juveniles (50%) were observed in all cases. Additionally, the earthworms exhibited significant avoidance responses to S-2015, S-2016 and G-2016 whereas G-2015 soil induced migration. No significant effect on the feeding activity was registered in any case. Most of the E. andrei biomarkers tested could constitute an early warning of harmful effects produced by polluted periurban soils, even if the agrochemical treatment applied remains unknown. The results reveal the need to develop an action plan to avoid further deterioration of the productive soil.
Collapse
Affiliation(s)
- Ana I Vullo
- Área Química, Instituto de Ciencias, Universidad Nacional General Sarmiento, J.M. Gutiérrez 1150, 1613, Los Polvorines, Buenos Aires, Argentina.
| | - Diana L Vullo
- Área Química, Instituto de Ciencias, Universidad Nacional General Sarmiento, J.M. Gutiérrez 1150, 1613, Los Polvorines, Buenos Aires, Argentina; CONICET, Godoy Cruz, 2290, C1425FQB, Buenos Aires, Argentina.
| | - Silvana B Basack
- Área Química, Instituto de Ciencias, Universidad Nacional General Sarmiento, J.M. Gutiérrez 1150, 1613, Los Polvorines, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Yuvaraj A, Thangaraj R, Karmegam N, Ravindran B, Chang SW, Awasthi MK, Kannan S. Activation of biochar through exoenzymes prompted by earthworms for vermibiochar production: A viable resource recovery option for heavy metal contaminated soils and water. CHEMOSPHERE 2021; 278:130458. [PMID: 34126688 DOI: 10.1016/j.chemosphere.2021.130458] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The industrial revolution and indiscriminate usage of a wide spectrum of agrochemicals account for the dumping of heavy metals in the environment. In-situ/ex-situ physical, chemical, and bioremediation strategies with pros and cons have been adopted for recovering metal contaminated soils and water. Therefore, there is an urgent requirement for a cost-effective and environment-friendly technique to combat metal pollution. Biochar combined with earthworms and vermifiltration is a suitable emerging technique for the remediation of metal-polluted soils and water. The chemical substances (e.g., sodium hydroxide, zinc chloride, potassium hydroxide, and phosphoric acid) have been used to activate biochar, which also faces several shortcomings. Studies reveal that extracellular enzymes have been used to activate biochar which is produced by earthworms and microbes that can alter the surface of the biochar. The present review focuses on the global scenario of metal pollution and its remediation through biochar activation using earthworms. The earthworms and biochar can produce "vermibiochar" which is capable of reducing the metal ions from contaminated water and soils. The vermifiltration can be a suitable technology for metal removal from wastewater/effluent. Thus, the biochar has a trick of producing entirely new options at a time when vermifiltration and other technologies are least expected. Further attention to the biochar-assisted vermifiltration of different sources of wastewater is required to be explored for the large-scale utilization of the process.
Collapse
Affiliation(s)
- Ananthanarayanan Yuvaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ramasundaram Thangaraj
- Vermitechnology and Ecotoxicology Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India.
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China.
| | - Soundarapandian Kannan
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| |
Collapse
|
5
|
Sanchez-Hernandez JC, Ro KS, Szogi AA, Chang S, Park B. Earthworms increase the potential for enzymatic bio-activation of biochars made from co-pyrolyzing animal manures and plastic wastes. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124405. [PMID: 33168317 DOI: 10.1016/j.jhazmat.2020.124405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
We assessed the enzymatic activation of four different biochars produced from pyrolyzing swine manure and poultry litter, and by co-pyrolyzing these livestock residues with agricultural spent mulch plastic film wastes (plastichars). Enzymatic activation consisted of incubating biochars in soil inoculated with earthworms (Lumbricus terrestris), which acted as biological vectors to facilitate retention of extracellular enzymes onto biochar surface. The activity of carboxylesterase ‒a pesticide-detoxifying enzyme‒ was measured in non-bioturbed soils (reference), linings of the burrows created by earthworms, casts (feces) and biochar particles recovered from the soil. Our results revealed that: 1) biochar increased soil carboxylesterase activity respect to biochar-free (control) soils, which was more prominent in the presence of earthworms. 2) The maximum enzyme activity was found in soils amended with plastichars. 3) The plastichars showed higher enzyme binding capacities than that of the biochars produced from animal manure alone, corroborating the pattern of enzyme distribution found in soil. 4) The presence of earthworms in soil significantly increased the potential of the plastichars for enzymatic activation. These findings suggest that the plastichars are suitable for increasing and stabilizing soil enzyme activities with no toxicity on earthworms.
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain.
| | - Kyoung S Ro
- Coastal Plains Soil, Water & Plant Research Center, Agricultural Research Service, US Department of Agriculture, 2611 West Lucas Street, Florence, SC 29501, USA
| | - Ariel A Szogi
- Coastal Plains Soil, Water & Plant Research Center, Agricultural Research Service, US Department of Agriculture, 2611 West Lucas Street, Florence, SC 29501, USA
| | - Sechin Chang
- Souther Regional Research Center, Agricultural Research Service, US Department of Agriculture, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA
| | - Bosoon Park
- National Poultry Research Center, Quality and Safety Assessment Research Unit, 950 College Station Road, Athens, GA 30605, USA
| |
Collapse
|
6
|
Ghosh D, Maiti SK. Can biochar reclaim coal mine spoil? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 272:111097. [PMID: 32854895 DOI: 10.1016/j.jenvman.2020.111097] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Surface coal mining activities completely destroy vegetation cover, soil and biodiversity. The aftermaths include huge coal mine spoil dumps, changed topography, drainage and landscape, deteriorated aesthetics and increased pollution load. These coal mine spoils are characterised by high rock fragments, extremely low water holding capacity, compacted and high bulk density, lack of organic carbon and plant nutrients, low cation exchange capacity, acidic pH and toxic metal contamination, which poses difficulties in reclamation. An array of studies has been focused on the sustainable use of biochar for restoration of degraded agricultural soil by improving the soil physicochemical, nutritional and biological properties. Although a volume of studies has been done on biochar application, its specialised application in reclamation of coal mine spoils is still atypical, also a systematic review on the mechanism by which biochar amends the mine spoil is lacking. This review focuses on i) factors affecting the biochar properties, ii) the mechanism involved in altering the physical, chemical and biological properties by biochar, (iii) remediation of potentially toxic elements in soil and restoration of degraded land using biochar, and, iv) highlighting the important aspects to be considered while using biochar for reclamation of coal mine spoil. Biochar prepared at 450 °C from a lignocellulosic rich biomass can be an alternative for reclamation for coal mine spoil. Review also suggested suitable methodologies for bulk production, application and economics of biochar in coal mine spoil reclamation.
Collapse
Affiliation(s)
- Dipita Ghosh
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Subodh Kumar Maiti
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| |
Collapse
|
7
|
Blasco J, Barata C, Navas JM. Summary of the special issue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:134934. [PMID: 31855651 DOI: 10.1016/j.scitotenv.2019.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
8
|
Sanchez-Hernandez JC, Ro KS, Díaz FJ. Biochar and earthworms working in tandem: Research opportunities for soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:574-583. [PMID: 31254823 DOI: 10.1016/j.scitotenv.2019.06.212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Intensive use of agrochemicals is considered one of the major threats for soil quality. In an attempt to mitigate their side-effects on non-target organisms and soil functioning, many engineering and biological remediation methodologies are currently available. Among them, the use of biochar, a carbonaceous material produced from pyrolysing biomass, represents an attractive option enhancing both remediation and soil carbon storage potentials. Currently, activation of biochar with chemical or physical agents seeks for improving its remediation potential, but most of them have some undesirable drawbacks such as high costs and generation of chemical wastes. Alternatively, the use of biological procedures to activate biochar with extracellular enzymes is gaining acceptance mainly due to its eco-friendly nature and cost-effectiveness. In these strategies, microorganisms play a key role as a source of extracellular enzymes, which are retained on the biochar surface. Recently, several studies point out that soil macrofauna (earthworms) may act as a biological vector facilitating the adsorption of enzymes on biochar. This paper briefly introduces current biochar bioactivation methodologies and the mechanisms underlying the coating of biochar with enzymes. We then propose a new conceptual model using earthworms to activate biochar with extracellular enzymes. This new earthworm-biochar model can be used as a theoretical framework to produce a new product "vermichar", vermicompost produced from blended feedstock, earthworms, and biochar that can be used to improve soil quality and remove soil contaminants. This model can also be used to develop innovative in-situ "vermiremediation" technologies utilizing the beneficial effects of both earthworms and biochar. Since biochar may contain toxic chemicals generated during its production stages or later concentrated when applied to polluted soils, this paper also highlights the need for an ecotoxicological knowledge around earthworm-biochar interaction, promoting further discussion on suitable procedures for assessing the environmental risk of this conceptual model application in soil bioremediation.
Collapse
Affiliation(s)
- Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Science (ICAM), University of Castilla-La Mancha, 45071 Toledo, Spain.
| | - Kyoung S Ro
- Coastal Plains Soil, Water & Plant Research Center, Agricultural Research Service, U.S. Department of Agriculture, 2611 West Lucas Street, Florence, SC 29501, USA
| | - Francisco J Díaz
- Department of Animal Biology, Soil Science and Geology, Faculty of Sciences, University of La Laguna, La Laguna, 38206 Tenerife, Canary Islands, Spain
| |
Collapse
|
9
|
Huong PT, Jitae K, Giang BL, Nguyen TD, Thang PQ. Novel lanthanum-modified activated carbon derived from pine cone biomass as ecofriendly bio-sorbent for removal of phosphate and nitrate in wastewater. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2019. [DOI: 10.1007/s12210-019-00827-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|