1
|
Hamilton CM, Winter MJ, Ball JS, Trznadel M, Margiotta-Casaluci L, Owen SF, Tyler CR. Exposure effects of synthetic glucocorticoid drugs on skeletal developmental and immune cell function in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176781. [PMID: 39395483 DOI: 10.1016/j.scitotenv.2024.176781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Synthetic glucocorticoids (GCs) are used to treat a wide range of human health conditions and as such are frequently detected in the aquatic environment. This, together with the highly conserved nature of the glucocorticoid system across vertebrates means that the potential for biological effects of GCs in fish is relatively high. Here, we found that exposure of zebrafish (Danio rerio) to environmentally relevant concentrations of 4 of the most widely used synthetic GCs (beclomethasone dipropionate, budesonide, fluticasone propionate, and prednisolone), from 0 to 4 days post fertilisation (dpf), resulted in no effects on embryo-larval development or bone and cartilage formation. However, after exposure to equivalents of human therapeutic plasma levels, developmental abnormalities were observed that included pericardial oedema, blood pooling and alterations in jaw cartilage. Furthermore, using a double transgenic zebrafish osteoblast and chondrocyte reporter line, exposure up to 10 dpf resulted in alterations to lower jaw cartilage and bone development for all compounds at, and above, human therapeutic plasma concentrations. In the case of beclomethasone dipropionate, a reduction in lower jaw intercranial distance was observed at the environmentally relevant concentration of 0.1 μg/L. Using further transgenic reporter lines with fluorescently tagged neutrophils and macrophages, we also show exposure of embryo-larvae (0-4 dpf) to the GCs tested resulted in altered immune cell migration, but only at relatively high exposure concentrations. Collectively, our findings show GC exposure impacts embryo-larval zebrafish development, immune function, and skeletal formation, but predominantly at concentrations greater than those currently reported for the aquatic environment. Despite this, however, it is suggested that studies with longer exposure times, and to mixtures of multiple GCs (many GCs act via the same mechanism of action) are warranted before we can confidently assert that these commonly detected contaminants do not pose a risk to fish in the wild.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Jonathan S Ball
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Maciej Trznadel
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | | | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
2
|
Ye M, Yang J, Cai Z, Wu J, Xiong W, Hou L. The effect of cortisone on female zebrafish (Dania rerio): Reducing reproductive capacity and offspring survival rate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107132. [PMID: 39515241 DOI: 10.1016/j.aquatox.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Cortisone is a naturally occurring corticosteroid hormone known for its wide range of anti-inflammatory and immunosuppressive effects, and it is commonly found in various aquatic environments. Previous reports have shown that cortisone can have significant negative impacts on fish; however, its specific effects on fish reproduction have not been thoroughly investigated. In this study, female adult zebrafish were exposed to 0.0 (control), 3.9, 40.2, and 377.9 ng/L of cortisone for 60 days, and multiple endpoints were evaluated. The results showed that as the concentration of cortisone increased, there was an increase in the percentage of perinuclear oocytes and a decrease in the proportion of late-stage oocytes, indicating a stagnation in oocyte development. Additionally, female zebrafish exposed to cortisone exhibited decreased attraction to males and reduced mating intimacy. Furthermore, exposure to cortisone resulted in changes in the development and behavior of zebrafish embryos. At cortisone concentrations of 3.9 and 40.2 ng/L, fewer eggs were laid and the survival rate of fertilized eggs decreased. These observed effects are associated with abnormal transcription levels of genes (Star, Cyp11a1, Cyp17, Cyp19a, Cyp11b, Hsd11β2, Hsd17β3) related to the HPG axis. These findings provided new insights into understanding potential environmental risks associated with corticosteroids.
Collapse
Affiliation(s)
- MeiXin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JinLin Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - ZiPing Cai
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - JunHao Wu
- Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenting Xiong
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| | - LiPing Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; Key Laboratory of Conservation and Application in Biodiversity of South China, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
3
|
Su M, Zhong Y, Chen Y, Xiang J, Ye Z, Liao S, Ye S, Zhang J. Assessment of environmental exposure to betamethasone on the reproductive function of female Japanese medaka (Oryzias latipes). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116651. [PMID: 38959790 DOI: 10.1016/j.ecoenv.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Betamethasone has been extensively used in medicine in recent years and poses potential hazards to aquatic organisms. This study investigated the reproductive toxic effects of betamethasone exposure in fish, employing female Japanese medaka (Oryzias latipes) as a model. Betamethasone exposure at environmentally relevant concentrations (0, 20, 200, and 2000 ng/L) for a period of 15 weeks resulted in its high accumulation in the ovary, leading to abnormal oogenesis in female Japanese medaka. The production of gonadotropins (LH and FSH) in the pituitary gland was inhibited, and sex steroid biosynthesis in the ovary was significantly influenced at the transcriptional level. The imbalance of androgens and estrogens resulted in a decrease in the E2/T ratio and hepatic VTG synthesis, and the suppression of estrogen receptor signaling was also induced. Furthermore, betamethasone exposure delayed spawning and reduced fertility in the F0 generation, and had detrimental effects on the fertilization rate and hatchability of the F1 generation. Our results showed that environmental betamethasone had the potential to adversely affect female fertility and steroid hormone dynamics in fish.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhiyin Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shujia Liao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Leng C, Wang Q, Zhang G, Xu M, Yang X. Transport of prednisolone, cortisone, and triamcinolone acetonide in agricultural soils: Sorption isotherms, transport dynamics, and field-scale simulation. ENVIRONMENTAL RESEARCH 2023; 239:117287. [PMID: 37813136 DOI: 10.1016/j.envres.2023.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The occurrence of glucocorticoids (GCs) in agricultural soils has raised concerns due to their high polarity, widespread biological effects in vertebrates, and their potential to disrupt vital processes such as glucose metabolism and immune function. This study investigated the sorption and transport dynamics of three GCs, namely cortisone (COR), prednisolone (PNL), and triamcinolone acetonide (TCA) in five soil-water systems (S1-S5 systems). The sorption data of the GCs were fitted to a linear sorption model (R2 = 0.95-0.99), with organic carbon (OC) normalized sorption coefficients ranging from 2.26 ± 0.02 to 3.36 ± 0.02. The sorption magnitudes (Kd) of the GCs exhibited a nearly linear correlation with their corresponding octanol-water partition coefficients (logKow) in the S1-S3 systems. However, some deviations from linearity were observed in the S4 and S5 systems. Furthermore, a strong correlation was observed between the Kd values of the GCs and the OC% of the soils. These data indicated that specific and hydrophobic partitioning interactions governed the sorption of GCs onto soils. The transport data of the GCs were fitted to a two-site nonequilibrium model using the CXTFIT program (R2 = 0.82-0.98). The retardation factor (R) for each GC exhibited a positive correlation with the OC% and clay contents of soils. Additionally, the relationships between the logR values and logKow values of the GCs deviated slightly from linear correlation in most columns. These results indicated that specific interactions in the columns were more pronounced compared to the batch systems. An initial field-scale simulation demonstrated that frequent precipitation can facilitate the dilution and vertical transport of the GCs through soil profiles. The transport potential of the GCs was affected by the properties and soils and GCs. Overall, these findings provide valuable insights into the transport potential and associated environmental risks of GCs in soil-water systems.
Collapse
Affiliation(s)
- Chen Leng
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingwei Wang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Ge Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, PR China.
| |
Collapse
|
5
|
Wang C, Li M, Gui W, Shi H, Wang P, Chen J, Fent K, Zhang K, Dai J, Li X, Zhao Y. Prednisolone Accelerates Embryonic Development of Zebrafish via Glucocorticoid Receptor Signaling at Low Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15794-15805. [PMID: 37812749 DOI: 10.1021/acs.est.3c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Synthetic glucocorticoids have been widely detected in aquatic ecosystems and may pose a toxicological risk to fish. In the present study, we described multiple end point responses of zebrafish to a commonly prescribed glucocorticoid, prednisolone (PREL), at concentrations between 0.001 and 9.26 μg/L. Of 23 end points monitored, 7 were affected significantly. Significant increases in the frequency of yolk extension formation, spontaneous contraction, heart rate, and ocular melanin density and significant decreases of ear-eye distance at PREL concentrations of 0.001 μg/L and above clearly pointed to the acceleration of embryonic development of zebrafish by PREL. Further confirmation came from the alterations in somite numbers, head-trunk angle, and yolk sac size, as well as outcomes obtained via RNA sequencing, in which signaling pathways involved in tissue/organ growth and development were highly enriched in embryos upon PREL exposure. In addition, the crucial role of glucocorticoid receptor (GR) for PREL-induced effects was confirmed by both, the coexposure to antagonist mifepristone (RU486) and GR-/- mutant zebrafish experiments. We further demonstrated similar accelerations of embryonic development of zebrafish upon exposure to 11 additional glucocorticoids, indicating generic adverse effect characteristics. Overall, our results revealed developmental alterations of PREL in fish embryos at low concentrations and thus provided novel insights into the understanding of the potential environmental risks of glucocorticoids.
Collapse
Affiliation(s)
- Congcong Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meng Li
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanying Gui
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Peng Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jierong Chen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xi Li
- Center of Clinical Research, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
6
|
Roveri V, Lopes Guimarães L, Correia AT. Prioritizing pharmaceutically active compounds (PhACs) based on occurrence-persistency-mobility-toxicity (OPMT) criteria: an application to the Brazilian scenario. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:1023-1039. [PMID: 38047444 DOI: 10.1080/1062936x.2023.2287516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/19/2023] [Indexed: 12/05/2023]
Abstract
A study of Quantitative Structure Activity Relationship (QSAR) was performed to assess the possible adverse effects of 25 pharmaceuticals commonly found in the Brazilian water compartments and to establish a ranking of environmental concern. The occurrence (O), the persistence (P), the mobility (M), and the toxicity (T) of these compounds in the Brazilian drinking water reservoirs were evaluated. Moreover, to verify the predicted OPMT dataset outcomes, a quality index (QI) was also developed and applied. The main results showed that: (i) after in silico predictions through VEGA QSAR, 19 from 25 pharmaceuticals consumed in Brazil were classified as persistent; (ii) moreover, after in silico predictions through OPERA QSAR, 15 among those 19 compounds considered persistent, were also classified as mobile or very mobile. On the other hand, the results of toxicity indicate that only 9 pharmaceuticals were classified with the highest toxicity level. Ultimately, the QI of 7 from 25 pharmaceuticals were categorized as 'optimal'; 15 pharmaceuticals were categorized as 'good'; and only 3 pharmaceuticals were categorized as 'regular'. Therefore, based on the QI criteria used, it is possible to assume that this OPMT prediction dataset had a good reliability. Efforts to reduce emissions of OPMT-pharmaceuticals in Brazilian drinking water reservoirs are encouraged.
Collapse
Affiliation(s)
- V Roveri
- Departamento de Gestão Ambiental, Universidade Metropolitana de Santos (UNIMES), Santos, Brazil
- Laboratório de EcoFisiologia, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Matosinhos, Portugal
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Santos, Brazil
| | - L Lopes Guimarães
- Laboratório de Pesquisa em Produtos Naturais, Universidade Santa Cecília (UNISANTA), Santos, Brazil
| | - A T Correia
- Laboratório de EcoFisiologia, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Matosinhos, Portugal
- Escola das Ciências da Vida e do Ambiente da Universidade de Trás-os-Montes e Alto Douro (UTAD-ECVA), Vila Real, Portugal
- Departamento de Ciências da Vida, Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
7
|
Su M, Zhong Y, Xiang J, Chen Y, Liu N, Zhang J. Reproductive endocrine disruption and gonadal intersex induction in male Japanese medaka chronically exposed to betamethasone at environmentally relevant levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131493. [PMID: 37156043 DOI: 10.1016/j.jhazmat.2023.131493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
The broad utilization of betamethasone in medical treatments may pose a significant ecotoxicological risk to aquatic organisms, yet its potential reproductive toxicity remains unclear. The present study examined the impacts of environmental exposure on male reproduction using Japanese medaka (Oryzias latipes). After 110 days of betamethasone exposure at environmentally relevant concentrations (0, 20 and 200 ng/L), LH/FSH synthesis and release in the pituitary was inhibited, and the production of sex hormones and their signaling pathways in the gonads of male medaka were greatly influenced. This synthetic glucocorticoid restrained testosterone (T) synthesis and gave rise to a significant increase in E2/T and E2/11-KT ratios. Furthermore, chronic betamethasone exposure (20 and 200 ng/L) led to the suppression of androgen receptor (AR) signaling and enhancement of estrogen receptors (ERs) signaling. An increase in hepatic vitellogenin contents was also detected, and testicular oocytes were observed in both 20 and 200 ng/L betamethasone-treated groups. It showed that 20 and 200 ng/L betamethasone could induce male feminization and even intersex, triggering abnormal spermatogenesis in medaka males. With its adverse effects on male fertility, betamethasone could potentially influence the fishery productivity and population dynamics in aquatic ecosystems.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
8
|
Cole AR, Brooks BW. Global occurrence of synthetic glucocorticoids and glucocorticoid receptor agonistic activity, and aquatic hazards in effluent discharges and freshwater systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121638. [PMID: 37080519 DOI: 10.1016/j.envpol.2023.121638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
With a growing global population comes an increase in pharmaceutical usage and a concentration of pharmaceutical consumption in urban areas, which release diverse chemicals and waste to the environment. Because synthetic glucocorticoids have been identified as endocrine disruptors and environmental contaminants of emerging concern, we conducted a global scanning assessment of these pharmaceuticals in wastewater effluents and freshwater systems. Thirty-seven synthetic glucocorticoids were identified, and available information on environmental occurrence of specific substances was critically reviewed from the peer-reviewed literature. We developed probabilistic environmental exposure distributions for synthetic glucocorticoids, and further considered glucocorticoid receptor agonistic activity from biomonitoring efforts using in vitro methods. When sufficient data was available, we then performed probabilistic environmental hazard assessments using predicted no effect concentrations, therapeutic hazard values and in vitro bioactivity information (AC50 values) for specific glucocorticoids. We observed pronounced differences for aquatic monitoring data among geographic regions; information is not available from many regions where most of the global population resides. We identified differences between analytical chemistry derived occurrence values for specific chemicals and biomonitoring results from seven different in vitro assays, which suggests that compounds not previously preselected for targeted analyses contribute to glucocorticoid receptor agonism in effluent discharges and aquatic systems. Our observations further identify the importance of advancing nontargeted analyses and research on in vitro to in vivo extrapolation of aquatic hazards. Though aquatic toxicology information is lacking for most of these substances, we observed diverse aquatic hazards for several synthetic glucocorticoids, and these observations varied by aquatic matrix and among geographic regions. This study identifies timely data gaps and can inform future environmentally relevant chemistry and toxicology efforts examining synthetic glucocorticoids in aquatic systems.
Collapse
Affiliation(s)
- Alexander R Cole
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
9
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
10
|
Grobin A, Roškar R, Trontelj J. Multi-parameter risk assessment of forty-one selected substances with endocrine disruptive properties in surface waters worldwide. CHEMOSPHERE 2022; 287:132195. [PMID: 34826907 DOI: 10.1016/j.chemosphere.2021.132195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of substances with endocrine disruptive properties (EDs) not only impacts aquatic organisms but can also have a direct negative effect on human health. In this comprehensive worldwide review, we collected ecotoxicology and concentration data observed in surface water for 53 high-potency EDs and performed a risk assessment. The compounds were selected from the EU watchlist of priority substances, expanded with new compounds of emerging concern (total 41), where quantifiable data were available for the past three years (2018-2020). The risk quotients ranged from <0.01 for 22 substances to 1974 for tamoxifen. The frequency of samples in which the predicted no-effect concentrations were exceeded also varied, from 1.8% to 92.7%. By using the comprehensive multi-parameter risk assessment in our study, the most current to date, we determined that tamoxifen, imidacloprid, clothianidin, four bisphenols (BPA, BPF, BPS, and BPAF), PFOA, amoxicillin, and three steroid hormones (estriol, estrone, and cyproterone) pose significant risks in the environment. Comparing two structurally very similar bisphenols, BPA and BPB, suggested that the risk from BPB is currently underestimated by at least four orders of magnitude due to the lack of ecotoxicological data availability. The methodological limitations encountered suggest that a standardized methodology for data selection and assessment is necessary, highlighting the fact that some substances are currently under-represented in the field of ecotoxicological research. A new prioritization system is therefore presented, which provides a potential basis for new substances to be included in environmental monitoring lists.
Collapse
Affiliation(s)
- Andrej Grobin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia
| | - Robert Roškar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Zhang A, He J, Shen Y, Xu X, Liu Y, Li Y, Wu S, Xue G, Li X, Makinia J. Enhanced degradation of glucocorticoids, a potential COVID-19 remedy, by co-fermentation of waste activated sludge and animal manure: The role of manure type and degradation mechanism. ENVIRONMENTAL RESEARCH 2021; 201:111488. [PMID: 34153334 DOI: 10.1016/j.envres.2021.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Waste activated sludge (WAS) and animal manure are two significant reservoirs of glucocorticoids (GCs) in the environment. However, GC degradation during anaerobic digestion (AD) of WAS or animal manure has rarely been investigated. In this study, co-fermentation of WAS and animal manure was conducted to investigate the performance of AD in controlling GC dissemination. Effects of manure type on GC degradation and sludge acidification were investigated. The results showed that co-fermentation of WAS and chicken manure (CM) significantly enhanced the degradation of hydrocortisone (HC) to 99%, betamethasone (BT) to 99%, fluocinolone acetonide (FA) to 98%, and clobetasol propionate (CP) to 82% in 5 days with a mixing ratio of 1:1 (g TS sludge/g dw manure) at 55 °C and initial pH of 7. Simultaneously, sludge reduction was increased by 30% and value-added volatile fatty acid (VFA) production was improved by 40%. Even a high GC content of biomass (3.6 mg/g TS) did not impact both sludge hydrolysis and acidification. The amendment of WAS with CM increased soluble organic carbon, Ca2+, and relative abundance of anaerobes (Eubacterium) associated with organic compound degradation. Furthermore, 44 transformation products of HC, BT, FA, and CP with lower lipophilicity and toxicity were identified, indicating possible degradation pathways including hydroxylation, ketonization, ring cleavage, defluorination, hydrogenation, methylation, and de-esterification. Overall, this study provides a practical way to control GC pollution and simultaneously promote waste reduction and VFA production. Animal manure type as an overlooked factor for influencing co-fermentation performance and pollutant degradation was also highlighted.
Collapse
Affiliation(s)
- Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jinling He
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China
| | - Yuye Shen
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China
| | - Xianbao Xu
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yongmei Li
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shimin Wu
- Department of Chemical & Environmental Engineering, University of Arizona, Tucson, AZ, 85721, United States
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, 2999, North Renmin Road, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Ul. Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
12
|
Zhong L, Liang YQ, Lu M, Pan CG, Dong Z, Zhao H, Li C, Lin Z, Yao L. Effects of dexamethasone on the morphology, gene expression and hepatic histology in adult female mosquitofish (Gambusia affinis). CHEMOSPHERE 2021; 274:129797. [PMID: 33545586 DOI: 10.1016/j.chemosphere.2021.129797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 05/27/2023]
Abstract
Glucocorticoids (GCs), including natural hormones as well as synthetic chemicals, can pose influences on physiological performance, development and reproduction of fish. Dexamethasone (DEX) is a synthetic glucocorticoid widely used as pharmaceutical and usually exists in effluents with varying degrees of concentrations. In this study, adult female mosquitofish (Gambusia affinis) were treated by DEX at concentrations of 0, 0.5, 5 and 50 μg/L for 60 days. Morphological parameters of anal fin and skeleton, mRNA expression abundance, and histological alterations of liver were investigated to assess effects of DEX on mosquitofish. The results showed that DEX increased number of sections of ray 3 in anal fin and decreased 16L, 15D and 16D in skeletal parameters, which indicates DEX could potentially lead to weak masculinization. Furthermore, transcriptional expression levels of ARα, ARβ, ERβ, VTGC and CYP19A genes were notably down-regulated by DEX, which will contribute to weak masculinization in females. In addition, the damage to liver tissue was also induced by DEX. Taken together, this research demonstrated that aquatic environments contaminated by DEX have negative effects on mosquitofish at a population level.
Collapse
Affiliation(s)
- Lishan Zhong
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, PR China.
| | - Mixue Lu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, 530004, PR China
| | - Zhongdian Dong
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Hui Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524000, PR China
| | - Chengyong Li
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Li Yao
- Guangdong Institute of Analysis (China National Analytical Center), Guangdong Academy of Sciences, Guangzhou, 510070, PR China
| |
Collapse
|
13
|
Chang ED, Town RM, Owen SF, Hogstrand C, Bury NR. Effect of Water pH on the Uptake of Acidic (Ibuprofen) and Basic (Propranolol) Drugs in a Fish Gill Cell Culture Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6848-6856. [PMID: 33724810 DOI: 10.1021/acs.est.0c06803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water pH is predicted to affect the uptake of ionizable pharmaceuticals in fish. The current study used an in vitro primary fish gill cell culture system to assess the effect of pH values in the range of 4.5-8.75 on the uptake rates of the base propranolol (pKa 9.42) and the acid ibuprofen (pKa 4.59). The rate-limiting step in the uptake was the diffusive supply flux of the unionized form from the water to the apical membrane, with subsequent rapid transfer across the epithelium. Computed uptake rate based on the unionized fraction best described the uptake of propranolol and ibuprofen over the range of pH values 5-8 and 6-8.75, respectively. For ibuprofen, the computed uptake rate overestimated the uptake below pH 6 where the unionized fraction increased from 4% at pH 6 to 55% at pH 4.5. As the unionized fraction increased, the uptake rate plateaued suggesting a saturation of the transport process. For both drugs, large variations in the uptake occur with only small fluctuations in pH values. This occurs between pH values 6 and 8, which is the pH range acceptable in regulatory test guidelines and seen in most of our freshwaters.
Collapse
Affiliation(s)
- Elisabeth Dohmann Chang
- Department of Nutritional Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Raewyn M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, Antwerpen 2020, Belgium
| | - Stewart F Owen
- AstraZeneca, Global Sustainability, Alderley Park, Macclesfield, Cheshire SK10 4TF, United Kingdom
| | - Christer Hogstrand
- Department of Nutritional Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nic R Bury
- Department of Nutritional Sciences, King's College London, Franklin Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- University of Suffolk, School of Engineering, Arts, Science and Technology, James Hehir Building, Suffolk Sustainability Institute, University Quays, Ipswich, Suffolk IP3 0AQ, United Kingdom
- Suffolk Sustainability, University of Suffolk, Waterfront Building, Neptune Quay, Ipswich IP4 1QJ, U.K
| |
Collapse
|
14
|
Lin R, Lu Q, Lin Z, Hang W, Huang B. Laser-induced acoustic desorption coupled with electrospray ionization mass spectrometry for rapid qualitative and quantitative analysis of glucocorticoids illegally added in creams. Analyst 2021; 145:6625-6631. [PMID: 32789335 DOI: 10.1039/d0an00962h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a strategy for the coupling of laser-induced acoustic desorption (LIAD) with electrospray ionization (ESI) mass spectrometry. Different from desorption electrospray ionization (DESI) or paper spray ionization (PSI), the technique decouples the desorption of analytes from the subsequent ionization. The desorption is initiated by a shock wave induced in 10 μm titanium (Ti) foil coated with the sample, irradiated from the rear side by a laser beam, and then the desorbed neutral analytes are post-ionized by ESI and finally characterized by quadrupole/time-of-flight (Q-TOF) mass spectrometry (MS). Separating desorption from the ionization event makes this technique flexible and decreases the matrix effect and salt effect. Various kinds of common creams containing glucocorticoids are investigated using LIAD/ESI/MS without sample pretreatment. The results show that volatile and nonvolatile analytes in creams are sampled simultaneously by LIAD, providing a convenient way for high-throughput screening of the target compounds. In addition, quantitation of glucocorticoids in creams was performed by analyzing samples with decreasing concentrations of analytes (dexamethasone (20 μg g-1) used as an internal standard (IS)), until no more signal was observed. The limits of detection (LODs) of glucocorticoids were determined experimentally to be ranging from 0.7 μg g-1 for triamcinolone acetonide to 10 μg g-1 for beclomethasone dipropionate, which are two orders of magnitude lower than the regular usage of glucocorticoids (beclomethasone dipropionate 0.25 mg g-1, triamcinolone acetonide 0.25 mg g-1). Overall, LIAD/ESI/MS is demonstrated to be of great practical importance for rapid qualitative and quantitative analysis of glucocorticoids in creams, and good sensitivity can be achieved without tedious sample pretreatment and time-consuming chromatographic separation, irrespective of the presence of complex matrices.
Collapse
Affiliation(s)
- Rongkun Lin
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiao Lu
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zheng Lin
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Benli Huang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Titon SCM, Assis VR. Introduction to the special issue: Ecoimmunology in ectotherms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:697-705. [PMID: 33450144 DOI: 10.1002/jez.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanny C M Titon
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vania R Assis
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
16
|
The pharmaceutical prednisone affects sheepshead minnow (Cyprinodon variegatus) metabolism and swimming performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110851. [PMID: 33238196 DOI: 10.1016/j.cbpa.2020.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/23/2022]
Abstract
High usage of the synthetic glucocorticoids (GCs) has led to significant presence of this pharmaceutical group in surface waters where it can affect non-target organisms such as fish. Assessment of a fish's metabolism and swimming performance provide reliable sub-lethal measures of effects of GCs on oxygen-requiring processes and ability to swim. In this study, we determined time-dependent (7, 14 and 21 days) effects of the synthetic GC prednisone (1 μg L-1) on sheepshead minnow (SHM) (Cyprinodon variegatus). Standard (SMR), routine (RMR) and maximum (MMR) metabolic rate, metabolic scope (MS), excess post-exercise oxygen consumption (EPOC), cost of transport (COT) and critical swimming speed (Ucrit) were determined. Twenty-one days exposure to prednisone resulted in significantly higher SMR, RMR, MMR, MS, EPOC and COT compared with 7d and 14d prednisone fish. However, Ucrit was not significantly different between prednisone and solvent control exposed fish (within 7d, 14d, 21d groups). SMR, RMR and MMR were lower in the 7d and 14d prednisone exposed fish compared with their solvent control groups. In contrast, SMR, RMR and MMR were all significantly higher in the 21d prednisone exposed fish compared with solvent control. EPOC was significantly higher in 14d prednisone exposed fish and trending higher in 21d and 7d prednisone exposed fish compared with their solvent controls. EPOC was significantly higher in 21d compared with 7d prednisone exposed fish. A significantly higher COT was seen in the 21d compared with 7d and 14d prednisone fish. Collectively, this study showed time-dependent effects of prednisone on SHM metabolism and swimming performance.
Collapse
|
17
|
Malev O, Lovrić M, Stipaničev D, Repec S, Martinović-Weigelt D, Zanella D, Ivanković T, Sindičić Đuretec V, Barišić J, Li M, Klobučar G. Toxicity prediction and effect characterization of 90 pharmaceuticals and illicit drugs measured in plasma of fish from a major European river (Sava, Croatia). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115162. [PMID: 32771868 DOI: 10.1016/j.envpol.2020.115162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Chemical analysis of plasma samples of wild fish from the Sava River (Croatia) revealed the presence of 90 different pharmaceuticals/illicit drugs and their metabolites (PhACs/IDrgs). The concentrations of these PhACs/IDrgs in plasma were 10 to 1000 times higher than their concentrations in river water. Antibiotics, allergy/cold medications and analgesics were categories with the highest plasma concentrations. Fifty PhACs/IDrgs were identified as chemicals of concern based on the fish plasma model (FPM) effect ratios (ER) and their potential to activate evolutionary conserved biological targets. Chemicals of concern were also prioritized by calculating exposure-activity ratios (EARs) where plasma concentrations of chemicals were compared to their bioactivities in comprehensive ToxCast suite of in vitro assays. Overall, the applied prioritization methods indicated stimulants (nicotine, cotinine) and allergy/cold medications (prednisolone, dexamethasone) as having the highest potential biological impact on fish. The FPM model pointed to psychoactive substances (hallucinogens/stimulants and opioids) and psychotropic substances in the cannabinoids category (i.e. CBD and THC). EAR confirmed above and singled out additional chemicals of concern - anticholesteremic simvastatin and antiepileptic haloperidol. Present study demonstrates how the use of a combination of chemical analyses, and bio-effects based risk predictions with multiple criteria can help identify priority contaminants in freshwaters. The results reveal a widespread exposure of fish to complex mixtures of PhACs/IDrgs, which may target common molecular targets. While many of the prioritized chemicals occurred at low concentrations, their adverse effect on aquatic communities, due to continuous chronic exposure and additive effects, should not be neglected.
Collapse
Affiliation(s)
- Olga Malev
- Department for Translational Medicine, Srebrnjak Children's Hospital, Zagreb, Croatia; Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | - Mario Lovrić
- Know-Center, Inffeldgasse 13/6, A-8010, Graz, Austria; NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Draženka Stipaničev
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia.
| | - Siniša Repec
- Croatian Waters, Central Water Management Laboratory, Ulica grada Vukovara 220, Zagreb, Croatia.
| | - Dalma Martinović-Weigelt
- University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN, 55105, USA.
| | - Davor Zanella
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | - Tomislav Ivanković
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| | | | - Josip Barišić
- Laboratory for Biotechnology in Aquaculture, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia.
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia.
| |
Collapse
|
18
|
Schmid S, Willi RA, Salgueiro-González N, Fent K. Effects of new generation progestins, including as mixtures and in combination with other classes of steroid hormones, on zebrafish early life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136262. [PMID: 31905574 DOI: 10.1016/j.scitotenv.2019.136262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 05/12/2023]
Abstract
Fish are exposed to progestins and steroid mixtures in contaminated waters but the ecotoxicological implications are not sufficiently known. Here we analyze effects of the new generation progestin dienogest (DNG) followed by investigating effects of mixtures of new generation progestins containing DNG, cyproterone acetate and drospirenone and the hormone progesterone. Furthermore, effects of this mixture were studied after adding 17β-estradiol (E2) and clobetasol propionate (CLO) in zebrafish embryos and larvae at concentrations between 0.01 and 10 μg/L. DNG showed only very minor transcriptional alterations among the 24 assessed genes with downregulation of the fshb transcript only. The progestin mixture caused weak induction of the lhb, cyp2k22 and sult2st3 transcripts. Addition of E2 to the mixture caused strong induction vtg1, cyp19b, esr1 and lhb, as well as downregulation of fshb from 0.01 μg/L onwards. Besides altering the same transcripts, addition of CLO altered glucocorticoid regulated genes mmp-9, mmp-13, g6pca, fkbp5 and irg1l. While each steroid class exhibited its specific activity independently in the mixture, sult2st3 and cyp2k22 were regulated by both E2 and CLO. Furthermore, CLO alone and in mixtures decreased spontaneous muscle contractions, increased heartrate and induced edema. Our study highlights the prominent effects of E2 and CLO in environmental steroid mixtures, while new generation progestins show relatively low activity.
Collapse
Affiliation(s)
- Simon Schmid
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Raffael Alois Willi
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| | - Noelia Salgueiro-González
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Department of Environmental Health Sciences, Via Mario Negri 2, 20156 Milan, Italy
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland; Swiss Federal Institute of Technology (ETH Zürich), Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, CH-8092 Zürich, Switzerland.
| |
Collapse
|
19
|
Maciuszek M, Rydz L, Świtakowska I, Verburg-van Kemenade BML, Chadzińska M. Effects of stress and cortisol on the polarization of carp macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 94:27-37. [PMID: 31465876 DOI: 10.1016/j.fsi.2019.08.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 05/02/2023]
Abstract
In teleost fish, myelopoiesis is maintained both in the head (HK) and trunk kidney (TK), but only the HK holds the endocrine cells that produce the stress hormone cortisol. We now compared the effects of prolonged restraint stress (in vivo) and cortisol (in vitro) on the polarization of HK and TK-derived carp macrophages. Monocytes/macrophages from both sources were treated in vitro with cortisol, lipopolysaccharide or with both factors combined. In vivo, fish were challenged by a prolonged restraint stress. Gene expression of several markers typical for classical M1 and alternative M2 macrophage polarization, as well as glucocorticoid receptors, were measured. Cells from both sources did not differ in the constitutive gene expression of glucocorticoid receptors, whereas they significantly differed in their response to cortisol and stress. In the LPS-stimulated HK monocytes/macrophages, cortisol in vitro counteracted the action of LPS while the effects of cortisol on the activity of TK monocytes/macrophages were less explicit. In vivo, restraint stress up-regulated gene expression of M2 markers in freshly isolated HK monocytes/macrophages, while at the same time it did not affect TK monocytes/macrophages. Moreover, LPS-stimulated HK monocytes/macrophages from stressed animals showed only minor differences in the gene expression of M1 and M2 markers, compared to LPS-treated monocytes/macrophages from control fish. In contrast, stress-induced changes in TK-derived LPS-treated cells were more pronounced. However, these changes did not clearly indicate whether in TK monocytes/macrophages stress will stimulate classical or alternative polarization. Altogether, our results imply that cortisol in vitro and stress in vivo direct HK, but not TK, monocytes/macrophages to the path of alternative polarization. These findings reveal that like in mammals, also in fish the glucocorticoids form important stimulators of alternative macrophage polarization.
Collapse
Affiliation(s)
- Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Leszek Rydz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | - Iga Świtakowska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland
| | | | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, PL30-387, Krakow, Poland.
| |
Collapse
|