1
|
He Z, Li Y, Zhou L, Li R, Zhang Y, Wang Z, Wang M. In Silico, In Vitro, and In Vivo Studies Indicate the Endocrine-Disrupting Effects of Cyproconazole Stereoisomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24228-24236. [PMID: 39465957 DOI: 10.1021/acs.jafc.4c04927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The widespread use of chiral triazole fungicide cyproconazole (CPZ) in agricultural fields has led to frequent detection of CPZ in the environment. The restriction of CPZ in the EU raised wide concerns regarding its potential endocrine-disrupting effects (EDEs). The present study was conducted to evaluate EDEs of CPZ stereoisomers in vitro, in silico, and in vivo. The reporter gene assay indicated that all CPZ stereoisomers were agonists to the human estrogenic receptor α. (2S,3S)-(+)- and (2R,3S)-(-)-CPZ exhibited stronger binding capacities to ERα compared with (2R,3R)-(-)- and (2S,3R)-(+)-CPZ. Our computational studies showed consistent results with reporter gene assay, elucidating the stereoselective binding mode of CPZ to estrogen receptor. In zebrafish embryos, the 96h-lethality of CPZ stereoisomers ordered (2R,3R)-(-)- > (2R,3S)-(-)- > (2S,3S)-(+)- > Rac- > (2S,3R)-(+)-CPZ. Stereoselective developmental toxicity of CPZ was observed while (2R,3S)-(-)-CPZ is the most toxic isomer. The estrogenic hormones were significantly decreased in (2S,3R)-(+)- and (2R,3S)-(-)-CPZ groups and enhanced in (2S,3S)-(+)- and (2R,3R)-(-)-CPZ, along with the gene expression in hypothalamic-pituitary-gonad axis altered. CPZ shows no thyroid hormone activity. These data clarified that CPZ is a new-found endocrine disruptor threatening human health and each stereoisomer of CPZ showed stereoselective EDEs by regulating the nuclear receptor-mediated gene expression.
Collapse
Affiliation(s)
- Zongzhe He
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanhong Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liangliang Zhou
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Rui Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yanqing Zhang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhen Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
2
|
Zhao X, Liu Y, Yang D, Dong S, Xu J, Li X, Li X, Ding G. Thyroid endocrine disruption effects of OBS in adult zebrafish and offspring after parental exposure at early life stage. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107125. [PMID: 39426365 DOI: 10.1016/j.aquatox.2024.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
As an alternative to perfluorooctane sulfonate, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has been widely used and caused ubiquitous water pollution. However, its toxicity to aquatic organisms is still not well known. Therefore, in this study, parental zebrafish were exposed to OBS at environmentally relevant concentrations from ∼ 2 h post-fertilization to 21 days post-fertilization (dpf) in order to investigate the thyroid disrupting effects in F0 adults and F1 offspring. Histopathological changes, such as hyperplasia of thyroid follicular epithelia and colloidal depletion, were observed in F0 adults at 180 dpf. In F0 females, thyroxine (T4) levels were significantly reduced in 30 and 300 μg/L exposure groups, while triiodothyronine (T3) levels were significantly increased in 3 μg/L exposure group. For F0 males, significant increases of T4 and T3 levels were observed, revealing the sex-specific differences after the OBS exposure. The transcription levels of some key genes related to the hypothalamic-pituitary-thyroid (HPT) axis were significantly disrupted, which induced the thyroid endocrine disruption effects in adult zebrafish even after a prolonged recovery period. For F1 offspring, the thyroid hormone (TH) homeostasis was also altered as T4 and T3 levels in embryos/larvae exhibited similar changes as F0 females. The transcription levels of some key genes related to the HPT axis were also significantly dysregulated, suggesting the transgenerational thyroid disrupting effects of OBS in F1 offspring. In addition, the decreased swirl-escape rate was observed in F1 larvae, which could be caused by disrupting gene expressions related to the central nervous system development and be associated with the TH dyshomeostasis. Therefore, parental OBS exposure at early life stage resulted in thyroid endocrine disruption effects in both F0 adult zebrafish and F1 offspring, and caused the developmental neurotoxicity in F1 larvae.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Yaxuan Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaohui Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Xiaoying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China.
| |
Collapse
|
3
|
Dasmahapatra AK, Chatterjee J, Tchounwou PB. A systematic review of the toxic potential of parabens in fish. FRONTIERS IN TOXICOLOGY 2024; 6:1399467. [PMID: 39434713 PMCID: PMC11491439 DOI: 10.3389/ftox.2024.1399467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
Parabens are the most prevalent ingredients in cosmetics and personal care products (PCPs). They are colorless and tasteless and exhibit good stability when combined with other components. Because of these unique physicochemical properties, they are extensively used as antimicrobial and antifungal agents. Their release into the aquatic ecosystem poses potential threats to aquatic organisms, including fish. We conducted an electronic search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed) using the search term parabens and fish and sorted 93 articles consisting of methyl paraben (MTP), ethyl paraben (ETP), propyl paraben (PPP), butyl paraben (BTP), and benzyl paraben (BNP) in several fish species. Furthermore, we confined our search to six fish species (common carp, Cyprinus carpio; fathead minnows, Pimephales promelas; Japanese medaka, Oryzias latipes; rainbow trout, Oncorhynchus mykiss; Nile tilapia, Oreochromis niloticus; and zebrafish, Danio rerio) and four common parabens (MTP, ETP, PPP, and BTP) and sorted 48 articles for review. Our search indicates that among all six fish, zebrafish was the most studied fish and the MTP was the most tested paraben in fish. Moreover, depending on the alkyl chain length and linearity, long-chained parabens were more toxic than the parabens with short chains. Parabens can be considered endocrine disruptors (EDs), targeting estrogen-androgen-thyroid-steroidogenesis (EATS) pathways, blocking the development and growth of gametes, and causing intergenerational toxicity to impact the viability of offspring/larvae. Paraben exposure can also induce behavioral changes and nervous system disorders in fish. Although the USEPA and EU limit the use of parabens in cosmetics and pharmaceuticals, their prolonged persistence in the environment may pose an additional health risk to humans.
Collapse
Affiliation(s)
- Asok K. Dasmahapatra
- Department of BioMolecular Science, Environmental Toxicology Division, University of Mississippi, Oxford, MS, United States
| | - Joydeep Chatterjee
- Department of Biology, University of Texas-Arlington, Arlington, TX, United States
| | - Paul B. Tchounwou
- RCMI Center for Urban Health Disparities Research and Innovation, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, United States
| |
Collapse
|
4
|
Xu H, Mao X, Zhang S, Ren J, Jiang S, Cai L, Miao X, Tao Y, Peng C, Lv M, Li Y. Perfluorooctanoic acid triggers premature ovarian insufficiency by impairing NAD+ synthesis and mitochondrial function in adult zebrafish. Toxicol Sci 2024; 201:118-128. [PMID: 38830045 DOI: 10.1093/toxsci/kfae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
High-dose perfluorooctanoic acid (PFOA) impairs oocyte maturation and offspring quality. However, the physiological concentrations of PFOA in follicular fluids of patients with premature ovarian insufficiency (POI) were detected at lower levels, thus the relationship between physiological PFOA and reproductive disorders remains elusive. Here, we investigated whether physiological PFOA exposure affects gonad function in adult zebrafish. Physiological PFOA exposure resulted in POI-like phenotypes in adult females, which exhibited decreased spawning frequency, reduced number of ovulated eggs, abnormal gonadal index, and aberrant embryonic mortality. Meanwhile, oocytes from PFOA-exposed zebrafish showed mitochondrial disintegration and diminished mitochondrial membrane potential. Unlike the high-dose treated oocytes exhibiting high reactive oxygen species (ROS) levels and excessive apoptosis, physiological PFOA reduced the ROS levels and did not trigger apoptosis. Interestingly, physiological PFOA exposure would not affect testis function, indicating specific toxicity in females. Mechanistically, PFOA suppressed the NAD+ biosynthesis and impaired mitochondrial function in oocytes, thus disrupting oocyte maturation and ovarian fertility. Nicotinamide mononucleotide (NMN), a precursor for NAD+ biosynthesis, alleviated the PFOA-induced toxic effects in oocytes and improved the oocyte maturation and fertility upon PFOA exposure. Our findings discover new insights into PFOA-induced reproductive toxicity and provide NMN as a potential drug for POI therapy.
Collapse
Affiliation(s)
- Hao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| | - Xiaoyu Mao
- College of Language Intelligence, Sichuan International Studies University, Chongqing 400031, China
| | - Siling Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jie Ren
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shanwen Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Lijuan Cai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiaomin Miao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yixi Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Fisheries Development Department of Agriculture and Rural Committee of Nanchuan District, Chongqing 408400, China
| | - Mengzhu Lv
- Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Ihn Y, Cho Y, Lee I, Oh JS, Moon HB, Choi K. Thyroid and neurobehavioral effects of DiNP on GH3 cells and larval zebrafish (Danio rerio). CHEMOSPHERE 2024; 362:142593. [PMID: 38866335 DOI: 10.1016/j.chemosphere.2024.142593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Diisononyl phthalate (DiNP) has been used to replace bis(2-ethylhexyl) phthalate (DEHP) and is frequently found in the environment and humans. DiNP is reported for its anti-androgenic activity; however, little is known about its effects on thyroid function and neurodevelopment. In the present study, the thyroid disruption and neurobehavioral alteration potential of DiNP and its major metabolites were assessed in a rat pituitary carcinoma cell line (GH3) and embryo-larval zebrafish (Danio rerio). In GH3 cells, exposure to DiNP and its metabolites not only increased proliferation but also induced transcriptional changes in several target genes, which were different from those observed with DEHP exposure. In larval fish, a 5-day exposure to DiNP caused significant increases in thyroid hormone levels, following a similar pattern to that reported for DEHP exposure. Following exposure to DiNP, the activity of the larval fish decreased, and neurodevelopment-related genes, such as c-fos, elavl3, and mbp, were down-regulated. These changes are generally similar to those observed for DEHP. Up-regulation of gap43 and down-regulation of elavl3 gene, which are important for both thyroid hormone production and neurodevelopment, respectively, support the potential for both thyroid and behavioral disruption of DiNP. Overall, these results emphasize the need to consider the adverse thyroid and neurodevelopmental effects in developing regulations for DEHP-replacing phthalates.
Collapse
Affiliation(s)
- Yunchul Ihn
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yoojin Cho
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jin-Su Oh
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
7
|
Coperchini F, Greco A, Rotondi M. Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects? J Endocrinol Invest 2024; 47:1863-1879. [PMID: 38522066 PMCID: PMC11266260 DOI: 10.1007/s40618-024-02339-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The family of perfluoroalkyl and polyfluoroalkyl substances (PFAS) raised concern for their proven bioaccumulation and persistence in the environment and animals as well as for their hazardous health effects. As a result, new congeners of PFAS have rapidly replaced the so-called "old long-chain PFAS" (mainly PFOA and PFOS), currently out-of-law and banned by most countries. These compounds derive from the original structure of "old long-chain PFAS", by cutting or making little conformational changes to their structure, thus obtaining new molecules with similar industrial applications. The new congeners were designed to obtain "safer" compounds. Indeed, old-long-chain PFAS were reported to exert thyroid disruptive effects in vitro, and in vivo in animals and humans. However, shreds of evidence accumulated so far indicate that the "restyling" of the old PFAS leads to the production of compounds, not only functionally similar to the previous ones but also potentially not free of adverse health effects and bioaccumulation. Studies aimed at characterizing the effects of new-PFAS congeners on thyroid function indicate that some of these new-PFAS congeners showed similar effects. PURPOSE The present review is aimed at providing an overview of recent data regarding the effects of novel PFAS alternatives on thyroid function. RESULTS AND CONCLUSIONS An extensive review of current legislation and of the shreds of evidence obtained from in vitro and in vivo studies evaluating the effects of the exposure to novel PFOA and PFOS alternatives, as well as of PFAS mixture on thyroid function will be provided.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Laboratory for Endocrine Disruptors, Unit of Endocrinology and Metabolism, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
8
|
Zhang T, Lyu Y, Yuan M, Liu M, Zhu Y, Sun B, Zhong W, Zhu L. Transformation of 6:6 PFPiA in the gut of Xenopus laevis: Synergistic effects of CYP450 enzymes and gut microflora. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134535. [PMID: 38718515 DOI: 10.1016/j.jhazmat.2024.134535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
As a frequently detected per- and polyfluoroalkyl substance in the environment, 6:6 perfluoroalkylhypophosphinic acid (6:6 PFPiA) is vulnerable to transformation in the liver of organisms, but the transformation in gut is still unclear. This study investigates the molecular mechanisms of 6:6 PFPiA transformation in the gut of Xenopus laevis upon a 28-day exposure in water. Before Day 16, a notable correlation (p = 0.03) was observed between the transformation product (PFHxPA) and cytochrome P450 (CYP450) enzyme concentration in gut. This suggests that CYP450 enzymes played an important role in the transformation of 6:6 PFPiA in the gut, which was verified by an in vitro incubation with gut tissues, and supported by the molecular docking results of 6:6 PFPiA binding with CYP450 enzymes. From the day 16, the CYP450 concentration in gut decreased by 31.3 % due to the damage caused by 6:6 PFPiA, leading to a decrease in the transformation capacity in gut, but the transformation rate was stronger than in liver. This was in contrast with the in vitro experiment, where transformation was stronger in liver. In the mean time, the abundance of Bacteroidota in gut increased, which released hydrolytic enzyme and then could participate in the transformation as well. This study reveals the potential of the gut in metabolizing environmental pollutants, and provides profound insights into the potential health risks caused by 6:6 PFPiA in organisms.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yang Lyu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Meng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Jiao F, Rong H, Zhao Y, Wu P, Long Y, Xu J, Zhao T, Han L, Wang J, Yang H. Insights into spirotetramat-induced thyroid disruption during zebrafish (Danio rerio) larval development: An integrated approach with in vivo, in vitro, and in silico analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123242. [PMID: 38154778 DOI: 10.1016/j.envpol.2023.123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
Spirotetramat (SPT), a tetronic acid-derived insecticide, is implicated in reproductive and lipid metabolism disorders, as well as developmental toxicity in fish. While these effects are documented, the precise mechanisms underlying its developmental toxicity are not fully elucidated. In this study, zebrafish embryos (2 h post-fertilization, hpf) were exposed to four concentrations of SPT (0, 60, 120, and 240 μg/L) until 21 dpf (days post-fertilization). We delved into the mechanisms by examining its potential disruption of the thyroid endocrine system, employing in vivo, in vitro, and in silico assays. The findings showed notable developmental disturbances, including reduced hatching rates, shortened body lengths, and decelerated heart rates. Additionally, there was an increase in malformations and a decline in locomotor activity. Detailed analyses revealed that SPT exposure led to elevated thyroid hormone levels, perturbed the hypothalamic-pituitary-thyroid (HPT) axis transcript levels, amplified deiodinase type I (Dio1) and deiodinase type II (Dio2) activities, and both transcriptionally and proteomically upregulated thyroid receptor beta (TRβ) in larvae. Techniques like molecular docking and surface plasmon resonance (SPR) confirmed SPT's affinity for TRβ, consistent with in vitro findings suggesting its antagonistic effect on the T3-TR complex. These insights emphasize the need for caution in using tetronic acid-derived insecticides.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Hua Rong
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Panfeng Wu
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, PR China
| | - Yaohui Long
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Jie Xu
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Tao Zhao
- Xiangyang Polytechnic Xiangyang, 441050, PR China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China.
| |
Collapse
|
10
|
Kühne R, Hilscherová K, Smutna M, Leßmöllmann F, Schüürmann G. In silico bioavailability triggers applied to direct and indirect thyroid hormone disruptors. CHEMOSPHERE 2024; 348:140611. [PMID: 37972869 DOI: 10.1016/j.chemosphere.2023.140611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Among endocrine disruption, interference with the thyroid hormone (TH) regulation is of increasing concern. Respective compounds encode through their structural features both the potential for TH disruption, and the bioavailability mitigating the toxicological effect. The aim of this study is to provide a substructure-based screening-level QSAR (quantitative structure-activity relationship) that discriminates bioavailable TH disruptors from not bioavailable counterparts, covering both direct and indirect (retinoid- and AhR-mediated) modes of action. The QSAR has been derived from literature data for 1642 compounds, and takes into account Lipinski's rule-of-five and the brain/blood partition coefficient Kbrain/blood. For its validation, an external test set of 145 substances has been used. For 1787 compounds meeting the model application domain, the model yields only one false negative. The discussion addresses the mechanistic meaning of the bioavailability triggers molecular weight, H-bond donor and acceptor, hydrophobicity (log Kow), and the physicochemical properties underlying log Kbrain/blood. The model may serve as bioavailability-screening step within a decision support system for the predictive assessment of chemicals regarding their potential to disrupt thyroid hormone function in a direct or indirect manner.
Collapse
Affiliation(s)
- Ralph Kühne
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany.
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Marie Smutna
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
| | - Friederike Leßmöllmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596, Freiberg, Germany.
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany; Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596, Freiberg, Germany.
| |
Collapse
|
11
|
Huang PC, Chen HC, Leung SH, Lin YJ, Huang HB, Chang WT, Huang HI, Chang JW. Associations between paraben exposure, thyroid capacity, homeostasis and pituitary thyrotropic function in the general Taiwanese: Taiwan Environmental Survey for Toxicants (TEST) 2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1288-1303. [PMID: 38038926 DOI: 10.1007/s11356-023-31277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Several studies have suggested that some endocrine disruptors such as synthetic phenols, parabens and phthalates may disrupt thyroid hormone signaling and associated negative feed-backs with the central hypothalamic-pituitary-thyroid (HPT) axis. Therefore, we investigated urinary paraben and blood thyroid hormone levels in the Taiwanese population. Our sample comprised 264 adults (aged 18-97 years) and 75 minors (aged 7-17 years) from Taiwan Environmental Survey for Toxicants 2013. Urinary levels of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were assessed. Hormones of particular interest include: thyroid-stimulating hormone (TSH), triiodothyronine (T3), and thyroxine (T4). We sought integrated parameters to describe the transfer of thyroid hormones in homeostatic models. The geometric mean urinary paraben levels of the adults were higher than those of the minors (adults vs. minors; MeP: 383 vs. 62.4 ng/mL; PrP: 109 vs. 8.00 ng/mL; EtP: 39.5 vs. 2.38 ng/mL, and BuP: 6.36 vs. 2.13 ng/mL). In the male adults, we discovered that 0.253% (p = 0.032), 0.256% (p = 0.041) and 0.257% (p = 0.037) decreases in the TSH, TSH/T4 and TSH/FreeT4 ratio was associated with 1% EtP increases, respectively. In the female minors, 0.093% (p = 0.044), 0.072% (p = 0.047) and 0.156 (p = 0.004) increases in the TSH ratios were associated with a 1% MeP, EtP and BuP increase, respectively. Moreover, 0.151% (p = 0.008) and 0.177% (p = 0.001) increases in TSH/T4 and TSH/free T4 ratios were associated with a BuP 1% increase, respectively. Finally, EtP was positively associated with SPINA-GT (β: 15.66, p = 0.036) in the male adults. By contrast, EtP were positively associated with Jostel's TSH index and sTSHI (β: 0.072, p = 0.049; β: 0.107, p = 0.049) in the female minors. The Taiwanese population is commonly exposed to parabens, which can potentially lead to alteration of thyroid hormone homeostasis.
Collapse
Affiliation(s)
- Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Shih-Hao Leung
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Sec. 2, Beitou, Taipei, 112, Taiwan
| | - Yu-Jung Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-I Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Sec. 2, Beitou, Taipei, 112, Taiwan.
| |
Collapse
|
12
|
Bai Y, Wang Q, Li J, Zhou B, Lam PKS, Hu C, Chen L. Significant Variability in the Developmental Toxicity of Representative Perfluoroalkyl Acids as a Function of Chemical Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14904-14916. [PMID: 37774144 DOI: 10.1021/acs.est.3c06178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Current toxicological data of perfluoroalkyl acids (PFAAs) are disparate under similar exposure scenarios. To find the cause of the conflicting data, this study examined the influence of chemical speciation on the toxicity of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS). Zebrafish embryos were acutely exposed to PFAA, PFAA salt, and a pH-negative control, after which the developmental impairment and mechanisms were explored. The results showed that PFAAs were generally more toxic than the corresponding pH control, indicating that the embryonic toxicity of PFAAs was mainly caused by the pollutants themselves. In contrast to the high toxicity of PFAAs, PFAA salts only exhibited mild hazards to zebrafish embryos. Fingerprinting the changes along the thyroidal axis demonstrated distinct modes of endocrine disruption for PFAAs and PFAA salts. Furthermore, biolayer interferometry monitoring found that PFOA and PFBS acids bound more strongly with albumin proteins than did their salts. Accordingly, the acid of PFAAs accumulated significantly higher concentrations than their salt counterparts. The present findings highlight the importance of chemical forms to the outcome of developmental toxicity, calling for the discriminative risk assessment and management of PFAAs and salts.
Collapse
Affiliation(s)
- Yachen Bai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Liu M, Yi S, Yu H, Zhang T, Dong F, Zhu L. Underlying Mechanisms for the Sex- and Chemical-Specific Hepatotoxicity of Perfluoroalkyl Phosphinic Acids in Common Carp ( Cyprinus carpio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14515-14525. [PMID: 37728733 DOI: 10.1021/acs.est.3c04964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The hepatotoxicities of perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been extensively investigated, while little is known about the sex-specific differences. In this study, common carp were exposed to the emerging perfluoroalkyl phosphinic acids (6:6 and 8:8 PFPiAs) for 14 days to disclose sex-specific hepatotoxicity. Apparent hepatotoxicity, including cell necrosis, apoptosis, and steatosis, was observed in both male and female carp liver. The observed hepatocyte steatosis was predominantly attributed to the dysregulation of hepatic lipid metabolism but was based on sex-specific mechanisms. It was manifested as inhibited oxidative decomposition of fatty acids (FAs) in the female liver, whereas it enhanced the uptake of FAs into the male liver, both of which led to excessive lipid accumulation. Untargeted lipidomics validated that the metabolism pathways of FA, sphingolipid, glycerolipid, and glycerophospholipid were disrupted by both compounds, leading to the generation of reactive oxygen species and oxidative stress. The oxidative stress further evolved into inflammation, manifested as promoted expression of proinflammatory cytokines and repressed expression of anti-inflammatory cytokines. Consistently, all of the changes were more noticeable in male carp, suggesting that male fish were more susceptible to PFPiA disruption. 8:8 PFPiA was less accumulated but caused stronger hepatotoxicity than 6:6 PFPiA, possibly because of the stronger binding capacity of 8:8 PFPiA to nuclear transcription factors mediating lipid metabolism and inflammation. The findings of this study highlight the significance of sex- and chemical-dependent bioaccumulation and the toxicity of PFASs in organisms.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Zhang T, Zhu L, Sun Y, Yang L, Yi S, Zhong W. Novel Insights on 6:6 Perfluoroalkyl Phosphonic Acid-Induced Melanin Synthesis Disorders Leading to Pigmentation in Tadpoles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11032-11042. [PMID: 37467139 DOI: 10.1021/acs.est.3c02920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are widely present in aquatic environments and can potentially harm aquatic organisms. Pigmentation affects the probability of aquatic organisms being preyed on and serves as an important toxic endpoint of development, but little is known about the impacts of PFPiAs on the development of aquatic organisms. In this study, Xenopus laevis embryos were exposed to 6:6 PFPiA (1, 10, and 100 nM) for 14 days. The developed tadpoles exhibited evident pigmentation with increased melanin particle size and density on the skin. Pathological and behavioral experiments revealed that the retinal layers became thinner, reducing the photosensitivity and disturbing the circadian rhythm of the tadpoles. Compared to the control group, the exposed tadpoles showed higher levels but less changes of melanin throughout the light/dark cycle, as well as distinct oxidative damage. Consequently, the expression level of microphthalmia-associated transcription factor (MITF), a key factor inducing melanin synthesis, increased significantly. Molecular docking analysis suggested that 6:6 PFPiA forms strong interactions in the binding pocket of MITF, implying that it could activate MITF directly. The activation of MITF ultimately promotes melanin synthesis, resulting in pigmentation on tadpoles.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
15
|
Li Y, Yao J, Pan Y, Dai J, Tang J. Trophic behaviors of PFOA and its alternatives perfluoroalkyl ether carboxylic acids (PFECAs) in a coastal food web. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131353. [PMID: 37030227 DOI: 10.1016/j.jhazmat.2023.131353] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/01/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
With the increasing restrictions and concerns about legacy poly- and perfluoroalkyl substances (PFAS), the production and usage of alternatives, i.e., perfluoroalkyl ether carboxylic acids (PFECAs), have risen recently. However, there is a knowledge gap regarding the bioaccumulation and trophic behaviors of emerging PFECAs in coastal ecosystems. The bioaccumulation and trophodynamics of perfluorooctanoic acid (PFOA) and its substitutes (PFECAs) were investigated in Laizhou Bay, which is located downstream of a fluorochemical industrial park in China. Hexafluoropropylene oxide trimer acid (HFPO-TrA), perfluoro-2-methoxyacetic acid (PFMOAA) and PFOA constituted the dominant compounds in the ecosystem of Laizhou Bay. PFMOAA was dominant in invertebrates, whereas the long-chain PFECAs preferred to accumulate in fishes. The PFAS concentrations in carnivorous invertebrates were higher than those in filter-feeding species. Considering migration behaviors, the ∑PFAS concentrations followed the order oceanodromous fish < diadromous fish < non-migratory fish. The trophic magnification factors (TMFs) of long-chain PFECAs (HFPO-TrA, HFPO-TeA and PFO5DoA) were >1, suggesting trophic magnification potential, while biodilution for short-chain PFECAs (PFMOAA) was observed. The intake of PFOA in seafood may constitute a great threat to human health. More attention should be given to the impact of emerging hazardous PFAS on organisms for the health of ecosystems and human beings.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong KeyLaboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China; School of Resources and Environment, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jingzhi Yao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China.
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong KeyLaboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China.
| |
Collapse
|
16
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
17
|
Gao Z, Yi S, Xue M, Zhu K, Yang R, Wang T, Sun H, Zhu L. Microbial biotransformation mechanisms of PFPiAs in soil unveiled by metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130896. [PMID: 36764254 DOI: 10.1016/j.jhazmat.2023.130896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
As alternatives of long-chain PFASs (Poly- and perfluoroalkyl substances), perfluoroalkyl phosphinic acids (PFPiAs) are increasingly observed in the environment, but their environmental behaviors have not been well understood. Here, the microbial biotransformation of C6/C6 and C8/C8 PFPiA in two soils (Soil N and Y) was investigated. After 252 d and 330 d of incubation with PFPiAs in Soil N and Y respectively, the levels of PFPiAs decreased distinctly, accompanied by the increasing perfluorohexaphosphonic acid (PFHxPA) or perfluorooctanophosphonic acid (PFOPA) formation, magnifying PFPiAs were susceptible to C-P cleavage, which was also confirmed by the density functional theory calculations. The half-lives of the PFPiAs were longer than one year, while generally shorter in Soil N than in Soil Y and that of C6/C6 was shorter than C8/C8 PFPiA (392 d and 746 d in Soil N, and 603 and 1155 d in Soil Y, respectively). Metagenomic sequencing analysis revealed that Proteobacteria as the primary host of the potential functional genes related to CP bond cleavage might be the crucial phyla contributing to the biotransformation of PFPiAs. Meanwhile, the more intensive interactions between the microbes in Soil N consistently contribute to its greater capacity for transforming PFPiAs.
Collapse
Affiliation(s)
- Zhuo Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Shujun Yi
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Mengzhu Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Rongyan Yang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hongwen Sun
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
18
|
Zhang B, Wang Z, Zhang J, Dai Y, Feng C, Lin Y, Zhang L, Guo J, Qi X, Chang X, Lu D, Wu C, Zhou Z. Prenatal perfluoroalkyl substances exposure and neurodevelopment in toddlers: Findings from SMBCS. CHEMOSPHERE 2023; 313:137587. [PMID: 36535498 DOI: 10.1016/j.chemosphere.2022.137587] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Prenatal perfluoroalkyl substances (PFAS) exposure has been reported to affect offspring neurodevelopment, while epidemiological evidences were limited and inconsistent. OBJECTIVES We aimed to evaluate the associations between cord serum PFAS concentrations and neurodevelopment in toddlers from 1 to 3 years of age. METHODS A total of 716 children from Sheyang Mini Birth Cohort Study (SMBCS) were included in this study. 12 PFAS concentrations were quantified in cord serum. Neurodevelopment was assessed using the Developmental Screen Test for Children Aged 0-6 Years at 1 year and the Gesell Developmental Schedules (GDS) at 2 and 3 years, respectively. Development quotient (DQ) z-score was standardized from DQ to eliminate the difference caused by two methods. We used generalized linear model (GLM) and Bayesian kernel machine regression (BKMR) to explore the associations of single or mixture PFAS exposure with neurodevelopment measurements at each time point. Associations between PFAS exposure and longitudinal changes in DQ z-score were investigated through generalized estimating equation (GEE) and trajectory analysis. RESULTS In general, prenatal PFAS concentrations showed negative associations with neurodevelopment measurements at specific age. When accounting for longitudinal changes from 1 to 3 years of age, PFOA was negatively associated with DQ z-score (β = -0.212, 95% CI: -0.422, -0.003), the association was only found significant in boys after stratified by gender (β = -0.327, 95% CI: -0.616, -0.038). Meanwhile, increased PFBS (OR = 2.159, 95% CI: 1.177, 3.959) and PFHpA (OR = 1.700, 95% CI: 1.016, 2.846) exposure was associated with elevated odds for the low-score trajectory group. The results of mixture of PFAS further confirmed above findings. CONCLUSIONS Our findings suggested that prenatal PFAS exposure may be associated with adverse neurodevelopment effects in the first 3 years of life. Further studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Boya Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Lei Zhang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Xiuli Chang
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, No. 1380 West Zhongshan Road, Shanghai, 200336, China
| | - Chunhua Wu
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health/MOE Key Laboratory of Public Health Safety/ NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
19
|
Zhang T, Zhao S, Dong F, Jia Y, Chen X, Sun Y, Zhu L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6:6 PFPiA through Disturbing the Gut-Brain Axis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1028-1038. [PMID: 36594808 DOI: 10.1021/acs.est.2c04765] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As alternatives to traditional per- and polyfluoroalkyl substances, perfluoroalkyl phosphonic acids (PFPiAs) are frequently detected in aquatic environments, but the neurotoxic effects and underlying mechanisms remain unclear. In this study, male zebrafish were exposed to 6:6 PFPiA (1 and 10 nM) for 28 days, which exhibited anxiety-like symptoms. Gut microbiome results indicated that 6:6 PFPiA significantly increased the abundance of Gram-negative bacteria, leading to enhanced levels of lipopolysaccharide (LPS) and inflammation in the gut. The LPS was delivered to the brain through the gut-brain axis (GBA), damaged the blood-brain barrier (BBB), stimulated neuroinflammation, and caused apoptosis as well as neural injury in the brain. This mechanism was verified by the fact that antibiotics reduced the LPS levels in the gut and brain, accompanied by reduced inflammatory responses and anxiety-like behavior. The BBB damage also resulted in the enhanced accumulation of 6:6 PFPiA in the brain, where it might bind strongly with and activate aryl hydrocarbon receptor (AhR) to induce brain inflammation directly. Additionally, as the fish received treatment with an inhibitor of AhR, the inflammation response and anxiety-like behavior decreased distinctly. This study sheds light on the new mechanisms of neurotoxicity-induced 6:6 PFPiA due to the interruption on GBA.
Collapse
Affiliation(s)
- Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Sujuan Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
- School of Public Health, Anhui Medical University, Hefei 230032, P.R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
20
|
Wang Y, Jiang S, Wang B, Chen X, Lu G. Comparison of developmental toxicity induced by PFOA, HFPO-DA, and HFPO-TA in zebrafish embryos. CHEMOSPHERE 2023; 311:136999. [PMID: 36309054 DOI: 10.1016/j.chemosphere.2022.136999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hexafluoropropylene oxide dimer acids (HFPO-DA) and hexafluoropropylene oxide trimer acids (HFPO-TA) are alternatives to perfluorooctanoic acid (PFOA). However, little information on the comparison of their toxicities is available. Here, zebrafish embryos were exposed to PFOA, HFPO-DA, and HFPO-TA with exposure concentrations of 5 and 500 μg/L. Behavioral abnormal, enzyme activities and gene expression profiles in zebrafish embryos were determined. Results showed that exposure to PFOA and its alternatives increased heart rates and inhibited locomotor activity of zebrafish embryos. Further, their exposures changed the enzyme activities (acetylcholinesterase and oxidative stress-related enzymes), ATP content, and expressions of genes related to hypothalamic-pituitary-thyroid (HPT) axis, apoptosis, and lipid metabolism. Comparison analyses found that PFOA, HFPO-TA, and HFPO-DA exposures induced different effects on the embryonic development of zebrafish, which indicates the different modes of action. The HFPO-DA exposure induced specific effects on the disorder of lipid metabolism, HPT axis, and neurodevelopment. The HFPO-TA exposure also induced different effects from the PFOA exposure, which focused on lipid metabolism. The current data shows that the HFPO-DA and HFPO-TA might not be safe alternatives to PFOA. This study provides a new understanding of the biological hazards of PFOA alternatives in aquatic organisms, which can guide their usage.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Beibei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
21
|
Zhong L, Zhang H, Wu L, Ru H, Wei N, Yao F, Ni Z, Duan X, Li Y. Copper and Zinc Treatments Alter the Thyroid Endocrine System in Zebrafish Embryos/Larvae. TOXICS 2022; 10:756. [PMID: 36548589 PMCID: PMC9788113 DOI: 10.3390/toxics10120756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Copper (Cu2+) and zinc (Zn2+) are two kinds of heavy metals essential to living organisms. Cu2+ and Zn2+ at excessive concentrations can cause adverse effects on animals, but little is known about the thyroid-disrupting effects of these metals in fish, especially in the early developmental transition stage from embryos to larvae. Wild-type zebrafish embryos were used to expose to Cu2+ (0, 1.5, 15, and 150 μg/L) and Zn2+ (0, 20, 200, and 2000 μg/L) for 120 h. Thyroid hormone contents and transcriptional changes of the genes connected with the hypothalamic-pituitary-thyroid (HPT) axis were measured. Results showed that zebrafish embryos/larvae malformation rates were significantly increased in the Cu2+ and Zn2+ groups. Remarkably elevated thyroxine (T4) concentrations and reduced triiodothyronine (T3) concentrations were observed in Cu2+ and Zn2+ exposure fish. And the expression patterns of genes connected with the HPT axis were changed after Cu2+ and Zn2+ treatment. Based on principal component analysis (PCA) results, Zn2+ caused significant effects on the thyroid endocrine system at 200 μg/L, while Cu2+ resulted in thyroid disruption as low as 1.5 μg/L. In short, our study demonstrated that exposure to Cu2+ and Zn2+ induced developmental toxicity and thyroid disruption to zebrafish embryos/larvae.
Collapse
Affiliation(s)
- Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - He Zhang
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Universtiy, Wuhan 430062, China
| | - Luyin Wu
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Nian Wei
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunfeng Li
- Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River (Ministry of Agriculture and Rural Affairs), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
22
|
Wei G, Zhang CX, Jing Y, Chen X, Song HD, Yang L. The influence of sunitinib and sorafenib, two tyrosine kinase inhibitors, on development and thyroid system in zebrafish larvae. CHEMOSPHERE 2022; 308:136354. [PMID: 36087734 DOI: 10.1016/j.chemosphere.2022.136354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Recently, the potential toxic effects of various pharmaceuticals on the thyroid endocrine system have raised considerable concerns. In this study, we evaluated the adverse effects of sorafenib and sunitinib, two widely used anti-tumor drugs, on the developmental toxicities and thyroid endocrine disruption by using zebrafish (Danio rerio) model. Zebrafish embryos/larvae were exposed to different contentions (0, 10, 50 and 100 nM) of sorafenib and sunitinib for 96 hpf. The results revealed that waterborne exposure to sorafenib and sunitinib exhibited remarkable toxic effects on the survival and development in zebrafish embryos/larvae, which was accompanied by obvious disturbances of thyroid endocrine system (e.g., decreased T3 and T4 content, increased TSH content) and genes' transcription changes within the hypothalamus-pituitary-thyroid (HPT) axis. In addition, we verified a strikingly abnormal thyroid gland organogenesis in zebrafish larvae in response to sorafenib and sunitinib, by assessing the development of thyroid follicles using the WISH staining of tg, the Tg (tg:GFP) zebrafish transgenic line, and histopathological analysis. Taken together, our results indicated sorafenib and sunitinib exposure could induce obvious developmental toxicities and thyroid function disruption in zebrafish embryos/larvae, which might involve a regulatory mechanism, at least in part, by destroying the thyroid follicle structure, and by disturbing the balance of the HPT axis.
Collapse
Affiliation(s)
- Gang Wei
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Hangzhou, 310015, China; Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Cao-Xu Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Jing
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xia Chen
- Department of Endocrinology, Shanghai Gongli Hospital, Shanghai, 200135, China
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Liu Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
23
|
Liu Z, Shangguan Y, Zhu P, Sultan Y, Feng Y, Li X, Ma J. Developmental toxicity of glyphosate on embryo-larval zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113493. [PMID: 35398647 DOI: 10.1016/j.ecoenv.2022.113493] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) induces developmental toxicity in fish, but research on the toxicity mechanism is limited. In this study, zebrafish embryos were exposed for 120 hpf to 0.7, 7, and 35 mg L-1 GLY. The results show that GLY treatment induced developmental toxicity in the fish, including premature hatching, reduced heartbeats, pericardial and yolk sac oedema, swim bladder deficiency, and shortened body length, which was possibly due to a significantly decreased triiodothyronine (T3)/thyroxine (T4) ratio and the abnormal expression patterns of hypothalamic-pituitary-thyroid (HPT) (crh, tshβ, tr α, tr β, and t tr ) and growth hormone/insulin-like growth factor (GH/IGF) axis-related genes (gh, ghrα, ghrβ, igf1, igf1rα, and igf1rβ) in larvae exposed to GLY. In addition, GLY exposure altered the levels of SOD and CAT, increased ROS, promoted malondialdehyde (MDA) content, and significantly altered the levels of endoplasmic reticulum (ER) stress signalling pathway factors (perk, eif2α, gadd34, atf4, ire1α, xbp1, atf6, hspa5, and chop), suggesting that GLY treatment induced oxidative injury and ER stress in the larvae. Further research showed that treatment with a higher concentration of GLY upregulated the levels of iNOS, IL-1β, and TNF-α while inhibiting the expression of IL-10 and TGF-β, suggesting that GLY causes an inflammatory reaction in the larvae. In addition, we also found that apoptosis was induced in the larvae, which was determined by acridine orange staining and abnormal expression of p53, caspase-3, -8, and -9. Taken together, our results demonstrate that GLY exposure altered the T3/T4 ratio, disturbed the expression patterns of HPT and GH/IGF axis-related genes, and induced oxidative and ER stress, inflammatory reactions, and apoptosis in the zebrafish larvae. This investigation contributes to improved understanding of the developmental toxicity mechanism of GLY in fish.
Collapse
Affiliation(s)
- Zhihui Liu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yingying Shangguan
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Penglin Zhu
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yousef Sultan
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junguo Ma
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
24
|
Liu B, Li P, He S, Xing S, Cao Z, Cao X, Wang X, Li ZH. Effects of short-term exposure to tralopyril on physiological indexes and endocrine function in turbot (Scophthalmus maximus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106118. [PMID: 35176693 DOI: 10.1016/j.aquatox.2022.106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Tralopyril is an emerging marine antifouling agent with potential toxic effects on non-target aquatic organisms. To evaluate the toxicity of tralopyril, to turbot (Scophthalmus maximus), we assessed biomarkers, including oxidative stress, neurotoxicity, and osmotic homeostasis regulation enzymes, after a 7-day exposure to tralopyril (5 μg/L, 15 μg/L, 30 μg/L). Superoxide dismutase activity was significantly decreased at 30 μg/L, and Ca2+-Mg2+-ATPase activity in the gills was significantly increased at 15 μg/L and 30 μg/L. No statistically significant differences in the responses of acetylcholinesterase and nitric oxide were detected. In addition, 15 μg/L and 30 μg/L tralopyril induced hyperthyroidism, reflected by significantly increased of T3 levels. The expression levels of hypothalamus-pituitary-thyroid axis-related genes were also upregulated. The molecular docking results showed that the thyroid system disruption was not caused by competitive binding to the receptor. In addition, the integrated biomarker response index showed that 15 μg/L tralopyril had the greatest effect on turbot. In general, tralopyril caused oxidative damage, affected energy metabolism, and interfered with the endocrine system. These findings could provide reference data for assessing the ecological risk of tralopyril in marine environments.
Collapse
Affiliation(s)
- Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
25
|
Gao Z, Zhou J, Xue M, Liu S, Guo J, Zhang Y, Cao C, Wang T, Zhu L. Theoretical and experimental insights into the mechanisms of C6/C6 PFPiA degradation by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127522. [PMID: 34879517 DOI: 10.1016/j.jhazmat.2021.127522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/22/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
As an emerging alternative legacy perfluoroalkyl substance, C6/C6 PFPiA (perfluoroalkyl phosphinic acids) has been detected in aquatic environments and causes potential risks to human health. The degradation mechanisms of C6/C6 PFPiA in a dielectric barrier discharge (DBD) plasma system were explored using validated experimental data and density functional theory (DFT) calculations. Approximately 94.5% of C6/C6 PFPiA was degraded by plasma treatment within 15 min at 18 kV. A relatively higher discharge voltage and alkaline conditions favored its degradation. C6/C6 PFPiA degradation was attributed to attacks of •OH, •O2-, and 1O2. Besides PFHxPA and C2 -C6 shorter-chain perfluorocarboxylic acids, several other major intermediates including C4/C6 PFPiA, C4/C4 PFPiA, and C3/C3 PFPiA were identified. According to DFT calculations, the potential energy surface was proposed for possible reactions during C6/C6 PFPiA degradation in the discharge plasma system. Integrating the identified intermediates and DFT results, C6/C6 PFPiA degradation was deduced to occur by stepwise losing CF2, free radical polymerization, and C-C bond cleavage. Furthermore, the DBD plasma treatment process decreased the toxicity of C6/C6 PFPiA to some extent. This study provides a comprehensive understanding of C6/C6 PFPiA degradation by plasma advanced oxidation.
Collapse
Affiliation(s)
- Zhuo Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mingming Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jia Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chunshuai Cao
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
26
|
Liang J, Yang X, Liu QS, Sun Z, Ren Z, Wang X, Zhang Q, Ren X, Liu X, Zhou Q, Jiang G. Assessment of Thyroid Endocrine Disruption Effects of Parabens Using In Vivo, In Vitro, and In Silico Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:460-469. [PMID: 34930008 DOI: 10.1021/acs.est.1c06562] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The extensive applications of parabens in foods, drugs, and cosmetics cause inevitable exposure to humans. Revealing the developmental toxicity of parabens is of utmost importance regarding their safety evaluation. In this study, the effects of four commonly used parabens, including methyl paraben (20 ∼ 200 μM), ethyl paraben (20 ∼ 100 μM), propyl paraben (5 ∼ 20 μM), and butyl paraben (BuP, 2 ∼ 10 μM), were investigated on the early development of zebrafish embryos and larvae. The underlying mechanisms were explored from the aspect of their disturbance in the thyroid endocrine system using in vivo, in vitro, and in silico assays. Paraben exposure caused deleterious effects on the early development of zebrafish, with BuP displaying the highest toxicity among all, resulting in the exposure concentration-related mortality, decreased hatching rate, reduced body length, lowered heart rate, and the incidence of malformation. Further investigation showed that paraben exposure reduced thyroid hormone levels and disturbed the transcriptional expressions of the target genes in the hypothalamic-pituitary-thyroid axis. Molecular docking analysis combined with in vitro GH3 cell proliferation assay testified that all test parabens exhibited thyroid receptor agonistic activities. The findings confirmed the developmental toxicity of the test parabens and their thyroid endocrine disruption effects, providing substantial evidence on the safety control of paraben-based preservatives.
Collapse
Affiliation(s)
- Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, P. R. China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiuchang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
28
|
Qiu Y, Yu K, Yu X, Yi X, Cai K, Li H, Xu S, Wang W, Huang L. Long-term low-dose oxytetracycline potentially leads to neurobehavioural changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112546. [PMID: 34330038 DOI: 10.1016/j.ecoenv.2021.112546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/07/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Trace levels of oxytetracycline (OTC)-a veterinary antibiotic and feed additive-are widespread in the environment. Studies revealed that OTC potentially impairs thyroid function, which may affect neurobehaviour; however, the impact of exposure to environmental concentrations of OTC on adult neurobehaviour is unknown. In this study, the effects of OTC on zebrafish after 30-day exposure were investigated. The total swimming distance was significantly increased under vibration and light/dark stimulation, while time spent in the white area was prolonged during the black/white preference test, indicating that the zebrafish became bolder and more impulsive under low OTC exposure. Additionally, monoamine neurotransmitter (5-hydroxytryptamine, dopamine, norepinephrine) levels were decreased and gene expression of monoamine oxidase (mao) involved in neurotransmitter metabolism was upregulated at the transcription level after OTC exposure. Because triiodothyronine (T3) levels were enhanced following exposure to OTC, we speculated that T3 may mediate OTC damage to the nervous system. Our simulated molecular docking analysis showed that OTC combined with the sodium iodide cotransporter protein may result in excessive T3 synthesis. We further exposed zebrafish to T3, and they exhibited similar behaviour to the OTC exposure group. In conclusion, environmental OTC may activate monoamine oxidase and enhance the metabolism of monoaminergic neurotransmitters via T3, thereby inducing abnormal neurobehaviour.
Collapse
Affiliation(s)
- Yushu Qiu
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kan Yu
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kang Cai
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huajun Li
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shanshan Xu
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Weiye Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Lisu Huang
- Department of Infectious Disease, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
29
|
Guo J, Zhang J, Wang Z, Zhang L, Qi X, Zhang Y, Chang X, Wu C, Zhou Z. Umbilical cord serum perfluoroalkyl substance mixtures in relation to thyroid function of newborns: Findings from Sheyang Mini Birth Cohort Study. CHEMOSPHERE 2021; 273:129664. [PMID: 33493812 DOI: 10.1016/j.chemosphere.2021.129664] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The epidemiological evidence on the associations between prenatal exposure to perfluoroalkyl substances (PFAS) and thyroid hormones in newborns was inconclusive. OBJECTIVES We aimed to estimate associations of fetal exposure to PFAS individually and in mixtures with thyroid function of newborns. METHODS A total of 490 mother-newborn pairs were included from Sheyang Mini Birth Cohort Study (SMBCS), a prospective cohort that recruited between June 2009 and January 2010. 12 PFAS and 7 thyroid function indicators were quantified in umbilical cord serum. We examined associations of prenatal exposure to individual and a mixture of PFAS with thyroid function indicators using multivariable linear regression and weighted quantile sum (WQS) regression models with adjustment for potential confounders, respectively. RESULTS Higher cord serum concentrations of PFAS mixtures were related to increases in TT4 and FT4 levels, and reductions in TSH concentrations of newborns. Combining single-chemical models with multiple-chemical models, PFOS, PFNA and PFUnDA were associated with increased TT4 levels with contributing to the mixture effects of 46.4%, 22.8%, and 16.7%, respectively. PFOS exposure was in positive association with cord serum FT4 concentrations and contributed 28.9% to the joint effects of mixtures. PFNA and PFHpA were the most important contributors to the decreases of TSH levels of newborns with 46.3% and 45.0% among the mixtures, respectively. CONCLUSIONS The current findings indicated the thyroid disruption of individual PFAS and their mixtures in cord serum. Additional studies are warranted to explore the underlying biological mechanisms, particularly for PFAS mixtures.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Yubin Zhang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiuli Chang
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health, Key Laboratory of Public Health Safety of Ministry of Education, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
30
|
Szabo D, Lavers JL, Shimeta J, Green MP, Mulder RA, Clarke BO. Correlations between Per- and Polyfluoroalkyl Substances and Body Morphometrics in Fledgling Shearwaters Impacted by Plastic Consumption from a Remote Pacific Island. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:799-810. [PMID: 33170512 DOI: 10.1002/etc.4924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
We investigated the concentrations of 45 per- and polyfluoroalkyl substances (PFASs) in fledgling flesh-footed shearwater (Ardenna carneipes; n = 33) and wedge-tailed shearwater (A. pacifica; n = 9) livers via liquid chromatography-tandem mass spectrometry and their relationship to body morphometrics and ingested plastic mass recorded in 2019 on Lord Howe Island (NSW, Australia). Sixteen PFASs were detected, of which perfluorooctanesulfonate (PFOS) was the dominant compound, detected in 100% of birds (1.34-13.4 ng/g wet wt). Long-chain perfluorocarboxylic acids, including perfluorodecanoic acid (PFDA; <0.04-0.79 ng/g wet wt) and perfluorotridecanoic acid (PFTrDA; <0.05-1.6 ng/g wet wt) were detected in >50% of birds. There was a positive correlation between PFDA and PFTrDA concentrations and wing chord length (Rs = 0.36, p = 0.0204; Rs = 0.44, p = 0.0037, respectively), and between PFDA concentrations and total body mass (Rs = 0.33, p = 0.032), suggesting that these compounds may impact shearwater fledgling morphometrics. Plastic was present in the intestinal tract of 79% of individuals (<7.6 g), although there was no correlation between PFAS concentrations and plastic mass, indicating that ingested plastic is not the likely primary exposure source. The widespread occurrence of PFASs in fledgling marine birds from a relatively pristine location in the Southern Hemisphere suggests that further studies in adult shearwaters and other marine birds are warranted to investigate whether there are any long-term physiological effects on bird species. Environ Toxicol Chem 2021;40:799-810. © 2020 SETAC.
Collapse
Affiliation(s)
- Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia
| | - Jeff Shimeta
- School of Science, RMIT University, Victoria, Australia
| | - Mark P Green
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Raoul A Mulder
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, Australia
| |
Collapse
|
31
|
Qiao K, Hu T, Jiang Y, Huang J, Hu J, Gui W, Ye Q, Li S, Zhu G. Crosstalk of cholinergic pathway on thyroid disrupting effects of the insecticide chlorpyrifos in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143769. [PMID: 33221011 DOI: 10.1016/j.scitotenv.2020.143769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Chlorpyrifos is a widely used organophosphate insecticide and ubiquitously detected in the environment. However, little attention has been paid to its endocrine disrupting effect to non-target organisms. In the present study, zebrafish was exposed to 13 and 65 μg/L of chlorpyrifos for 7 and 10 days to determine the induced neurotoxicity and the alteration of thyroid metabolism. The 120 h LC50 and LC10 of chlorpyrifos was estimated as 1.35 mg/L and 0.62 mg/L based on the acute embryo toxicity assay, respectively. The acetylcholinesterase (AChE) inhibitory was detected by 13 μg/L chlorpyrifos and could be reversed by the co-exposure of 100 and 1000 μg/L anticholinergic agent atropine. For thyroid hormone level, 13 and 65 μg/L of chlorpyrifos induced increased free T3 levels in 10 dpf (days post-fertilization). The expression of thyroid related genes in 7 and 10 dpf exposed zebrafish were measured by the quantitative Real-Time PCR (qRT-PCR) assay. The mRNA expression of tshba, thrb, crhb, ttr, tpo, ugt1ab and slc5a5 had significant change. However, the alterations of thyroid hormone and mRNA expression could be partly rescued by the addition of atropine. The molecular docking of chlorpyrifos and T3 to the thyroid receptor β in zebrafish using homology modelling and CDOCKER procedures shown weaker binding ability of chlorpyrifos compared to T3. Therefore, we concluded that the disturbance of thyroid signaling in zebrafish might arise from the developmental neurotoxicity induced by chlorpyrifos.
Collapse
Affiliation(s)
- Kun Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Yao Jiang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Jianping Huang
- Zhejiang Haotian Testing Technology Service Co., Ltd., Zhejiang, Hangzhou 311121, PR China
| | - Jingjin Hu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Wenjun Gui
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
32
|
Wang Y, Lv L, Xu C, Wang D, Yang G, Wang X, Weng H, Wang Q. Mixture toxicity of thiophanate-methyl and fenvalerate to embryonic zebrafish (Danio rerio) and its underlying mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143754. [PMID: 33302067 DOI: 10.1016/j.scitotenv.2020.143754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/08/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Though pesticide mixtures can reflect the real-life situation in the water ecosystem, the quantification of their toxicity is still not fully understood. Combined effects of thiophanate-methyl (THM) and fenvalerate (FEN) on embryonic zebrafish (Danio rerio) and underlying mechanism were conducted in this study. Results showed that the 96-h LC50 values of THM to D. rerio at different growth periods ranged from 12.1 to 26.1 mg L-1, which were lower in comparison with those of FVR ranging from 0.025 to 2.8 mg L-1. Mixture of THM and FVR exhibited a synergetic response to zebrafish embryos. Activities of Cu/Zn-SOD, POD, caspase 3 and caspase 9 were significantly different in most of single and mixture administrations compared with the control group. In addition, five genes (P53, Cu/Zn-sod, crh, ERα and IL-8) associated with oxidative stress, cellular apoptosis, immune system and endocrine system showed greater variations of expressions when administrated to pesticide mixtures compared with single chemicals. Our experimental results exhibited that mixtures of thiophanate-methyl and fenvalerate produced higher toxicity towards aqueous vertebrates than when determined singly. Collectively, upcoming environmental risk assessments established according to single administrations might not be enough to protect the water ecosystem.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
33
|
Wang Y, Yang G, Shen W, Xu C, Di S, Wang D, Li X, Wang X, Wang Q. Synergistic effect of fenpropathrin and paclobutrazol on early life stages of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115067. [PMID: 32629307 DOI: 10.1016/j.envpol.2020.115067] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 05/24/2023]
Abstract
Aquatic organisms are usually exposed to various co-existing pollutants. However, toxic effects of pesticide mixtures on aquatic organisms and its potential underlying mechanism still remain unclear. The joint effects of fenpropathrin (FEN) and paclobutrazol (PAC) on zebrafish (Danio rerio) using diverse toxicological endpoints were investigated in the current work. Our data exhibited that the 96-h LC50 values of FEN to zebrafish at multiple life phases ranged from 0.0029 (0.0013-0.0042) to 0.16 (0.082-0.23) mg a.i. L-1, which were lower by comparison to PAC ranging from 13.16 (8.564-21.03) to 23.43 (17.94-29.91) mg a.i. L-1. Combination of FEN and PAC displayed synergistic effect on embryonic zebrafish. Activities of T-SOD, Cu/Zn-SOD and CYP450 were remarkably changed in the majority of single and mixture treatments by comparison to the untreated group. The mRNA levels of 17 genes related to oxidative stress, cellular apoptosis, immune system and endocrine system were assessed, and the data suggested that embryonic zebrafish were affected by both single pesticides and their mixtures. Five genes (P53, tsh, ERα, crh and cxcl-clc) showed greater alterations when exposed to pesticide mixtures by comparison to their individual chemicals. Therefore, it is urgently necessary to conduct more studies on mixture toxicities of different pesticides to explore the chemical mixtures with synergistic interactions.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Weifeng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products / Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture / Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
34
|
Yu K, Li X, Qiu Y, Zeng X, Yu X, Wang W, Yi X, Huang L. Low-dose effects on thyroid disruption in zebrafish by long-term exposure to oxytetracycline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105608. [PMID: 32858424 DOI: 10.1016/j.aquatox.2020.105608] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
As a feed additive in agriculture, the antibiotic oxytetracycline (OTC) has become widely distributed in the natural environment, leading to the exposure of many organisms to low doses of OTC. Although OTC is clinically contraindicated in children because of its multiple side effects, the effect of exposure to low doses of environmental OTC on children is unknown, particularly during development. In this study, we investigated the effects of OTC on the thyroid endocrine system in zebrafish, through determinations of the whole-body contents of triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) by enzyme-linked immunosorbent assay, and analysis of the mRNA expression of regulatory genes involved in the hypothalamus-pituitary-thyroid (HPT) axis using quantitative real-time polymerase chain reaction. Zebrafish embryos were exposed to OTC at environmentally relevant concentrations from 2 h to 120 days post-fertilisation. After exposure to OTC at 1,000 and 5,000 ng/L, T3 contents were significantly enhanced (37.8% and 45.1%, respectively) and TSH contents were reduced (16% and 16.3%, respectively) compared with those in the controls. The OTC-driven increase in the transcription of genes involved in thyroid synthesis (tpo and nis) may be responsible for the altered T3 levels. These data indicate that OTC may cause thyroid dysfunction and lead to reduced TSH secretion owing to enhanced negative feedback control of the HPT axis. Meanwhile, a decrease in body length, weight, and BMI and an increase in heart rate were observed with increasing OTC exposure. In conclusion, our results indicate that long-term exposure to low concentrations of OTC may alter the transcription of key genes involved in the HPT axis, as well as T3 and TSH contents, thereby disrupting the thyroid system and affecting the growth and development of zebrafish.
Collapse
Affiliation(s)
- Kan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yushu Qiu
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinxin Zeng
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaogang Yu
- Municipal Key Lab of Environment and Children's Health, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiye Wang
- Municipal Key Lab of Environment and Children's Health, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lisu Huang
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Kim S, Stroski KM, Killeen G, Smitherman C, Simcik MF, Brooks BW. 8:8 Perfluoroalkyl phosphinic acid affects neurobehavioral development, thyroid disruption, and DNA methylation in developing zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139600. [PMID: 32474277 DOI: 10.1016/j.scitotenv.2020.139600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Recent studies have reported potential neurotoxicity and epigenetic alteration associated with exposure to several per- and polyfluoroalkyl substances (PFASs). However, such information is limited to a few compounds (e.g., perfluorooctane sulfonate), primarily based on rodent experiments, and the underlying toxicological mechanism(s) for many PFAS in the environment remain poorly understood. In the present study, we investigated 8:8 perfluoroalkyl phosphinic acid (8:8 PFPiA), an under-studied PFAS with high persistency in the environment and biota, using the zebrafish model. We exposed zebrafish embryos (<4 hpf) to various concentrations of 8:8 PFPiA (0, 0.0116, 0.112, 0.343, 1.34, 5.79 μM) for 144 h. Although there was no significant change in survival, hatchability and malformations, zebrafish locomotor speed at 120 h significantly decreased in dark photoperiod. At 144 h, several genes related to thyroid hormones that are essential for neurodevelopment, including corticotropin releasing hormone b (crhb), iodothyronine deiodinase 3a (dio3a), thyroid-stimulating hormone receptor (tshr) and nkx2 homeobox1 (nkx 2.1), were up-regulated by 8:8 PFPiA at 5.79 μM. 8:8 PFPiA also significantly down-regulated a neurodevelopmental gene, elav like neuron-specific RNA binding protein (elavl3), at 1.34 and 5.79 μM; in addition, one oxidative stress gene was slightly but significantly up-regulated. Further, global DNA methylation was significantly decreased at higher treatment levels, identifying effects of 8:8 PFPiA on epigenetic regulation. However, promoter DNA methylation of selected genes (dio3, tshr, nkx2.1) were not statistically altered, though dio3 methylation showed a decreasing trend with 8:8 PFPiA exposure. Our results specifically advance an understanding of molecular toxicology of PFPiA and more broadly present an approach to define diverse responses during animal alternative assessments of PFASs.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA
| | - Kevin M Stroski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA
| | - Grace Killeen
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA
| | | | - Matt F Simcik
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76706, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76706, USA.
| |
Collapse
|
36
|
Zhou W, Wang J, Zhang J, Peng C, Li G, Li D. Environmentally relevant concentrations of geosmin affect the development, oxidative stress, apoptosis and endocrine disruption of embryo-larval zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139373. [PMID: 32473435 DOI: 10.1016/j.scitotenv.2020.139373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Geosmin (trans-1, 10-dimethyl-trans-9-decalol), a volatile organic compound, has been widely detected in aquatic ecosystems. However, the ecological effects of geosmin are not clear. Here, using zebrafish (Danio rerio) embryo as a model, we investigated biological activity effects of environmentally relevant concentrations (50, 500, 5000 ng/L) of geosmin on the developing zebrafish starting from 2 h post-fertilization (hpf) to 96 hpf. Results showed geosmin had no effect on hatchability, malformations and mortality. However, we observed that geosmin exposure significantly increased zebrafish body length in a concentration dependent manner. This effect was possibly due to up-regulation of expression of genes along the growth hormone/insulin-like growth factor (GH/IGF) axis and hypothalamic-pituitary-thyroid (HPT) axis. In addition, superoxide dismutase (SOD) activities and catalase (CAT) activities significantly increased at 96 hpf when the embryos were exposed to 500 and 5000 ng/L of geosmin. The malondialdehyde (MDA) contents and glutathione S-transferase (GST) activities decreased significantly after the exposure to 5000 ng/L geosmin. Simultaneously, exposure to geosmin resulted in significant increase in cell apoptosis, mainly in the heart area. The mRNA levels of the genes related to oxidative stress and apoptosis were also altered significantly after geosmin exposure. These findings indicated that geosmin can simultaneously induce multiple responses during zebrafish embryonic development, including oxidative stress, apoptosis, and endocrine disruption.
Collapse
Affiliation(s)
- Weicheng Zhou
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; College of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou 423000, PR China
| | - Jinglong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinli Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Genbao Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
37
|
Tian J, Hu J, He W, Zhou L, Huang Y. Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108782. [PMID: 32339758 DOI: 10.1016/j.cbpc.2020.108782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Cadmium is a common heavy metal pollutant. Previous studies have found that long-term cadmium exposure can cause damage to multiple organs/systems in humans and experimental animals; however, there are few studies that elucidate its effects on offspring development, discuss whether it can be transmitted to offspring from the parent, and debate whether it affects the functional development of the thyroid hormone system in offsprings. In this study, sexually mature zebrafish were exposed to different concentrations of cadmium chloride (0.01 μmol/L, 0.1 μmol/L, and 1 μmol/L) to study reproductive toxicity. It was found that parental zebrafish exposed to 1 μmol/L of cadmium chloride produced offsprings with different degrees of malformation. At 5 days post-fertilization (dpf), the levels of 3,5,3'-triiododenosine (T3) and thyroxine (T4) in the zebrafish were decreased. At 10 dpf, the T4 and T3 levels in the zebrafish of the offspring were significantly reduced. At the same time, the expression of thyroid receptor (trα and trβ) genes in five dpf larvae was significantly up-regulated in the 1 μmol/L treatment group relative to the control group. The mRNAs of thyroid hormone synthesis and metabolism-related genes (tshβ, dio1, dio2, ugt1ab, and ttr) were significantly up-regulated in the 0.1 μmol/L and 1 μmol/L treatment groups. This study demonstrates that parental cadmium chloride exposure produces reproductive toxicity in zebrafish and that the effects can be transferred from the parent to the offspring, resulting in developmental toxicity in the thyroid endocrine system.
Collapse
Affiliation(s)
- Jingjing Tian
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, PR China
| | - Lianqun Zhou
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China; CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| | - Yinong Huang
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi 710003, PR China.
| |
Collapse
|
38
|
Liu M, Dong F, Yi S, Zhu Y, Zhou J, Sun B, Shan G, Feng J, Zhu L. Probing Mechanisms for the Tissue-Specific Distribution and Biotransformation of Perfluoroalkyl Phosphinic Acids in Common Carp ( Cyprinus carpio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4932-4941. [PMID: 32202099 DOI: 10.1021/acs.est.0c00359] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study investigated the tissue-specific accumulation and biotransformation of 6:6 and 8:8 perfluoroalkyl phosphinic acids (PFPiA) in common carp (Cyprinus carpio) during 90 d exposure and 30 d depuration in water in the laboratory. Both 6:6 and 8:8 PFPiAs could quickly accumulate in the carp, and 6:6 PFPiA displayed higher bioaccumulation potential than 8:8 PFPiA. The highest concentrations of PFPiAs were observed in the blood, while the lowest were found in the muscle. The equilibrium dialysis experiment indicated that both PFPiAs had higher binding affinities with the proteins in the fish serum than in liver, which was supported by the molecular docking analysis. The results also indicated that 6:6 PFPiA had higher binding affinities with the serum and liver proteins than 8:8 PFPiA. These results suggested that the tissue-specific distribution of PFPiAs was highly dependent on the binding affinities with the specific proteins. Both in vivo and in vitro experiments consistently indicated that PFPiAs experienced biotransformation and produced perfluoroalkyl phosphonic acids (PFPAs), and biotransformation of 8:8 PFPiA was more active than 6:6 PFPiA. It was worth noting that perfluorohexanonate and perfluorooctanoic acids were identified in fish as metabolites after long-term exposure to PFPiAs for the first time.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Fengfeng Dong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shanxi 712100, P. R. China
| | - Binbin Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
39
|
Zhou J, Li M, Li J, Shao Z, Liu Y, Wang T, Zhu L. Bioavailability and Bioaccumulation of 6:2 Fluorotelomer Sulfonate, 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonates, and Perfluorophosphinates in a Soil-Plant System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4325-4334. [PMID: 32208655 DOI: 10.1021/acs.jafc.0c00542] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As emerging alternatives of legacy perfluoroalkyl substances, 6:2 fluorotelomer sulfonate (6:2 FTS), 6:2 chlorinated polyfluoroalkyl ether sulfonates (6:2 Cl-PFESA), and perfluorophosphinates (C6/C6 and C8/C8 PFPiAs) are supposed to be partitioned to soil and highly persistent in the environment. The uptake of novel per- and polyfluoroalkyl substances (PFASs) by plants represents a potential pathway for their transfer in the food chain. In this study, the bioavailability of these four novel PFASs in soil and the bioaccumulation characteristics in greenhouse-grown wheat (Triticum aestivum L.), maize (Zea mays L.), soybean (Glycine max L. Merrill), and pumpkin (Cucurbita maxima L.) were investigated. The results indicated that these novel PFASs with higher hydrophobicity were more easily sequestrated in soil, and the fractions extracted by methanol could well describe their bioavailability, which could be stimulated by low-molecular-weight organic acids at rhizospheric concentrations. A negative relationship was found between root soil concentration factors (RSCFs) and hydrophobicity (log Kow) of the target PFASs. This correlation was also found in the translocation factors (TF) from roots to shoots. Furthermore, the uptake and transfer of the target PFASs were regulated by the protein contents in plant roots and shoots.
Collapse
Affiliation(s)
- Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
| | - Min Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
| | - Jiaqian Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
| | - Zixuan Shao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
| | - Yiman Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
40
|
Zhou J, Yang Z, Liu Q, Liu Y, Liu M, Wang T, Zhu L. Insights into Uptake, Translocation, and Transformation Mechanisms of Perfluorophosphinates and Perfluorophosphonates in Wheat ( Triticum aestivum L.). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:276-285. [PMID: 31795634 DOI: 10.1021/acs.est.9b05656] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As emerging alternatives of legacy perfluoroalkyl substances, perfluorophosphinates (PFPiAs) and perfluorophosphonates (PFPAs) are widely applied in industrial and agricultural fields and are supposed to be large partitioned to soil and highly persistent. It is of particular interest to understand their transfer from roots to shoots and transformation in plants, such as wheat. The results of hydroponic experiments indicated that C6/C6 PFPiA, C8/C8 PFPiA, perfluorooctanophosphonic acid (PFOPA), and perfluorohexaphosphonic acid (PFHxPA) were quickly adsorbed on the epidermis of wheat root (Triticum aestivum L.), which was driven by their hydrophobicity. A small fraction of the accumulated PFPiAs and PFPAs in the wheat root was subjected to absorption via an active process dependent on H+-ATPase. PFHxPA, which has the smallest molecular weight and medium hydrophilicity (log Kow < 4), displayed the strongest absorption efficiency via the water and anion channels and had the highest translocation potential from roots to shoots in wheat. C6/C6 and C8/C8 PFPiAs experienced phase I metabolism in wheat, although at a low rate, to form more persistent PFHxPA and PFOPA, respectively, as well as 1H-perfluorohexane (1H-PFHx) and 1H-perfluorooctane (1H-PFO), which were regulated by cytochrome P450 in wheat root. As a result, exposure to PFPiAs in roots ultimately caused the accumulation of more persistent PFPAs in the above-ground parts of plants, raising concerns on their potential risks on human health.
Collapse
Affiliation(s)
- Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Zhengshuang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qing Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Yiman Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, No. 3 Taicheng Road, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
41
|
Wu L, Ru H, Ni Z, Zhang X, Xie H, Yao F, Zhang H, Li Y, Zhong L. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105280. [PMID: 31518776 DOI: 10.1016/j.aquatox.2019.105280] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
1,1-Trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p'-DDT) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) cause thyroid disruption, but the underlying mechanisms of these disturbances in fish remain unclear. To explore the potential mechanisms of thyroid dysfunction caused by o,p'-DDT and p,p'-DDE, thyroid hormone and gene expression levels in the hypothalamic-pituitary-thyroid (HPT) axis were measured, and the developmental toxicity were recorded in zebrafish larvae. Zebrafish embryos/larvae were exposed to o,p'-DDT (0, 0.28, 2.8, and 28 nM; or 0, 0.1, 1, and 10 μg/L) and p,p'-DDE (0, 1.57, 15.7, and 157 nM; or 0, 0.5, 5, and 50 μg/L) for 7 days. The genes related to thyroid hormone synthesis (crh, tshβ, tg, nis and tpo) and thyroid development (nkx2.1 and pax8) were up-regulated in both the o,p'-DDT and p,p'-DDE exposure groups. Zebrafish embryos/larvae exposed to o,p'-DDT showed significantly increased total whole-body T4 and T3 levels, with the expression of ugt1ab and dio3 being significantly down-regulated. However, the p,p'-DDE exposure groups showed significantly lowered whole-body total T4 and T3 levels, which were associated with up-regulation and down-regulation expression of the expression of dio2 and ugt1ab, respectively. Interestingly, the ratio of T3 to T4 was significantly decreased in the o,p'-DDT (28 nM) and p,p'-DDE (157 nM) exposure groups, suggesting an impairment of thyroid function. In addition, reduced survival rates and body lengths and increased malformation rates were recorded after treatment with either o,p'-DDT or p,p'-DDE. In summary, our study indicates that the disruption of thyroid states was different in response to o,p'-DDT and p,p'-DDE exposure in zebrafish larvae.
Collapse
Affiliation(s)
- Luyin Wu
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huaxiao Xie
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhang
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Yunfeng Li
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Liqiao Zhong
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|