1
|
Jing XZ, Li HR, Di Z, Liu QX, Li CP. Scavenging Radionuclide by Shapeable Porous Materials. Chempluschem 2024:e202400364. [PMID: 38978154 DOI: 10.1002/cplu.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide ions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide ions, including UO2 2+, TcO4 -, IO3 -, SeO3 2-, and SeO4 2-.
Collapse
Affiliation(s)
- Xue-Zhuo Jing
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Hai-Ruo Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Zhengyi Di
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Qing-Xiang Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Cheng-Peng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
2
|
Elmekawy A, Quach Q, Abdel-Fattah TM. Synthesis and Characterization of Silver-Modified Nanoporous Silica Materials for Enhanced Iodine Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1143. [PMID: 38998748 PMCID: PMC11243725 DOI: 10.3390/nano14131143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
In aquatic environments, the presence of iodine species, including radioactive isotopes like 129I and I2, poses significant environmental and health concerns. Iodine can enter water resources from various sources, including nuclear accidents, medical procedures, and natural occurrences. To address this issue, the use of natural occurring nanoporous minerals, such as zeolitic materials, for iodine removal will be explored. This study focuses on the adsorption of iodine by silver-modified zeolites (13X-Ag, 5A-Ag, Chabazite-Ag, and Clinoptilolite-Ag) and evaluates their performance under different conditions. All materials were characterized using scanning electron microscopey (SEM), energy-dispersive X-ray spectroscopy (EDS), powdered X-ray diffraction (P-XRD), Fourier-transform infrared spectrometry (FTIR), and nitrogen adsorption studies. The results indicate that Chabazite-Ag exhibited the highest iodine adsorption capacity, with an impressive 769 mg/g, making it a viable option for iodine removal applications. 13X-Ag and 5A-Ag also demonstrated substantial adsorption capacities of 714 mg/g and 556 mg/g, respectively, though their behavior varied according to different models. In contrast, Clinoptilolite-Ag exhibited strong pH-dependent behavior, rendering it less suitable for neutral to slightly acidic conditions. Furthermore, this study explored the impact of ionic strength on iodine adsorption, revealing that Chabazite-Ag is efficient in low-salinity environments with an iodine adsorption capacity of 51.80 mg/g but less effective in saline conditions. 5A-Ag proved to be a versatile option for various water treatments, maintaining its iodine adsorption capacity across different salinity levels. In contrast, Clinoptilolite-Ag exhibited high sensitivity to ionic competition, virtually losing its iodine adsorption ability at a NaCl concentration of 0.1 M. Kinetic studies indicated that the pseudo-second-order model best describes the adsorption process, suggesting chemisorption mechanisms dominate iodine removal. Chabazite-Ag exhibited the highest initial adsorption rate with a k2 value of 0.002 mg g-1 h-1, emphasizing its superior adsorption capabilities. Chabazite and Clinoptilolite, naturally occurring minerals, provide eco-friendly solutions for iodine adsorption. Chabazite superior iodine removal highlights its value in critical applications and its potential for addressing pressing environmental challenges.
Collapse
Affiliation(s)
- Ahmed Elmekawy
- Department of Physics, Tanta University, Tanta 31527, Egypt
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Qui Quach
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Tarek M Abdel-Fattah
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| |
Collapse
|
3
|
El-Khatib AM, Bondouk II, Omar KM, Hamdy A, Abbas MI, El-Khatib M, Hammoury SI, Gouda MM. Impact of (nano ZnO/multi-wall CNTs) prepared by arc discharge method on the removal efficiency of stable iodine 127I and radioactive iodine 131I from water. Sci Rep 2024; 14:4242. [PMID: 38378858 PMCID: PMC10879082 DOI: 10.1038/s41598-024-54604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
Radioactive iodine isotopes especially 131I are used for diagnosis and treatment of different types of cancer diseases. Due to the leak of radioactive iodine into the patient's urine in turn, the wastewater would be contaminated, so it is worth preparing a novel adsorption green material to remove the radioactive iodine from wastewater efficiently. The removal of 127I and 131I contaminants from aqueous solution is a problem of interest. Therefore, this work presents a new study for removing the stable iodine 127I- and radioactive iodine 131I from aqueous solutions by using the novel nano adsorbent (Nano ZnO/MWCNTs) which is synthesized by the arc discharge method. It is an economic method for treating contaminated water from undesired dissolved iodine isotopes. The optimal conditions for maximum removal are (5 mg/100 ml) as optimum dose with shacking (200 rpm) for contact time of (60 min), at (25 °C) in an acidic medium of (pH = 5). After the adsorption process, the solution is filtrated and the residual iodide (127I-) is measured at a maximum UV wavelength absorbance of 225 nm. The maximum adsorption capacity is (15.25 mg/g); therefore the prepared nano adsorbent (Nano ZnO/MWCNTs) is suitable for treating polluted water from low iodide concentrations. The adsorption mechanism of 127I- on to the surface of (Nano ZnO/MWCNTs) is multilayer physical adsorption according to Freundlich isotherm model and obeys the Pseudo-first order kinetic model. According to Temkin isotherm model the adsorption is exothermic. The removal efficiency of Nano ZnO/MWCNTs for stable iodine (127I-) from aqueous solutions has reached 97.23%, 89.75%, and 64.78% in case of initial concentrations; 0.1843 ppm, 0.5014 ppm and 1.0331 ppm, respectively. For the prepared radio iodine (131I-) solution of radioactivity (20 µCi), the dose of nano adsorbent was (10 mg/100 ml) and the contact time was (60 min) at (pH = 5) with shacking (200 rpm) at (25 °C). The filtration process was done by using a syringe filter of a pore size (450 nm) after 2 days to equilibrate. The removal efficiency reached (34.16%) after the first cycle of treatment and the percentage of residual radio iodine was (65.86%). The removal efficiency reached (94.76%) after five cycles of treatment and the percentage of residual radio iodine was (5.24%). This last percentage was less than (42.15%) which produces due to the natural decay during 10 days.
Collapse
Affiliation(s)
- Ahmed M El-Khatib
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - I I Bondouk
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Kh M Omar
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed Hamdy
- Obtained Philosophy Doctoral Degree in Nuclear Physics, Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud I Abbas
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - M El-Khatib
- Basic Sciences Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
| | - Sabbah I Hammoury
- Head of Medical Physics and Radiotherapy Department, Alexandria Ayadi Almostakbal Oncology Hospital, Alexandria, Egypt
| | - Mona M Gouda
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
4
|
Mushtaq S, Husnain SM, Kazmi SAR, Abbas Y, Jeon J, Kim JY, Shahzad F. MXene/AgNW composite material for selective and efficient removal of radioactive cesium and iodine from water. Sci Rep 2023; 13:19696. [PMID: 37952015 PMCID: PMC10640589 DOI: 10.1038/s41598-023-47075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Toxic fission products, such as cesium (137Cs) and iodine (129I) are of great concern because of their long half-lives and high solubility in water. The simultaneous removal of Cs and I using a single adsorbent is an area of increasing interest. In this study, MXene/silver nanowire (AgNW) composite was synthesized through physical mixing and employed for simultaneous removal of iodide (I-) and cesium (Cs+) ions from contaminated water. The MXene/AgNW composite demonstrated excellent adsorption capacities of 84.70 and 26.22 mg/g for I- and Cs+, respectively. The experimental data supported the hypothesis of multilayer adsorption of Cs+ owing to the inter-lamellar structures and the presence of heterogeneous adsorption sites in MXene. The interaction between I- and the AgNW involved chemisorption followed by monolayer adsorption. MXene/AgNW composite material exhibited promising results in the presence of competitive ions under extreme pH conditions. Thus, synthesized composite materials holds promising potential as an adsorbent for the remediation of radioactive liquid waste.
Collapse
Affiliation(s)
- Sajid Mushtaq
- Division of RI-Applied Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Korea.
- Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad, 45650, Pakistan.
| | - Syed M Husnain
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650, Pakistan
| | - Syed Asad Raza Kazmi
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, 45650, Pakistan
| | - Yawar Abbas
- Department of Physics, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Jongho Jeon
- Department of Chemistry, Kyungpook National University, Daegu 80, Republic of Korea
| | - Jung Young Kim
- Division of RI-Applied Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, 01812, Korea
| | - Faisal Shahzad
- Department of Metallurgy and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, 45650, Pakistan.
- Research and Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
5
|
Patil SA, Rodríguez-Berríos RR, Chavez-Flores D, Wagle DV, Bugarin A. Recent Advances in the Removal of Radioactive Iodine and Iodide from the Environment. ACS ES&T WATER 2023; 3:2009-2023. [PMID: 37614778 PMCID: PMC10443936 DOI: 10.1021/acsestwater.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Iodine (I2) in the form of iodide ions (I-) is an essential chemical element in the human body. Iodine is a nonmetal that belongs to the VIIA group (halogens) in the periodic table. Over the last couple of centuries, the exponential growth of human society triggered by industrialization coincided with the use of iodine in a wide variety of applications, including chemical and biological processes. However, through these processes, the excess amount of iodine eventually ends up contaminating soil, underground water, and freshwater sources, which results in adverse effects. It enters the food chain and interferes with biological processes with serious physiological consequences in all living organisms, including humans. Existing removal techniques utilize different materials such as metal-organic frameworks, layered double hydroxides, ion-exchange resins, silver, polymers, bismuth, carbon, soil, MXenes, and magnetic-based materials. From our literature survey, it was clear that absorption techniques are the most frequently experimented with. In this Review, we have summarized current advancements in the removal of iodine and iodide from human-made contaminated aqueous waste.
Collapse
Affiliation(s)
- Siddappa A Patil
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States; Centre for Nano and Material Sciences, Jain University, Kanakapura 562112, India
| | - Raúl R Rodríguez-Berríos
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, United States
| | - David Chavez-Flores
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, México
| | - Durgesh V Wagle
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| | - Alejandro Bugarin
- Department of Chemistry & Physics, Florida Gulf Coast University, Fort Myers, Florida 33965, United States
| |
Collapse
|
6
|
Zhou X, Mao P, Jin H, Huang W, Gu A, Chen K, Yun S, Chen J, Yang Y. Cu/Al 2O 3 aerogels for high-efficiency and rapid iodide elimination from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130349. [PMID: 36370479 DOI: 10.1016/j.jhazmat.2022.130349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Cu-based functional materials are excellent candidates for the elimination of iodine anions. However, the low utilization rate of Cu and its unsatisfactory adsorption performance limit its large-scale practical applications. This paper proposes a co-gelation method to obtain Cu/Al2O3 aerogels with a high specific area (537 m2/g). Cu/Al2O3 aerogels have a hierarchical porous structure and contain a high proportion of Cu (20.5 wt%). The high dispersibility of Cu, which is based on an in-situ gel process, provides conditions for the high-efficiency elimination of iodide anions. We conducted adsorption experiments that demonstrated that the fabricated Cu/Al2O3 aerogel had an ultrahigh adsorption capacity (407.6 mg/g) and a fast adsorption equilibrium time (0.5 h) for iodide anions. Additionally, the Cu/Al2O3 aerogel could selectively capture iodine anions even in the presence of high concentrations of competing ions (NO3-, SO42-, and Cl- at 60 mmol/L). Importantly, the aerogel can operate in a wide pH range of 3-11 without causing secondary pollution. This work demonstrates that low-cost Cu/Al2O3 aerogels exhibit great potential for eliminating radioactive iodine anions.
Collapse
Affiliation(s)
- Xinyu Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Pin Mao
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Huiran Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China
| | - Wanxia Huang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Aotian Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kaiwei Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shan Yun
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jing Chen
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
7
|
Elgarahy AM, Al-Bogam AS, Akhdhar A, Khan ZA, Elwakeel KZ. Silver ions immobilized on thiourea/formaldehyde resin for solid phase extraction of iodide ions from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
8
|
Chakraborty A, Pal A, Saha BB. A Critical Review of the Removal of Radionuclides from Wastewater Employing Activated Carbon as an Adsorbent. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8818. [PMID: 36556624 PMCID: PMC9788631 DOI: 10.3390/ma15248818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Radionuclide-contaminated water is carcinogenic and poses numerous severe health risks and environmental dangers. The activated carbon (AC)-based adsorption technique has great potential for treating radionuclide-contaminated water due to its simple design, high efficiency, wide pH range, quickness, low cost and environmental friendliness. This critical review first provides a brief overview of the concerned radionuclides with their associated health hazards as well as different removal techniques and their efficacy of removing them. Following this overview, this study summarizes the surface characteristics and adsorption capabilities of AC derived from different biomass precursors. It compares the adsorption performance of AC to other adsorbents, such as zeolite, graphene, carbon nano-tubes and metal-organic frameworks. Furthermore, this study highlights the different factors that influence the physical characteristics of AC and adsorption capacity, including contact time, solution pH, initial concentration of radionuclides, the initial dosage of the adsorbent, and adsorption temperature. The theoretical models of adsorption isotherm and kinetics, along with their fitting parameter values for AC/radionuclide pairs, are also reviewed. Finally, the modification procedures of pristine AC, factors determining AC characteristics and the impact of modifying agents on the adsorption ability of AC are elucidated in this study; therefore, further research and development can be promoted for designing a highly efficient and practical adsorption-based radionuclide removal system.
Collapse
Affiliation(s)
- Anik Chakraborty
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Animesh Pal
- Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bidyut Baran Saha
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Robshaw TJ, Turner J, Tuck O, Pyke C, Kearney S, Simoni M, Sharrad CA, Walkley B, Ogden MD. Functionality screening to help design effective materials for radioiodine abatement. Front Chem 2022; 10:997147. [PMID: 36329859 PMCID: PMC9623042 DOI: 10.3389/fchem.2022.997147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
This paper is part of a growing body of research work looking at the synthesis of an optimal adsorbent for the capture and containment of aqueous radioiodine from nuclear fuel reprocessing waste. 32 metalated commercial ion exchange resins were subjected to a two-tier screening assessment for their capabilities in the uptake of iodide from aqueous solutions. The first stage determined that there was appreciable iodide capacity across the adsorbent range (12–220 mg·g−1). Candidates with loading capacities above 40 mg·g−1 were progressed to the second stage of testing, which was a fractional factorial experimental approach. The different adsorbents were treated as discrete variables and concentrations of iodide, co-contaminants and protons (pH) as continuous variables. This gave rise to a range of extreme conditions, which were representative of the industrial challenges of radioiodine abatement. Results were fitted to linear regression models, both for the whole dataset (R2 = 59%) and for individual materials (R2 = 18–82%). The overall model determined that iodide concentration, nitrate concentration, pH and interactions between these factors had significant influences on the uptake. From these results, the top six materials were selected for project progression, with others discounted due to either poor uptake or noticeable iodide salt precipitation behaviour. These candidates exhibited reasonable iodide uptake in most experimental conditions (average of >20 mg·g−1 hydrated mass), comparing favourably with literature values for metallated adsorbents. Ag-loaded Purolite S914 (thiourea functionality) was the overall best-performing material, although some salt precipitation was observed in basic conditions. Matrix effects not withstanding it is recommended that metalated thiourea, bispicolylamine, and aminomethylphosphonic acid functionalized silicas warrant further exploration.
Collapse
Affiliation(s)
- Thomas J. Robshaw
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Joshua Turner
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, United Kingdom
| | - Olivia Tuck
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, United Kingdom
| | - Caroline Pyke
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, United Kingdom
| | - Sarah Kearney
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Marco Simoni
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Clint A. Sharrad
- Department of Chemical Engineering and Analytical Science, the University of Manchester, Manchester, United Kingdom
| | - Brant Walkley
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Mark D. Ogden
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Mark D. Ogden,
| |
Collapse
|
10
|
Domán A, Battalgazy B, Dobos G, Kiss G, Tauanov Z, László K, Zorpas AA, Inglezakis VJ. Iodide Removal by Resorcinol-Formaldehyde Carbon Aerogels. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6885. [PMID: 36234226 PMCID: PMC9572706 DOI: 10.3390/ma15196885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The adsorption technique is widely used in water purification, and its efficiency can be significantly improved by target-specific adsorbent design. Research on iodine and its ion removal from water has attracted a great deal of interest due to increased concentrations in the environment and acute toxic effects, e.g., in human thyroid cells. In this work, the iodide removal performance of two high-surface-area resorcinol-formaldehyde-based carbon aerogels was studied under acidic conditions. The BET surface area was 790 m2/g (RF_ac) and 375 m2/g (RMF-GO), with a corresponding micropore ratio of 36 and 26%, respectively. Both aerogels showed outstanding adsorption capacity, exceeding the reported performance of other carbons and Ag-doped materials. Owing to its basic nature, the RMF-GO carbon aerogel showed higher I- capacity, up to 97 mg/g, than the acidic RF_ac, which reached a capacity of 82 mg/g. The surface chemistry of the aerogels also played a distinct role in the removal. In terms of kinetics, RF_ac removed 60% of the iodide ions and RMF-GO 30% within 8 h. The removal kinetics was of the first order, with a half-life of 1.94 and 1.70 h, respectively.
Collapse
Affiliation(s)
- Andrea Domán
- Surface Chemistry Group, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Bekassyl Battalgazy
- Environmental Science & Technology Group (ESTg), Department of Chemical & Materials Engineering, School of Engineering, Nazarbayev University, Qabanbay Batyr Ave 53, Nur-Sultan 010000, Kazakhstan
| | - Gábor Dobos
- Surface Physics Laboratory, Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Gábor Kiss
- Surface Physics Laboratory, Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Zhandos Tauanov
- Faculty of Chemistry and Chemical Technology, al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Krisztina László
- Surface Chemistry Group, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Antonis A. Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Faculty of Pure and Applied Science, Open University of Cyprus, Giannou Kranidioti 33, Latsia, Nicosia 2220, Cyprus
| | - Vassilis J. Inglezakis
- Chemical and Process Engineering Department, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK
| |
Collapse
|
11
|
Prepilková V, Poništ J, Schwarz M, Bednárová D. Selection of Suitable Methods for the Detection of Microplastics in the Environment. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822070127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Robshaw TJ, Turner J, Kearney S, Walkley B, Sharrad CA, Ogden MD. Capture of aqueous radioiodine species by metallated adsorbents from wastestreams of the nuclear power industry: a review. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04818-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract
Abstract
Iodine-129 poses a significant challenge in the drive towards lowering radionuclide emissions from used nuclear fuel recycling operations. Various techniques are employed for capture of gaseous iodine species, but it is also present, mainly as iodide anions, in problematic residual aqueous wastestreams, which have stimulated research interest in technologies for adsorption and retention of the radioiodine. This removal effort requires specialised adsorbents, which use soft metals to create selectivity in the challenging chemical conditions. A review of the literature, at laboratory scale, reveals a number of organic, inorganic and hybrid adsorbent matrices have been investigated for this purpose. They are functionalised principally by Ag metal, but also Bi, Cu and Pb, using numerous synthetic strategies. The iodide capacity of the adsorbents varies from 13 to 430 mg g−1, with ion-exchange resins and titanates displaying the highest maximum uptakes. Kinetics of adsorption are often slow, requiring several days to reach equilibrium, although some ligated metal ion and metal nanoparticle systems can equilibrate in < 1 h. Ag-loaded materials generally exhibit superior selectivity for iodide verses other common anions, but more consideration is required of how these materials would function successfully in industrial operation; specifically their performance in dynamic column experiments and stability of the bound radioiodine in the conversion to final wasteform and subsequent geological storage.
Article highlights
Metallated adsorbents for the capture and retention of radioiodine in the nuclear industry are assessed.
The strengths and weaknesses of organic, inorganic and hybrid support matrices and loading mechanisms are discussed.
Pathways for progression of this technology are proposed.
Graphic abstract
Collapse
|
13
|
Wu X, Xie W, Chen J, Wang X, Liu X, Li Y, Peng K, Ohnuki T, Ye J. Iodide ion removal from artificial iodine-containing solution using Ag-Ag2O modified Al2O3 particles prepared by electroless plating. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Wu H, Xia T, Yin L, Ji Y. Adsorption of iodide from an aqueous solution via calcined magnetite-activated carbon/MgAl-layered double hydroxide. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv Colloid Interface Sci 2021; 293:102440. [PMID: 34022748 DOI: 10.1016/j.cis.2021.102440] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 02/08/2023]
Abstract
Employing new strategies to develop novel composite systems has become a popular area of interest among researchers. Raising people's awareness and their attention to the health and safety issues are key parameters to achieve this purpose. One of the recommended strategies is the utilization of nanoparticles within the matrix of composite materials to improve their physical, mechanical, structural and antimicrobial characteristics. Silver nanoparticles (Ag NPs) have attracted much attention for nanocomposite applications mainly due to their antimicrobial characteristics. Herein, the current review will focus on the different methods for preparing antimicrobial nanocomposites loaded with Ag NPs, the release of Ag NPs from these nanostructures in different media, analyzing techniques for the evaluation of Ag release from nanocomposites, potential applications, and safety issues of nanocomposites containing Ag NPs. The applications of Ag NPs-loaded nanocomposites have been extensively established in food, biomedical, textile, environmental and pharmacological areas mainly due to their antibacterial attributes. Several precautions should be addressed before implementation of Ag NPs in nanocomposites due to the health and safety issues.
Collapse
|
16
|
Seon J, Hwang Y. Cu/Cu 2O-immobilized cellulosic filter for enhanced iodide removal from water. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124415. [PMID: 33183840 DOI: 10.1016/j.jhazmat.2020.124415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
We developed a Cu/Cu2O-immobilized filter-type adsorbent for efficient iodide anion removal. A cellulose filter (CF) was used as a support, and its surface was modified using acrylic acid to enhance copper immobilization. The modified filter (CF-AA) exhibited 10x higher copper adsorption than the unmodified filter. Cu/Cu2O was prepared on CF-AA by using a simple hydrothermal method to obtain CF-AA-Cu, and the prepared Cu/Cu2O was characterized with scanning electron microscopy/energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, and thermogravimetric analysis. While CF and Cu2O themselves exhibited limited iodide adsorption performance, CF-AA-Cu exhibited fast adsorption kinetics with a half-life of 60 min as well as a high adsorption capacity of 10.32 mg/g, as obtained using the Langmuir adsorption isotherm model. Moreover, it exhibited high selectivity for iodide when high concentrations of other anions were present. The adsorption mechanism was proved by means of material characterization before and after adsorption. The coexistence of Cu0, Cu+, and Cu2+ in CF-AA-Cu make it effective in broader pH conditions via the redox reaction between Cu0 and Cu2+. Overall, iodide adsorbents in the form of filters with high adsorption capacity, selectivity, and ability over a wide pH range are potentially useful for removing iodide from water.
Collapse
Affiliation(s)
- Jaeyoung Seon
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Yuhoon Hwang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
17
|
Wei G, Luo F, Li B, Liu Y, Yang J, Zhang Z, Liu Y, Shu X, Xie Y, Lu X. Immobilization of iodine waste forms: A low-sintering temperature with Bi2O3-B2O3-ZnO glass. ANN NUCL ENERGY 2021. [DOI: 10.1016/j.anucene.2020.107817] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Luo J, Du X, Gao F, Kong H, Hao X, Abudula A, Guan G, Ma X, Tang B. An electrochemically switchable triiodide-ion-imprinted PPy membrane for highly selective recognition and continuous extraction of iodide. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Inglezakis VJ, Satayeva A, Yagofarova A, Tauanov Z, Meiramkulova K, Farrando-Pérez J, Bear JC. Surface Interactions and Mechanisms Study on the Removal of Iodide from Water by Use of Natural Zeolite-Based Silver Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1156. [PMID: 32545557 PMCID: PMC7353426 DOI: 10.3390/nano10061156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/01/2022]
Abstract
In this work a natural zeolite was modified with silver following two different methods to derive Ag2O and Ag0 nanocomposites. The materials were fully characterized and the results showed that both materials were decorated with nanoparticles of size of 5-25 nm. The natural and modified zeolites were used for the removal of iodide from aqueous solutions of initial concentration of 30-1400 ppm. Natural zeolite showed no affinity for iodide while silver forms were very efficient reaching a capacity of up to 132 mg/g. Post-adsorption characterizations showed that AgI was formed on the surface of the modified zeolites and the amount of iodide removed was higher than expected based on the silver content. A combination of experimental data and characterizations indicate that the excess iodide is most probably related to negatively charged AgI colloids and Ag-I complexes forming in the solution as well as on the surface of the modified zeolites.
Collapse
Affiliation(s)
- Vassilis J. Inglezakis
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur Sultan 010000, Kazakhstan; (A.S.); (A.Y.)
- Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur Sultan 010000, Kazakhstan
| | - Aliya Satayeva
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur Sultan 010000, Kazakhstan; (A.S.); (A.Y.)
- Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur Sultan 010000, Kazakhstan
| | - Almira Yagofarova
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur Sultan 010000, Kazakhstan; (A.S.); (A.Y.)
- Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Nur Sultan 010000, Kazakhstan
| | - Zhandos Tauanov
- Faculty of Chemistry and Chemical Technology, al-Farabi Kazakh National University, Almaty 050040, Kazakhstan;
| | - Kulyash Meiramkulova
- Department of Environmental Engineering & Management, L.N.Gumilyov Eurasian National University, Nur Sultan 010000, Kazakhstan;
| | - Judit Farrando-Pérez
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, 03690 Alicante, Spain;
| | - Joseph C. Bear
- School of Life Science, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK;
| |
Collapse
|
20
|
Büyüktiryaki S, Keçili R, Hussain CM. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115893] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Activating Bi2O3 by ball milling to induce efficiently oxygen vacancy for incorporating iodide anions to form BiOI. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Tauanov Z, Lee J, Inglezakis V. Mercury reduction and chemisorption on the surface of synthetic zeolite silver nanocomposites: Equilibrium studies and mechanisms. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Jung IK, Jo Y, Han SC, Yun JI. Efficient removal of iodide anion from aqueous solution with recyclable core-shell magnetic Fe 3O 4@Mg/Al layered double hydroxide (LDH). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135814. [PMID: 31972945 DOI: 10.1016/j.scitotenv.2019.135814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Magnetic Mg/Al layered double hydroxides (LDH) with three cationic ratios (Mg/Al = 2:1, 3:1, and 4:1) were successfully synthesized and utilized for the first time in an iodide adsorption study. The effects of the Mg/Al ratio of LDH on iodide adsorption were investigated, and physicochemical properties of synthetic LDHs depending on Mg/Al ratio were confirmed by XRD, TEM, ICP-OES, VSM, Zeta-potential, and BET analyses. The ferrimagnetic property was well preserved even after a coating of LDH on magnetite irrespective of the Mg/Al ratio. Among the three Mg/Al ratios, the calcined Fe3O4@4:1 Mg/Al LDH exhibited excellent performance for iodide removal with 105.04 mg/g of the maximum iodide adsorption capacity due to its wide interlayer spacing and largest BET surface area. In the presence of competing carbonate anions, the Fe3O4@4:1 LDH showed removal rate of >80% at a dosage of over 3 g/L solid to liquid ratio. The recyclability test of Fe3O4@4:1 LDH showed that the removal performance for iodide is maintained at >80% even during the first to the fourth cycles. These results demonstrated that the magnetic Mg/Al LDH adsorbent can be effectively utilized for remediation of radioactive iodide anions with high efficiency and economics.
Collapse
Affiliation(s)
- Il-Kwon Jung
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yongheum Jo
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sol-Chan Han
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong-Il Yun
- Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
24
|
Chen J, Wang J, Gao Q, Zhang X, Liu Y, Wang P, Jiao Y, Zhang Z, Yang Y. Enhanced removal of I - on hierarchically structured layered double hydroxides by in suit growth of Cu/Cu 2O. J Environ Sci (China) 2020; 88:338-348. [PMID: 31862075 DOI: 10.1016/j.jes.2019.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
To further improve the removal ability of layered double hydroxide (LDH) for iodide (I-) anions from wastewater, we prepared hierarchically porous Cu5Mg10Al5-LDH and used as a matrix for in suit growth of Cu/Cu2O on its surface, forming Cu/Cu2O-LDH, which was characterized and applied as an adsorbent. Results displayed high I- saturation uptake capability (137.8 mg/g) of Cu/Cu2O-LDH compared with Cu5Mg10Al5-LDH (26.4 mg/g) even thermal activated LDH (76.1 mg/g). Thermodynamic analysis showed that the reaction between I- anions and Cu/Cu2O-LDH is a spontaneous and exothermic. Uptake kinetics analysis exhibited that adsorption equilibrium can be reached after 265 min. Additionally, the adsorbent showed satisfactory selectivity in the presence of competitive anions (e.g., SO42-), and could achieve good adsorption performance in a wide pH range of 3-8. A cooperative adsorption mechanism was proposed on the basis of the following two aspects: (1) ion exchange between iodide and interlayer anions; (2) the adsorption performance of Cu, Cu(II) and Cu2O for I-. Meanwhile, the difference between the adsorption mechanism of Cu/Cu2O-LDH, Cu5Mg10Al5-LDH and Cu5Mg10Al5-CLDH adsorbents was also elaborated and verified.
Collapse
Affiliation(s)
- Jiuyu Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junyi Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianhong Gao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaomei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yan Jiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zongxiang Zhang
- Jiangsu Environmental Protection Key Laboratory of Monitoring for Organic Pollutants in Soil, Taizhou Environmental Monitoring Center, Taizhou 225300, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
25
|
Polo AMS, Lopez-Peñalver JJ, Sánchez-Polo M, Rivera-Utrilla J, López-Ramón MV, Rozalén M. Halide removal from water using silver doped magnetic-microparticles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 253:109731. [PMID: 31665690 DOI: 10.1016/j.jenvman.2019.109731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
This study proposes the use of new materials based on core-shell structure magnetic microparticles with Ag0 (Ag(0)-MPs) on their surface to remove bromides and chlorides from waters intended for human consumption. Hydrogen peroxide was used as oxidizing agent, Ag(0)-MPs is thereby oxidized to Ag (I)-MPs, which, when in contact with Cl- and Br- ions, form the corresponding silver halide (AgCl and AgBr) on the surface of Ag-MPs. The concentration of Cl- and Br- ions was followed by using ion selective electrodes (ISEs). Silver microparticles were characterized by high-resolution scanning electron microscopy and X-ray photoelectron spectroscopy, while the presence of AgCl and AgBr on Ag-MPs was determined by microanalysis. We analyzed the influence of operational variables, including: hydrogen peroxide concentration in Ag-MP system, medium pH, influence of Cl- ions on Br- ion removal, and influence of tannic acid as surrogate of organic matter in the medium. Regarding the influence of pH, Br-and Cl- removal was constant within the pH range studied (3.5-7), being more effective for Br- than for Cl- ions. Accordingly, this research states that the system Ag-MPs/H2O2 can remove up to 67.01% of Br- ions and 56.92% of Cl- ions from water (pH = 7, [Ag-MPs]0 = 100 mg L-1, [H2O2]0 = 0.2 mM); it is reusable, regenerated by radiation and can be easily removed by applying a magnetically assisted chemical separation process.
Collapse
Affiliation(s)
- A M S Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, ES18071, Granada, Spain
| | - J J Lopez-Peñalver
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, ES18071, Granada, Spain
| | - M Sánchez-Polo
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, ES18071, Granada, Spain.
| | - J Rivera-Utrilla
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, ES18071, Granada, Spain
| | - M V López-Ramón
- Department of Inorganic and Organic Chemistry, Faculty of Science, University of Jaén, Campus Las Lagunillas s/n, ES23071, Jaén, Spain
| | - M Rozalén
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Campus Fuentenueva s/n, ES18071, Granada, Spain
| |
Collapse
|
26
|
Chen J, Li B, Shi Z, He C, Duan C, Zhang T, Wang LY. Crystal engineering of coordination-polymer-based iodine adsorbents using a π-electron-rich polycarboxylate aryl ether ligand. CrystEngComm 2020. [DOI: 10.1039/d0ce01004a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work revealed that the synergy of microporous channels and convergent arrangements of halogen bonding and charge-transfer interaction sites within coordination polymers facilitated the iodine adsorption process.
Collapse
Affiliation(s)
- Junling Chen
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
- College of Chemistry and Pharmaceutical Engineering
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Zhenzhen Shi
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- P. R. China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
- College of Chemistry and Molecular Engineering
| |
Collapse
|