1
|
Yao J, Qi J, Sun J, Qian X, Chen J. Enhancement of nitrate reduction in microbial fuel cells by acclimating biocathode potential: Performance, microbial community, and mechanism. BIORESOURCE TECHNOLOGY 2024; 398:130522. [PMID: 38437965 DOI: 10.1016/j.biortech.2024.130522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The enhancement of nitrate reduction in microbial fuel cells (MFCs) by acclimating biocathode potential was studied. An MFC system was started up, and measured by cyclic voltammetry to determine a suitable potential region for acclimating biocathode. The experimental results revealed that potential acclimation could efficiently improve denitrification performance by relieving the phenomenon of nitrite accumulation, and optimum performance was obtained at -0.4 V with a total nitrogen removal efficiency of 87.4 %. Subsequently, the characteristics of electron transfer behaviors were measured, suggesting that a positive correlation between nitrate reduction and the contribution of direct electron transfer emerged. Furthermore, a denitrification mechanism was proposed. The results indicated that potential acclimation was conducive to enhancing denitrifying enzyme activity and that the electron transport system activity could be increased by 5.8 times. This study provides insight into the electron transfer characteristics and denitrification mechanisms in MFCs for nitrate reduction at specific acclimatization potentials.
Collapse
Affiliation(s)
- Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiayi Qi
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiamo Sun
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaofei Qian
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China; Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Bi J, Xing S, Shan G, Zhao Y, Ji Z, Zhu D, Hao H. Electro-intensified simultaneous decontamination of coexisting pollutants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166949. [PMID: 37696408 DOI: 10.1016/j.scitotenv.2023.166949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
The treatment of wastewater has become increasingly challenging as a result of its growing complexity. To achieve synergistic removal of coexisting pollutants in wastewater, one promising approach involves the integration of electric fields. We conducted a comprehensive literature review to explore the potential of integrating electric fields and developing efficient electro-intensified simultaneous decontamination systems for wastewater containing coexisting pollutants. The review focused on comprehending the applications and mechanisms of these systems, with a particular emphasis on the deliberate utilization of positive and negative charges. After analyzing the advantages, disadvantages, and application efficacy of these systems, we observed electro-intensified systems exhibit flexible potential through their rational combination, allowing for an expanded range of applications in addressing simultaneous decontamination challenges. Unlike the reviews focusing on single elimination, this work aims to provide guidance in addressing the environmental problems resulting from the coexistence of hazardous contaminants.
Collapse
Affiliation(s)
- Jingtao Bi
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Siyang Xing
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Zhao
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhiyong Ji
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, TX 77005, United States
| | - Hongxun Hao
- National Engineering Research Center of Industry Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Wang M, Ao Z, Gong Z, Ma R, Wang Q, Yang L, Gao Y. Deactivation of cyanobacteria blooms and simultaneous recovery phosphorus through electrolysis method. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82574-82583. [PMID: 35752668 DOI: 10.1007/s11356-022-21533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
A novel method for remediating eutrophic lakes through electrolysis was made possible by one titanium (Ti) mesh, which serves as a cathode and two anodes of Ti mesh coated with ruthenium (IV) oxide and iridium (IV) oxide (RuO2-IrO2/Ti). Once the three-electrode components RuO2-IrO2/Ti and Ti are stabilized, they can carry out electrolytic reaction to control cyanobacteria blooms and assist with the remediation of eutrophic water. The order of influence on the theoretical energy consumption involved in removing algae is as follows: The electrode spacing was more effective than electrode voltage, which proved more effective than electrolysis time through the orthogonal test method. Thus, an electrode spacing of 60 mm, an electrode voltage of 30 V, and an electrolysis time of 12 h are the optimal electrolysis methods used to remove cyanobacterial blooms. The strong acidic environment produced by the anode increased the concentration of hydroxyl radical (•OH) and other strong oxidizing substances, which were the main roles that made cyanobacteria bloom inactivation. The electrolysis reaction was conducive to the transformation of organophosphorus in cyanobacterial blooms to dissolved inorganic phosphorus (DIP) in water. Some DIP was most deposited on the cathode after electro-depositing enhanced the removal of P in water with the 12-h prolonged electrolysis time. Meanwhile, it was beneficial to reduce the total nitrogen (TN) and ammonia nitrogen (NH3-N) in the water. Thus, electrolysis proved to be an effective way to the inactivation of cyanobacteria blooms and simultaneously recover P as the concentration became higher.
Collapse
Affiliation(s)
- Mingxuan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Ziwei Ao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Zhengwen Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Runhua Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Qing Wang
- Yixing Environmental Research Institute of Nanjing University, Yixing, 214200, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210046, People's Republic of China
| | - Yan Gao
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
4
|
Yang S, Wang X, Song Z, Liu C, Li Z, Wang J, Song L. Efficient electrocatalytic nitrate reduction in neutral medium by Cu/CoP/NF composite cathode coupled with Ir-Ru/Ti anode. CHEMOSPHERE 2022; 307:136132. [PMID: 36002064 DOI: 10.1016/j.chemosphere.2022.136132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this work, a three-dimensional self-supporting copper/cobalt phosphide/nickel foam (Co/CoP/NF) composite was fabricated and employed as the cathode for electrochemical nitrate removal from surface water with the assistance of a commercial Ir-Ru/Ti anode. The experimental results demonstrate that the introduction of Cu nanoparticles on CoP nanosheets is favorable for the electrocatalytic nitrate reduction. The influences of operating parameters (pH value, current density and initial nitrate concentration) on the nitrate reduction were assessed with the presence of Cl-. At the optimized conditions, the removal of nitrate exhibits an efficiency ca. 100% via the coupling electrochemical reduction and oxidation processes. Moreover, the nitrogen selectivity is found to be as high as 98.8% within 210 min, accompanied with a promising test endurance (>94.0% for total nitrogen (TN) and NO3- removal efficiencies after an electrochemical run of 24.5 h). Importantly, as for the treated actual surface water, the concentration of TN is smaller than 1.5 mg L-1, in accordance with the limit of Ⅳ-level standard of the surface water environmental quality in China (GB 3838-2002). The efficient removal of nitrate can be attributed to the synergistic effect of Cu and CoP microparticles to enhance the reduction activity, as well as the subsequent chloride oxidation for the major intermediate of ammonium.
Collapse
Affiliation(s)
- Shuqin Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zimo Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Cuicui Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Jingyi Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
5
|
Multivariate optimization of the electrochemical degradation for COD and TN removal from wastewater: An inverse computation machine learning approach. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Zhou Q, Zhou X, Zheng R, Liu Z, Wang J. Application of lead oxide electrodes in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150088. [PMID: 34563906 DOI: 10.1016/j.scitotenv.2021.150088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (EO) based on hydroxyl radicals (·OH) generated on lead dioxide has become a typical advanced oxidation process (AOP). Titanium-based lead dioxide electrodes (PbO2/Ti) play an increasingly important role in EO. To further improve the efficiency, the structure and properties of the lead dioxide active surface layer can be modified by doping transition metals, rare earth metals, nonmetals, etc. Here, we compare the common preparation methods of lead dioxide. The EO performance of lead dioxide in wastewater containing dyes, pesticides, drugs, landfill leachate, coal, petrochemicals, etc., is discussed along with their suitable operating conditions. Finally, the factors influencing the contaminant removal kinetics on lead dioxide are systematically analysed.
Collapse
Affiliation(s)
- Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
7
|
Process Optimization of Electrochemical Treatment of COD and Total Nitrogen Containing Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020850. [PMID: 35055672 PMCID: PMC8776051 DOI: 10.3390/ijerph19020850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 02/04/2023]
Abstract
In this work, an electrochemical method for chemical oxygen demand (COD) and total nitrogen (TN, including ammonia, nitrate, and nitrite) removal from wastewater using a divided electrolysis cell was developed, and its process optimization was investigated. This process could effectively relieve the common issue of NO3-/NO2- over-reduction or NH4+ over-oxidation by combining cathodic NO3-/NO2- reduction with anodic COD/NH4+ oxidation. The activity and selectivity performances toward pollutant removal of the electrode materials were investigated by electrochemical measurements and constant potential electrolysis, suggesting that Ti electrode exhibited the best NO3-/NO2- reduction and N2 production efficiencies. In-situ Fourier transform infrared spectroscopy was used to study the in-situ electrochemical information of pollutants conversion on electrode surfaces and propose their reaction pathways. The effects of main operating parameters (i.e., initial pH value, Cl- concentration, and current density) on the removal efficiencies of COD and TN were studied. Under optimal conditions, COD and TN removal efficiencies from simulated wastewater reached 92.7% and 82.0%, respectively. Additionally, reaction kinetics were investigated to describe the COD and TN removal. Results indicated that COD removal followed pseudo-first-order model; meanwhile, TN removal followed zero-order kinetics with a presence of NH4+ and then followed pseudo-first-order kinetics when NH4+ was completely removed. For actual pharmaceutical wastewater treatment, 79.1% COD and 87.0% TN were removed after 120 min electrolysis; and no NH4+ or NO2- was detected.
Collapse
|
8
|
Yu B, Han Q, Li C, Zhu Y, Jin X, Dai Z. Influencing factors of venlafaxine degradation at boron-doped diamond anode. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Zhou X, Zhou Q, Chen H, Wang J, Liu Z, Zheng R. Influence of dimethylphenol isomers on electrochemical degradation: Kinetics, intermediates, and DFT calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148284. [PMID: 34214809 DOI: 10.1016/j.scitotenv.2021.148284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Dimethylphenol isomers (DMP) pose a great threat to the environment, and the electrooxidation (EO) process proves to be an extraordinarily effective method to degrade DMP. However, the EO performance is affected by the molecular structure of DMP and the adopted experimental parameters. In this study, the effects of 2,4-DMP and 2,6-DMP on the working potential, limiting current density (Jlim), and pH were systematically analysed, with Ti-mesh plates used as the cathode and Ti/PbO2 as the anode. The peak potentials of 2,4-DMP and 2,6-DMP were determined to be 0.83 V and 0.77 V by cyclic voltammetry, with Jlim were 2.5 mA·cm-2 and 2.0 mA·cm-2, respectively. The whole process exhibited pseudo-first-order kinetics, and the kinetic constants (K) for the degradation of 2,4-DMP and 2,6-DMP were determined to be 0.0041 min-1 and 0.0150 min-1, respectively. Additionally, the optimal initial pH value for 2,4-DMP and 2,6-DMP was 5.0, where the highest hydroxyl (OH) radical density, as determined by the electron spin technique (ESR), was achieved at a higher current density. Comparatively, the OH radical density in the 2,6-DMP solution was lower than that in 2,4-DMP. In situ Fourier infrared (FT-IR) spectroscopy, GC-MS, and density functional theory (DFT) were employed to explore three possible degradation pathways. The main intermediates for 2,4-DMP degradation were determined to be quinone and ether, while that for 2,6-DMP degradation was quinone. According to the results of this study, the molecular structure (different methyl group positions on the benzene ring) has a great influence on the EO process.
Collapse
Affiliation(s)
- Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Haihua Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
10
|
Mei Y, Chen J, Pan H, Hao F, Yao J. Electrochemical oxidation of triclosan using Ti/TiO 2 NTs/Al-PbO 2 electrode: reaction mechanism and toxicity evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26479-26487. [PMID: 33486682 DOI: 10.1007/s11356-021-12486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
5-Chloro-2-(2,4-dichlorophenoxy) phenol (triclosan, TCS) is a potential threat to the environment and human health, and it needs appropriate approaches for its removal. A new modified PbO2 electrode, Al-PbO2 based on TiO2 nanotubes (NTs), was successfully prepared for TCS electrochemical oxidation. Scanning electron microscopy indicated a compact coating layer on the anode. TCS removal on Ti/TiO2 NTs/Al-PbO2 anode followed a pseudo-first-order kinetics. The electrical efficiency per log order (EE/O) for oxidation was decreased from 14.79 to 12.90 kWh m-3 order-1 after TiO2 NTs on Ti material and decreased to 8.27 kWh m-3 order-1 after Al3+ doping. The effects of current density, pH value, and electrolyte concentration were investigated. Intermediate organo-chlorinated compounds were detected by gas chromatography coupled with mass spectrometry, high-performance liquid chromatography, and ion chromatography. Finally, ecotoxicity assessment revealed that the degradation of TCS by electrooxidation system with Ti/TiO2 NTs/Al-PbO2 anode could yield a smaller toxicity compared with parent compounds.
Collapse
Affiliation(s)
- Yu Mei
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310005, China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310005, China
| | - Hua Pan
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310005, China
| | - Feilin Hao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310005, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310005, China.
| |
Collapse
|
11
|
Liu H, Kong T, Qiu L, Xu R, Li F, Kolton M, Lin H, Zhang L, Lin L, Chen J, Sun X, Gao P, Sun W. Solar-driven, self-sustainable electrolysis for treating eutrophic river water: Intensified nutrient removal and reshaped microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144293. [PMID: 33385655 DOI: 10.1016/j.scitotenv.2020.144293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
River ecosystems are the most important resource of surface freshwater, but they have frequently been contaminated by excessive nutrient input of nitrogen (N) and phosphorus (P) in particular. An efficient and economic river water treatment technology that possesses the capacity of simultaneous N and P removal is urgently required. In this study, a solar-driven, self-sustainable electrolytic treatment was conducted in situ to intensify N and P removal from eutrophic river water. Solar panel was applied to provide the electrolysis setups with energy (voltage 10 ± 0.5 V), and the current density was controlled to be 0.06 ± 0.02 mA cm-2. Results indicated that the average removal efficiencies of total N (TN) and total P (TP) under electrolysis conditions reached 72.4 ± 11.7 and 13.8 ± 5.3 mg m-2 d-1, which were 3.7- and 4.7-fold higher compared to untreated conditions. Enhanced TN removal mainly reflected the abatement of nitrate N (NO3--N) (80.6 ± 4.1%). The formation of ferric ions through the electro-dissolution of the sacrificial iron anode improved TP removal by coprecipitation with SPS. Combined high-throughput sequencing and statistical analyses revealed that electrolysis significantly reshaped the microbial communities in both the sediment-water interface and suspended sediment (SPS), and hydrogenotrophic denitrifiers (e.g., Hydrogenophaga) were highly enriched under electrolysis conditions. These findings indicated that in situ electrolysis is a feasible and effective technology for intensified nutrient removal from river water.
Collapse
Affiliation(s)
- Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lang Qiu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hanzhi Lin
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lei Zhang
- Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, PR China
| | - Lan Lin
- Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, PR China
| | - Jiazhi Chen
- Research Institute of Petrochemical and Fine Chemical Engineering, Guangzhou 510665, PR China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Electrochemical removal of nitrate from wastewater with a Ti cathode and Pt anode for high efficiency and N2 selectivity. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Aydin MI, Karaca AE, Qureshy AMMI, Dincer I. A comparative review on clean hydrogen production from wastewaters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 279:111793. [PMID: 33360275 DOI: 10.1016/j.jenvman.2020.111793] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This paper provides a unique review of hydrogen production methods with wastewater treatment to depict a clean and sustainable approach. Various methods for hydrogen production from wastewaters are identified and discussed with recent details by discussing the critical challenges, opportunities, and future directions. Five main performance sectors are considered in detail for each hydrogen production method of the recent case studies, including economic, environmental, social, technical, and reliability. Eight hydrogen production methods are reviewed, including anaerobic method, photo fermentation, dark fermentation, electrolysis, electrodialysis, photocatalysis, photoelectrochemical methods, and super water gasification. A comparative assessment of six reviewed methods for hydrogen production, including environmental, economic, energetic, and exergetic impacts, is evaluated. The comparative assessment results indicate that dark fermentation technology is the most economical method, and it is followed by microbial electrolysis and photofermentation. The most environmentally friendly method for the lowest global warming potential (GWP) is the microbial electrolysis method, and it is followed by photocatalysis and photoelectrochemical methods. Furthermore, the highest energy and exergy efficiencies have been recorded for the microbial electrolysis to be 68% and 64.7%, respectively.
Collapse
Affiliation(s)
- Muhammed Iberia Aydin
- Istanbul University-Cerrahpasa, Engineering Faculty, Environmental Engineering Dept, Avcilar, Istanbul, Turkey; Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada.
| | - Ali Erdogan Karaca
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada
| | - Ali M M I Qureshy
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada
| | - Ibrahim Dincer
- Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, Ontario Tech. University, Oshawa, Ontario, Canada; Faculty of Mechanical Engineering, Yildiz Technical University, Besiktas, Istanbul, Turkey
| |
Collapse
|
14
|
Dai Z, Hao N, Xiong M, Han X, Zuo Y, Wang K. Portable Photoelectrochromic Visualization Sensor for Detection of Chemical Oxygen Demand. Anal Chem 2020; 92:13604-13609. [DOI: 10.1021/acs.analchem.0c03650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen Dai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Nan Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Meng Xiong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Xu Han
- Science and Technology on Space Physics Laboratory, Beijing 10076, PR China
| | - Yanli Zuo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, OE, School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| |
Collapse
|
15
|
Ciarlini J, Alves L, Rajarathnam GP, Haynes BS, Montoya A. Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Chen J, He J, Wang X, Hrynsphan D, Wu J, Chen J, Yao J. Reduction of Fe II(EDTA)-NO by Mn powder in wet flue gas denitrification technology: stoichiometry, kinetics, and thermodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36933-36941. [PMID: 31745767 DOI: 10.1007/s11356-019-06901-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Conversion of FeII(EDTA)-NO or FeIII(EDTA) into FeII(EDTA) is a key process in a wet flue gas denitrification technology with FeII(EDTA) solution. In this work, the stoichiometry, kinetics, and thermodynamics of FeII(EDTA)-NO reduction by Mn powder were investigated. We first studied the FeII(EDTA)-NO reduction and product distribution to speculate a possible stoichiometry of FeII(EDTA)-NO reduction by Mn powder. Then, the effects of major influencing factors, such as pH value, temperature, and Mn concentration, were studied. The pseudo-second-order model was established to describe the FeII(EDTA)-NO reduction. Simultaneously, according to Arrhenius and Eyring-Polanyi equations, the reaction activation energy (Ea), enthalpy of activation (∆H‡), and entropy of activation (∆S‡) were calculated as 23.68 kJ/mol, 21.148 kJ/mol, and - 149.728 J/(k mol), respectively. Additionally, simultaneous reduction of FeIII(EDTA) and FeII(EDTA)-NO was investigated to better study the mechanism of FeII(EDTA) regeneration, suggesting that there was a competition between the two reduction processes. Finally, a simple schematic mechanism of NO absorption by FeII(EDTA) combined with regeneration of manganese ion and ammonium was proposed. These fundamental researches could offer a valuable guidance for wet flue gas denitrification technology with FeII(EDTA) solution.
Collapse
Affiliation(s)
- Jun Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jinjia He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, 220030, Minsk, Belarus
| | - Jiali Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiachao Yao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
17
|
Yao J, Mei Y, Xia G, Lu Y, Xu D, Sun N, Wang J, Chen J. Process Optimization of Electrochemical Oxidation of Ammonia to Nitrogen for Actual Dyeing Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2931. [PMID: 31443230 PMCID: PMC6720899 DOI: 10.3390/ijerph16162931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/03/2019] [Accepted: 08/13/2019] [Indexed: 01/16/2023]
Abstract
To mitigate the potential environmental risks caused by nitrogen compounds from industrial wastewater, residual ammonia after conventional wastewater treatment should be further eliminated. In this work, an electrochemical oxidation process for converting ammonia to nitrogen in actual dyeing wastewater was investigated. The effects of the main operating parameters, including initial pH value, applied current density, NaCl concentration, and flow, were investigated on ammonia removal and products distribution. Experimental results indicated that, under optimal conditions of an initial pH value of 8.3, applied current density of 20 mA cm-2, NaCl concentration of 1.0 g L-1, and flow of 300 mL min-1, the ammonia could be completely removed with N2 selectivity of 88.3% in 60 min electrolysis. A kinetics investigation using a pseudo-first-order model provided a precise description of ammonia removal during the electro-oxidation process. Experimental functions for describing the relationships between kinetic constants of ammonia removal and main operating parameters were also discussed. Additionally, the mechanisms and economic evaluation of ammonia oxidation were conducted. All these results clearly proved that this electro-oxidation process could efficiently remove ammonia and achieve high N2 selectivity.
Collapse
Affiliation(s)
- Jiachao Yao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Mei
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Guanghua Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yin Lu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Nabo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Chen
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|