1
|
Sontag PT, Godfrey LV, Fraser WR, Hinke JT, Reinfelder JR. Influence of migration range and foraging ecology on mercury accumulation in Southern Ocean penguins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175154. [PMID: 39153634 DOI: 10.1016/j.scitotenv.2024.175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
In order to evaluate mercury (Hg) accumulation patterns in Southern Ocean penguins, we measured Hg concentrations and carbon (δ13C) and nitrogen (δ15N) stable isotope ratios in body feathers of adult Adélie (Pygoscelis adeliae), gentoo (Pygoscelis papua), and chinstrap (Pygoscelis antarctica) penguins living near Anvers Island, West Antarctic Peninsula (WAP) collected in the 2010/2011 austral summer. With these and data from Pygoscelis and other penguin genera (Eudyptes and Aptenodytes) throughout the Southern Ocean, we modelled Hg variation using δ13C and δ15N values. Mean concentrations of Hg in feathers of Adélie (0.09 ± 0.05 μg g-1) and gentoo (0.16 ± 0.08 μg g-1) penguins from Anvers Island were among the lowest ever reported for the Southern Ocean. However, Hg concentrations in chinstrap penguins (0.80 ± 0.20 μg g-1), which undertake relatively broad longitudinal winter migrations north of expanding sea ice, were significantly higher (P < 0.001) than those in gentoo or Adélie penguins. δ13C and δ15N values for feathers from all three Anvers Island populations were also the lowest among those previously reported for Southern Ocean penguins foraging within Antarctic and subantarctic waters. These observations, along with size distributions of WAP krill, suggest foraging during non-breeding seasons as a primary contributor to higher Hg accumulation in chinstraps relative to other sympatric Pygoscelis along the WAP. δ13C values for all Southern Ocean penguin populations, alone best explained feather Hg concentrations among possible generalized linear models (GLMs) for populations grouped by either breeding site (AICc = 36.9, wi = 0.0590) or Antarctic Frontal Zone (AICc = 36.9, wi = 0.0537). Although Hg feather concentrations can vary locally by species, there was an insignificant species-level effect (wi < 0.001) across the full latitudinal range examined. Therefore, feeding ecology at breeding locations, as tracked by δ13C, control Hg accumulation in penguin populations across the Southern Ocean.
Collapse
Affiliation(s)
- Philip T Sontag
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| | - Linda V Godfrey
- Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA
| | | | - Jefferson T Hinke
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Zhang D, Xu F, Li J, Zhang R, Xia J. Bifunctional materials based on poly(3-aminocarbazole) for efficient and highly selective detection and adsorption of Hg 2+ in water. CHEMOSPHERE 2024; 363:142841. [PMID: 39004148 DOI: 10.1016/j.chemosphere.2024.142841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Herein, two poly(3-aminocarbazole) derivatives containing imidazole N-type acceptor were synthesized and reported, which are named PCPI and PCBI respectively. The fluorescence spectrum shows that PCPI (Em = 498 nm) and PCBI (Em = 398 nm) both have a strong fluorescence emission. It is worth noting that PCPI has a larger stokes shift of 153 nm, which is beneficial for improving the sensitivity of the sensor and enhancing its anti-interference ability. As expected, our experimental results indicate that both PCPI and PCBI can cause a specific response of "fluorescence OFF" to Hg2+ compared with other ions. And PCPI and PCBI both have excellent detection capabilities for Hg2+, with detection limits of 69.8 nM and 11.4 nM respectively. Moreover, PCBI exhibits excellent absorption of Hg2+ with a maximum absorption capacity of 477.8 mg/g at 20 °C. It indicates that PCBI can be used as a functional material for the detection and removal of Hg2+ in water.
Collapse
Affiliation(s)
- Dongkui Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Feng Xu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, PR China
| | - Jianing Li
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Rui Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Instituted and Technology, Wuhan, 400073, Hubei, PR China.
| | - Jiangbin Xia
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
3
|
Jung S, Besnard L, Li ML, R Reinfelder J, Kim E, Kwon SY, Kim JH. Interspecific Variations in the Internal Mercury Isotope Dynamics of Antarctic Penguins: Implications for Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6349-6358. [PMID: 38531013 DOI: 10.1021/acs.est.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mercury (Hg) biomonitoring requires a precise understanding of the internal processes contributing to disparities between the Hg sources in the environment and the Hg measured in the biota. In this study, we investigated the use of Hg stable isotopes to trace Hg accumulation in Adélie and emperor penguin chicks from four breeding colonies in Antarctica. Interspecific variation of Δ199Hg in penguin chicks reflects the distinct foraging habitats and Hg exposures in adults. Chicks at breeding sites where adult penguins predominantly consumed mesopelagic prey showed relatively lower Δ199Hg values than chicks that were primarily fed epipelagic krill. Substantial δ202Hg variations in chick tissues were observed in both species (Adélie: -0.11 to 1.13‰, emperor: -0.27 to 1.15‰), whereas only emperor penguins exhibited the lowest δ202Hg in the liver and the highest in the feathers. Our results indicate that tissue-specific δ202Hg variations and their positive correlations with % MeHg resulted from MeHg demethylation in the liver and kidneys of emperor penguin chicks, whereas Adélie penguin chicks showed different internal responses depending on their exposure to dietary MeHg. This study highlights the importance of considering intra- and interspecific variations in adult foraging ecology and MeHg demethylation when selecting penguin chicks for Hg biomonitoring.
Collapse
Affiliation(s)
- Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Eunhee Kim
- Citizens' Institute for Environmental Studies (CIES), Seoul 03039, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, South Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Incheon 21990, South Korea
| |
Collapse
|
4
|
Liu H, Zheng W, Gao Y, Yang L, Yue F, Huang T, Xie Z. Increased Contribution of Circumpolar Deep Water Upwelling to Methylmercury in the Upper Ocean around Antarctica: Evidence from Mercury Isotopes in the Ornithogenic Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2762-2773. [PMID: 38294849 DOI: 10.1021/acs.est.3c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Upwelling plays a pivotal role in supplying methylmercury (MeHg) to the upper oceans, contributing to the bioaccumulation of MeHg in the marine food web. However, the influence of the upwelling of Circumpolar Deep Water (CDW), the most voluminous water mass in the Southern Ocean, on the MeHg cycle in the surrounding oceans and marine biota of Antarctica remains unclear. Here, we study the mercury (Hg) isotopes in an ornithogenic sedimentary profile strongly influenced by penguin activity on Ross Island, Antarctica. Results indicate that penguin guano is the primary source of Hg in the sediments, and the mass-independent isotope fractionation of Hg (represented by Δ199Hg) can provide insights on the source of marine MeHg accumulated by penguin. The Δ199Hg in the sediments shows a significant decrease at ∼1550 CE, which is primarily attributed to the enhanced upwelling of CDW that brought more MeHg with lower Δ199Hg from the deeper seawater to the upper ocean. We estimate that the contribution of MeHg from the deeper seawater may reach more than 38% in order to explain the decline in Δ199Hg at ∼1550 CE. Moreover, we found that the intensified upwelling may have increased the MeHg exposure for marine organisms, highlighting the importance of CDW upwelling on the MeHg cycle in Antarctic coastal ecosystems.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuesong Gao
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianjiao Yang
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fange Yue
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zhouqing Xie
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Wojdasiewicz A, Panasiuk A, Bełdowska M. The non-selective Antarctic filter feeder Salpa thompsoni as a bioindicator of mercury origin. Sci Rep 2024; 14:2245. [PMID: 38278823 PMCID: PMC10817981 DOI: 10.1038/s41598-024-52770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 01/28/2024] Open
Abstract
Hg is considered as the most toxic metal in the environment. Sources of Hg in the environment include burning fossil fuels, burning waste, and forest fires. The long residence time of the gaseous form in the atmosphere allows mercury to be transported over long distances. The pelagic tunicate Salpa thompsoni is an important component of the Antarctic environment. Over the past few decades an expansion of this species to the higher latitudes has been noted, mainly due to the ongoing climate change. The study material consisted of samples of S. thompsoni individuals, collected in the waters surrounding Elephant Island (Western Antarctic). Total mercury and five of its fractions were determined. Whole organisms were analyzed as well as internal organs: stomachs, muscle strips, and tunics. Obtained results showed that the highest concentrations of mercury in salps were observed in stomachs. With the Hg fraction results, it can be concluded that the main route of exposure of S. thompsoni to Hg is presumably absorption from the food-filtered organic and non-organic particles. Moreover, the process of transformation of simple soluble forms into organic forms of Hg in stomachs and intestines and its distribution to other tissues was observed.
Collapse
Affiliation(s)
- Adriana Wojdasiewicz
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Anna Panasiuk
- Department of Marine Biology and Biotechnology, Laboratory of Plankton Biology, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Magdalena Bełdowska
- Department of Chemical Oceanography and Marine Geology, Laboratory of Toxic Substances Transformation, Faculty of Oceanography and Geography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
6
|
Korejwo E, Panasiuk A, Wawrzynek-Borejko J, Jędruch A, Bełdowski J, Paturej A, Bełdowska M. Mercury concentrations in Antarctic zooplankton with a focus on the krill species, Euphausia superba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167239. [PMID: 37742970 DOI: 10.1016/j.scitotenv.2023.167239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The Antarctic is the most isolated region in the world; nevertheless, it has not avoided the negative impact of human activity, including the inflow of toxic mercury (Hg). Hg deposited in the Antarctic marine environment can be bioavailable and accumulate in the food web, reaching elevated concentrations in high-trophic-level biota, especially if methylated. Zooplankton, together with phytoplankton, are critical for the transport of pollutants, including Hg to higher trophic levels. For the Southern Ocean ecosystem, one of the key zooplankton components is the Antarctic krill Euphausia superba, the smaller euphausiid Thysanoessa macrura, and the amphipod Themisto gaudichaudii - a crucial food source for most predatory fish, birds, and mammals. The main goal of this study was to determine the Hg burden, as well as the distribution of different Hg forms, in these dominant Antarctic planktonic crustaceans. The results showed that the highest concentrations of Hg were found in T. gaudichaudii, a typically predatory taxon. Most of the Hg in the tested crustaceans was labile and potentially bioavailable for planktivorous organisms, with the most dangerous methylmercury (MeHg) accounting for an average of 16 % of the total mercury. Elevated Hg concentrations were observed close to the land, which is influenced by the proximity to penguin and pinniped colonies. In areas near the shore, volcanic activity might be a possible cause of the increase in mercury sulfide (HgS) content. The total Hg concentration increased with the trophic position and ontogenetic stage of predation, specific to adult organisms. In contrast, the proportion of MeHg decreased with age, indicating more efficient demethylation or elimination. The Hg magnification kinetics in the study area were relatively high, which may be related to climate-change induced alterations of the Antarctic ecosystem: additional food sources and reshaped trophic structure.
Collapse
Affiliation(s)
- Ewa Korejwo
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Anna Panasiuk
- University of Gdansk, Faculty of Oceanography and Geography Laboratory of Marine Plankton Biology, Division of Marine Biology and Biotechnology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Wawrzynek-Borejko
- University of Gdansk, Faculty of Oceanography and Geography, Division of Marine Ecosystems Functioning, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Jędruch
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Jacek Bełdowski
- Polish Academy of Sciences, Institute of Oceanology, Department of Marine Chemistry, and Biochemistry, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Alicja Paturej
- University of Gdansk, Faculty of Oceanography and Geography, Division of Chemical Oceanography and Marine Geology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdansk, Faculty of Oceanography and Geography, Division of Chemical Oceanography and Marine Geology, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
7
|
Cusset F, Bustamante P, Carravieri A, Bertin C, Brasso R, Corsi I, Dunn M, Emmerson L, Guillou G, Hart T, Juáres M, Kato A, Machado-Gaye AL, Michelot C, Olmastroni S, Polito M, Raclot T, Santos M, Schmidt A, Southwell C, Soutullo A, Takahashi A, Thiebot JB, Trathan P, Vivion P, Waluda C, Fort J, Cherel Y. Circumpolar assessment of mercury contamination: the Adélie penguin as a bioindicator of Antarctic marine ecosystems. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:1024-1049. [PMID: 37878111 DOI: 10.1007/s10646-023-02709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins' diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 μg·g‒1) than adults (0.49 ± 0.23 μg·g‒1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future.
Collapse
Affiliation(s)
- Fanny Cusset
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France.
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - Alice Carravieri
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Clément Bertin
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Rebecka Brasso
- Department of Zoology, Weber State University, Ogden, UT, USA
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | | | - Louise Emmerson
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Canberra, ACT, Australia
| | - Gaël Guillou
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Tom Hart
- Department of Biological and Medicinal Sciences, Oxford Brooke University, Oxford, UK
| | - Mariana Juáres
- Departamento Biología de Predadores Tope, Instituto Antártico Argentino, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Akiko Kato
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
| | | | - Candice Michelot
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
- Institut Maurice-Lamontagne, Pêches et Océans Canada, Mont-Joli, QC, Canada
| | - Silvia Olmastroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
- Museo Nazionale dell'Antartide, Siena, Italy
| | | | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, UMR 7178 du CNRS, Université de Strasbourg, 67087, Strasbourg, France
| | - Mercedes Santos
- Departamento Biología de Predadores Tope, Instituto Antártico Argentino, Buenos Aires, Argentina
| | | | - Colin Southwell
- Department of Climate Change, Energy, the Environment and Water, Australian Antarctic Division, Canberra, ACT, Australia
| | - Alvaro Soutullo
- Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay
| | - Akinori Takahashi
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
| | - Jean-Baptiste Thiebot
- National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8518, Japan
- Graduate School of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, 041-8611, Japan
| | | | - Pierre Vivion
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | | | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Yves Cherel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 du CNRS - La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
8
|
Yue F, Li Y, Zhang Y, Wang L, Li D, Wu P, Liu H, Lin L, Li D, Hu J, Xie Z. Elevated methylmercury in Antarctic surface seawater: The role of phytoplankton mass and sea ice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163646. [PMID: 37094685 DOI: 10.1016/j.scitotenv.2023.163646] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Methylmercury is a neurotoxin that is biomagnified in marine food webs. Its distribution and biogeochemical cycle in Antarctic seas are still poorly understood due to scarce studies. Here, we report the total methylmercury profiles (up to 4000 m) in unfiltered seawater (MeHgT) from the Ross Sea to the Amundsen Sea. We found high MeHgT levels in oxic unfiltered surface seawater (upper 50 m depth) in these regions. It was characterized by an obviously higher maximum concentration level of MeHgT (up to 0.44 pmol/L, at a depth of 3.35 m), which is higher than other open seas (including the Arctic Ocean, the North Pacific Ocean and the equatorial Pacific), and a high MeHgT average concentration in the summer surface water (SSW, 0.16 ± 0.12 pmol/ L). Further analyses suggest that the high phytoplankton mass and sea-ice fraction are important drivers of the high MeHgT level that we observed in the surface water. For the influence of phytoplankton, the model simulation showed that the uptake of MeHg by phytoplankton would not fully explain the high levels of MeHgT, and we speculated that high phytoplankton mass may emit more particulate organic matter as microenvironments that can sustain Hg in-situ methylation by microorganisms. The presence of sea-ice may not only harbor a microbial source of MeHg to surface water but also trigger increased phytoplankton mass, facilitating elevation of MeHg in surface seawater. This study provides insight into the mechanisms that impact the content and distribution of MeHgT in the Southern Ocean.
Collapse
Affiliation(s)
- Fange Yue
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Longquan Wang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongwei Liu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijin Lin
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Dong Li
- Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China
| | - Ji Hu
- Second Institute of Oceanography, Ministry of Natural Resources (MNR), Hangzhou 310000, China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
9
|
da Silva JRMC, Bergami E, Gomes V, Corsi I. Occurrence and distribution of legacy and emerging pollutants including plastic debris in Antarctica: Sources, distribution and impact on marine biodiversity. MARINE POLLUTION BULLETIN 2023; 186:114353. [PMID: 36436273 DOI: 10.1016/j.marpolbul.2022.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Since the first explorers reached Antarctica, their activities have quickly impacted both land and sea and thus, together with the long-range transport, hazardous chemicals began to accumulate. It is commonly recognized that anthropogenic pollution in Antarctica can originate from either global or local sources. Heavy metals, organohalogenated compounds, hydrocarbons, and (more recently) plastic, have been found in Antarctic biota, soil sediments, seawater, air, snow and sea-ice. Studies in such remote areas are challenging and expensive, and the complexity of potential interactions occurring in such extreme climate conditions (i.e., low temperature) makes any accurate prediction on potential impacts difficult. The present review aims to summarize the current state of knowledge on occurrence and distribution of legacy and emerging pollutants in Antarctica, such as plastic, from either global or local sources. Future actions to monitor and mitigate any potential impact on Antarctic biodiversity are discussed.
Collapse
Affiliation(s)
- José Roberto Machado Cunha da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Science / CEBIMar (Centro de Biologia Marinha), University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, CEP: 05509900, Brazil.
| | - Elisa Bergami
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
| | - Vicente Gomes
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, SP 05508-120, Brazil
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| |
Collapse
|
10
|
Ibañez AE, Mills WF, Bustamante P, McGill RAR, Morales LM, Palacio FX, Torres DS, Haidr NS, Mariano-Jelicich R, Phillips RA, Montalti D. Variation in blood mercury concentrations in brown skuas (Stercorarius antarcticus) is related to trophic ecology but not breeding success or adult body condition. MARINE POLLUTION BULLETIN 2022; 181:113919. [PMID: 35816822 DOI: 10.1016/j.marpolbul.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Mercury is a pervasive environmental contaminant that can negatively impact seabirds. Here, we measure total mercury (THg) concentrations in red blood cells (RBCs) from breeding brown skuas (Stercorarius antarcticus) (n = 49) at Esperanza/Hope Bay, Antarctic Peninsula. The aims of this study were to: (i) analyse RBCs THg concentrations in relation to sex, year and stable isotope values of carbon (δ13C) and nitrogen (δ15N); and (ii) examine correlations between THg, body condition and breeding success. RBC THg concentrations were positively correlated with δ15N, which is a proxy of trophic position, and hence likely reflects the biomagnification process. Levels of Hg contamination differed between our study years, which is likely related to changes in diet and distribution. RBC THg concentrations were not related to body condition or breeding success, suggesting that Hg contamination is currently not a major conservation concern for this population.
Collapse
Affiliation(s)
- A E Ibañez
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina.
| | - W F Mills
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - P Bustamante
- Littoral Environnement et Societes (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - R A R McGill
- Stable Isotope Ecology Lab, Natural Environment Isotope Facility, Scottish Universities Environmental Research Centre, East Kilbride G75 0QF, UK
| | - L M Morales
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - F X Palacio
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - D S Torres
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - N S Haidr
- Unidad Ejecutora Lillo (CONICET - FML), San Miguel de Tucumán, Tucumán, Argentina
| | - R Mariano-Jelicich
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - R A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
| | - D Montalti
- Sección Ornitología, Div. Zool. Vert. Museo de la Plata (FCNyM-UNLP-CONICET), La Plata, Buenos Aires, Argentina; Instituto Antártico Argentino, San Martin, Buenos Aires, Argentina
| |
Collapse
|
11
|
Matias RS, Guímaro HR, Bustamante P, Seco J, Chipev N, Fragão J, Tavares S, Ceia FR, Pereira ME, Barbosa A, Xavier JC. Mercury biomagnification in an Antarctic food web of the Antarctic Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119199. [PMID: 35337890 DOI: 10.1016/j.envpol.2022.119199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Under the climate change context, warming Southern Ocean waters may allow mercury (Hg) to become more bioavailable to the Antarctic marine food web (i.e., ice-stored Hg release and higher methylation rates by microorganisms), whose biomagnification processes are poorly documented. Biomagnification of Hg in the food web of the Antarctic Peninsula, one of the world's fastest-warming regions, was examined using carbon (δ13C) and nitrogen (δ15N) stable isotope ratios for estimating feeding habitat and trophic levels, respectively. The stable isotope signatures and total Hg (T-Hg) concentrations were measured in Antarctic krill Euphausia superba and several Antarctic predator species, including seabirds (gentoo penguins Pygoscelis papua, chinstrap penguins Pygoscelis antarcticus, brown skuas Stercorarius antarcticus, kelp gulls Larus dominicanus, southern giant petrels Macronectes giganteus) and marine mammals (southern elephant seals Mirounga leonina). Significant differences in δ13C values among species were noted with a great overlap between seabird species and M. leonina. As expected, significant differences in δ15N values among species were found due to interspecific variations in diet-related to their trophic position within the marine food web. The lowest Hg concentrations were registered in E. superba (0.007 ± 0.008 μg g-1) and the highest values in M. giganteus (12.090 ± 14.177 μg g-1). Additionally, a significant positive relationship was found between Hg concentrations and trophic levels (reflected by δ15N values), biomagnifying nearly 2 times its concentrations at each level. Our results support that trophic interaction is the major pathway for Hg biomagnification in Southern Ocean ecosystems and warn about an increase in the effects of Hg on long-lived (and high trophic level) Antarctic predators under climate change in the future.
Collapse
Affiliation(s)
- Ricardo S Matias
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal.
| | - Hugo R Guímaro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| | - José Seco
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal; Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; School of Biology, University of St. Andrews, KY16 9ST, Scotland, United Kingdom; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, 3020-210, Portugal
| | - Nesho Chipev
- Central Laboratory of General Ecology, Bulgarian Academy of Science, 2 Yurii Gagarin Street, Sofia, 1113, Bulgaria
| | - Joana Fragão
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Sílvia Tavares
- CFE (Centre for Functional Ecology), Department of Life Sciences, University of Coimbra, PO Box 3046, 3001-401, Coimbra, Portugal
| | - Filipe R Ceia
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal
| | - Maria E Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrés Barbosa
- Departamento de Ecologia Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, 28006, Madrid, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, 3000-456, Coimbra, Portugal; British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, United Kingdom
| |
Collapse
|
12
|
Fioramonti NE, Ribeiro Guevara S, Becker YA, Riccialdelli L. Mercury transfer in coastal and oceanic food webs from the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 175:113365. [PMID: 35114547 DOI: 10.1016/j.marpolbul.2022.113365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of contaminants, such as mercury (Hg), in marine trophic webs is a critical topic in the scientific community due to the high concentrations encountered in organisms. In this study we attempted to provide information on total Hg accumulation patterns and possible pathways of trophic transfers assessed in combination with δ13C and δ15N to understand how this contaminant permeates three sub-Antarctic food webs: the Beagle Channel (BC), the Atlantic coast of Tierra del Fuego (AC-TDF) and Burdwood Bank (BB). We found a site-specific pattern of Hg transfer and biomagnification processes, while the oceanic BB showed major Hg transfer through the pelagic domain, coastal sectors (BC and AC-TDF) indicate a general biodilution process but with Hg concentrations incrementing with the benthivory grade. This represents a dissimilar Hg bioavailability for marine consumers that rely on different diet and forage in different habitats, and may become an issue of important conservation concern for these southern areas.
Collapse
Affiliation(s)
- N E Fioramonti
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina.
| | - S Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av E. Bustillo Km 9.500, Bariloche, Argentina
| | - Y A Becker
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
13
|
Xie J, Tao L, Wu Q, Li T, Yang C, Lin T, Liu B, Li G, Chen D. Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: The distribution and human health implications. MARINE POLLUTION BULLETIN 2021; 173:112926. [PMID: 34536705 DOI: 10.1016/j.marpolbul.2021.112926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Squids are globally distributed. Hg-contaminated squids may have high risks on humans. With abundant Se (antagonistic effect on Hg), the risks can be reduced. We collected squids around the world (Northwest Pacific Ocean, Southeast Pacific Ocean and Indian Ocean). Concentrations of Hg and Se were region-based and tissue-based. The higher content of Se were, the lower relative Hg levels were. The correlation between Se:Hg and Se was the strongest in the digestive gland. The values of Se:Hg and THQ all confirm that the health risk was lower in samples with higher concentrations of Se. Despite the risk assessment by Se:Hg, BRV and THQ analysis showed no risk when consumed in moderation, the maximum daily intake is provided based on Monte Carlo simulation. In future, when evaluating the risks cause by Hg exposure and providing the recommended daily amount, it may need to concurrent consideration of Se levels.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Skate Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, 316021, China
| | - Chenghu Yang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, 316021, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Bilin Liu
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China
| | - Gang Li
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China.
| | - Duofu Chen
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
14
|
Bengtson Nash SM, Casa MV, Kawaguchi S, Staniland I, Bjerregaard P. Mercury levels in humpback whales, and other Southern Ocean marine megafauna. MARINE POLLUTION BULLETIN 2021; 172:112774. [PMID: 34364143 DOI: 10.1016/j.marpolbul.2021.112774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Mercury is a known potent neurotoxin. The biogeochemical cycle of mercury in the remote Antarctic region is still poorly understood, with Polar climate change contributing added complexity. Longitudinal biomonitoring of mercury accumulation in Antarctic marine megafauna can contribute top-down insight into the bio-physical drivers of wildlife exposure. The bioaccumulative nature of organic mercury renders high trophic predators at the greatest risk of elevated exposure. Humpback whales represent secondary consumers of the Antarctic sea-ice ecosystem and an ideal biomonitoring species for persistent and bioaccumulative compounds due to their extended life-spans. This study provides the first results of mercury accumulation in humpback whales, and places findings within the context of mercury accumulation in both prey, as well as six other species of Antarctic marine megafauna. Combined, these findings contribute new baseline information regarding mercury exposure to Antarctic wildlife, and highlights methodological prerequisites for routine mercury biomonitoring in wildlife via non-lethally biopsied superficial tissues.
Collapse
Affiliation(s)
- Susan M Bengtson Nash
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia.
| | - Maria Valeria Casa
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia
| | - So Kawaguchi
- Australian Antarctic Division, Kingston, TAS 7050, Australia
| | - Iain Staniland
- British Antarctic Survey, Cambridge CB3 0ET, England, United Kingdom of Great Britain and Northern Ireland
| | - Poul Bjerregaard
- Department of Biology, The University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
15
|
McKenzie AC, Silvestro AM, Marti LJ, Emslie SD. Intraspecific Variation in Mercury, δ 15 N, and δ 13 C Among 3 Adélie Penguin (Pygoscelis adeliae) Populations in the Northern Antarctic Peninsula Region. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2791-2801. [PMID: 34265110 DOI: 10.1002/etc.5166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a pervasive environmental contaminant that accumulates in the organs and tissues of seabirds at concentrations capable of causing acute or long-term adverse health effects. In the present study, Hg concentrations in Adélie penguin (Pygoscelis adeliae) egg membranes and chick feathers served as a proxy for Hg bioavailability in the marine environment surrounding the northern Antarctic Peninsula. Stable isotopes were measured in conjunction with Hg to infer information regarding feeding habits (δ15 N, diet/trophic level; δ13 C, foraging habitat). The Hg concentrations were low relative to toxicity benchmark values associated with adverse health effects in birds and ranged between 0.006 and 0.080 µg g-1 dry weight (n = 65) in egg membranes and 0.140 to 1.05 µg g-1 fresh weight (n = 38) in feathers. Egg membrane δ15 N signatures suggested that females from different breeding colonies had similar diets consisting of lower and higher trophic prey prior to arrival to breeding grounds. In contrast, δ15 N signatures in feathers indicated that chick diet varied by colony. The Hg concentrations demonstrated significant positive relationships with δ15 N, providing support for the hypothesis of Hg biomagnification up the food chain. The δ13 C signatures in both tissue types provided evidence of foraging habitat segregation among populations. The differences in Hg exposure and foraging ecology suggest that each colony has localized foraging behaviors by breeding adults that warrant additional investigation. Environ Toxicol Chem 2021;40:2791-2801. © 2021 SETAC.
Collapse
Affiliation(s)
- Ashley C McKenzie
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Anahí M Silvestro
- Centro de Investigación Esquel de Montaña y Estepa Patagónica, Esquel, Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Lucas J Marti
- Departamento de Ciencias Biológicas, Universidad CAECE, Buenos Aires, Argentina
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
16
|
Chiang G, Kidd KA, Díaz-Jaramillo M, Espejo W, Bahamonde P, O'Driscoll NJ, Munkittrick KR. Methylmercury biomagnification in coastal aquatic food webs from western Patagonia and western Antarctic Peninsula. CHEMOSPHERE 2021; 262:128360. [PMID: 33182080 DOI: 10.1016/j.chemosphere.2020.128360] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is a global pollutant of concern because its organic and more toxic form, methylHg (MeHg), bioaccumulates and biomagnifies through aquatic food webs to levels that affect the health of fish and fish consumers, including humans. Although much is known about trophic transfer of MeHg in aquatic food webs at temperate latitudes in the northern hemisphere, it is unclear whether its fate is similar in biota from coastal zones of the southeastern Pacific. To assess this gap, MeHg, total Hg and food web structure (using δ13C and δ15N) were measured in marine macroinvertebrates, fishes, birds, and mammals from Patagonian fjords and the Antarctic Peninsula. Trophic magnification slopes (TMS; log MeHg versus δ15N) for coastal food webs of Patagonia were high when compared with studies in the northern hemisphere, and significantly higher near freshwater inputs as compared to offshore sites (0.244 vs 0.192). Similarly, in Antarctica, the site closer to glacial inputs had a significantly higher TMS than the one in the Southern Shetland Islands (0.132 vs 0.073). Composition of the food web also had an influence, as the TMS increased when mammals and seabirds were excluded (0.132-0.221) at a coastal site. This study found that both the composition of the food web and the proximity to freshwater outflows are key factors influencing the TMS for MeHg in Patagonian and Antarctic food webs.
Collapse
Affiliation(s)
- Gustavo Chiang
- CAPES, Center for Applied Ecology & Sustainability, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile.
| | - Karen A Kidd
- Department of Biology and School of Earth, Environment and Society, McMaster University, 1280, Main Street W., Hamilton, ON, L8S 4K1, Canada
| | - Mauricio Díaz-Jaramillo
- IIMyC, Estresores Múltiples en El Ambiente (EMA), FCEyN UNMdP CONICET, Funes 3350 (B7602AYL), Mar Del Plata, 7600, Argentina
| | - Winfred Espejo
- Department of Animal Science, Faculty of Veterinarian Sciences, Universidad de Concepción, Av. Vicente Méndez 595, Chillán, Chile
| | - Paulina Bahamonde
- Núcleo Milenio INVASAL, Concepción, Chile; HUB AMBIENTAL UPLA - Centro de Estudios Avanzado, Universidad de Playa Ancha, Valparaíso, Chile
| | - Nelson J O'Driscoll
- Department of Earth & Environmental Sciences, Acadia University, Wolfville, NS, Canada
| | | |
Collapse
|
17
|
Bestley S, Ropert-Coudert Y, Bengtson Nash S, Brooks CM, Cotté C, Dewar M, Friedlaender AS, Jackson JA, Labrousse S, Lowther AD, McMahon CR, Phillips RA, Pistorius P, Puskic PS, Reis AODA, Reisinger RR, Santos M, Tarszisz E, Tixier P, Trathan PN, Wege M, Wienecke B. Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566936] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
18
|
Furtado R, Granadeiro JP, Campioni L, Silva M, Pereira E, Catry P. Trace elements' reference levels in blood of breeding black-browed albatrosses Thalassarche melanophris from the Falkland Islands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39265-39273. [PMID: 32648215 DOI: 10.1007/s11356-020-09928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Trace elements' concentration in the ocean is fast growing and is a source of major concern. Being charismatic and at the top of food chains, seabirds are often used as biological monitors of contaminants. We studied the concentration of trace elements in blood of black-browed albatross from the Falklands Islands, which we here show, by tracking with geolocators, forage over most of the Patagonian Shelf. Levels of trace elements were measured in males and females from two different islands. Blood concentrations of trace elements were not significantly different between islands, which is consistent with observations from foraging behavior revealing that birds from both islands foraged in broadly the same areas in the months before sampling. Arsenic and selenium concentrations in females were higher than in males. Sex-related differences in the concentration of these elements may be related to unknown slight differences in diet or to differences in assimilation between sexes. These results provide reference values for monitoring elemental contamination in the Patagonian Shelf Large Marine Ecosystem using black-browed albatrosses, one of the most abundant top predators and a suitable sentinel for the region's environmental health.
Collapse
Affiliation(s)
- Ricardo Furtado
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal.
| | - José Pedro Granadeiro
- CESAM Centre for Environmental and Marine Studies, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Letizia Campioni
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal
| | - Mónica Silva
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Eduarda Pereira
- Department of Chemistry and CESAM/REQUIMTE, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paulo Catry
- MARE - Marine and Environmental Sciences Centre, ISPA, Instituto Universitário, Lisbon, Portugal
| |
Collapse
|
19
|
Zhang H, Guo C, Feng H, Shen Y, Wang Y, Zeng T, Song S. Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140034. [PMID: 32758950 DOI: 10.1016/j.scitotenv.2020.140034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
This study analyzed total mercury (THg), methylmercury (MeHg) and selenium (Se) in 114 aquatic product samples (representing 39 species) from eight coastal cities of China. The THg and MeHg levels in different parts of the same sample species were in the order of muscle ≥ skin/shell > roe, whereas Se levels were much higher in roe. Concentrations of THg, MeHg, and Se in the muscles were between 2.27-154, 0.36-135, and 57.8-1.20 × 103 ng g-1 wet weight (ww), respectively. Although significant differences in analyte concentrations were not observed among cities, they existed among three species; marine fish, freshwater fish, and shellfish. Shellfish had generally lower Hg content (mean: 20.2 ng g-1 ww THg, 6.71 ng g-1 ww MeHg, and 30.9% MeHg/THg ratio); however it had higher Se content (528 ng g-1 ww) than the other types of fish (mean: 33.3 ng g-1 ww THg, 28.2 ng g-1 ww MeHg, and 79.2% MeHg/THg ratio, 257 ng g-1 ww Se). In addition to species, the individual growth and HgSe interaction influenced Hg distribution. Evident correlations were observed between several individual body features and Hg content, and between Se and THg concentrations (p < 0.05). The greater correlation coefficient between two elements for fish indicated stronger HgSe antagonism through HgSe compound formation in fish. Relatively low THg daily intakes (mean 0.013-0.080 μg kg-1 day-1) and MeHg daily intakes (0.006-0.065 μg kg-1 day-1) along with Se:Hg molar ratios >1 and positive HBVSe values suggest that aquatic products from these sites will not pose immediate health problems to consumers. Fish was the dominating contributor for MeHg intake whereas shellfish was the dominating contributor for Se intake. To safeguard against mercury exposure, residents in these areas can appropriately increase shellfish intake (especially bivalves), rather than exclusively consuming marine fish.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenqi Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yanting Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yaotian Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
20
|
Ballová ZK, Korec F, Pinterová K. Relationship between heavy metal accumulation and histological alterations in voles from alpine and forest habitats of the West Carpathians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:36411-36426. [PMID: 32562226 DOI: 10.1007/s11356-020-09654-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The interaction between toxic heavy metals and bio-elements in internal organs and femoral bones and their potential impacts on bone structural properties and renal histopathological changes in bank voles and snow voles were investigated. Our results reveal that heavy metals Hg and Pb accumulate more in femoral bones of alpine habitats than forests. In snow voles, the parameters of the primary osteons' vascular canals (length, average perimeter and area) simultaneously decreased with an increase of Pb and Sr. Wider primary osteons' vascular canals of snow voles contained decreased levels of K, but increased Ba. In bank voles, the number of primary osteons increased in alpine habitats along with K, Hg, and Pb accumulation. In the kidneys of bank voles, rising levels of Rb, Hg, and Zn were detected in alpine habitats. Hg increases the most in kidney tissue from alpine habitats in both vole species, and Hg levels (mean value 0.25 μg/g, max. value 0.55 μg/g) in the renal tissues of bank voles from alpine localities are similar to Hg levels from Hg-polluted industrial areas in other studies. This reflects that alpine areas of the Tatra Mountains are highly contaminated with Hg. The intensity of renal hemosiderosis relates significantly to Zn, Fe, and Cu levels in snow voles, with Fe and Zn levels in bank voles from forest habitats, and with Rb in bank voles from alpine habitats. The intensity of tubule necrosis in renal tissues of bank voles from alpine habitats was negatively related to Se content. In bank voles from forest habitats, significant positive correlations were found between the intensity of glomerular hyperplasia and amounts of Zn. The interactions of the detected element's association with bone tissue and internal organs are discussed.
Collapse
Affiliation(s)
- Zuzana Kompišová Ballová
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, SK-05956, Tatranská Javorina, Slovakia.
| | - Filip Korec
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, SK-05956, Tatranská Javorina, Slovakia
| | - Katarína Pinterová
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, SK-05956, Tatranská Javorina, Slovakia
| |
Collapse
|